
Group Sampling for Scale Invariant Face Detection

Xiang Ming1∗ Fangyun Wei2 Ting Zhang2 Dong Chen2 Fang Wen2

Xi’an Jiaotong University1 Microsoft Research Asia2

xjtustu.mx@stu.xjtu.edu.cn {fawe,tinzhan,doch,fangwen}@microsoft.com

Abstract

Detectors based on deep learning tend to detect multi-

scale faces on a single input image for efficiency. Recent

works, such as FPN and SSD, generally use feature maps

from multiple layers with different spatial resolutions to de-

tect objects at different scales, e.g., high-resolution feature

maps for small objects. However, we find that such multi-

layer prediction is not necessary. Faces at all scales can be

well detected with features from a single layer of the net-

work. In this paper, we carefully examine the factors af-

fecting face detection across a large range of scales, and

conclude that the balance of training samples, including

both positive and negative ones, at different scales is the key.

We propose a group sampling method which divides the an-

chors into several groups according to the scale, and ensure

that the number of samples for each group is the same dur-

ing training. Our approach using only the last layer of FPN

as features is able to advance the state-of-the-arts. Compre-

hensive analysis and extensive experiments have been con-

ducted to show the effectiveness of the proposed method.

Our approach, evaluated on face detection benchmarks in-

cluding FDDB and WIDER FACE datasets, achieves state-

of-the-art results without bells and whistles.

1. Introduction

Face detection is the key step of many subsequent face

related applications, such as face alignment [5, 77, 27, 28,

60], face synthesis [48, 1, 2, 78, 10, 24, 62] and face recog-

nition [63, 7, 55, 39, 56]. Among the various factors that

confront real-world face detection, extreme scale variations

and small facial remain a big challenge.

Previous deep learning detectors detect multi-scale faces

on a single feature map, e.g., Fast R-CNN [15] and Faster

R-CNN [46]. They offer a good trade-off between accu-

racy and speed. However, these methods tend to miss faces

at small scale because of the large stride size of the an-

chor (e.g., 16 pixels in [46]), making small faces difficult

∗Work done during the internship at Microsoft Research Asia.

to match the appropriate anchor and thus have few positive

samples during training.

To alleviate these problems arising from scale variation

and small object instances, multiple solutions have been

proposed, including: 1) using image pyramid for training

and inference [22, 51]; 2) combining features from shallow

and deep layers for prediction [17, 29, 4]; 3) using top-down

and skip connections to produce a single high-level feature

map with fine resolution [47, 50, 44]; 4) using multiple lay-

ers with different resolutions to predict object instances of

different scales [61, 6, 38, 31, 41, 35]. All of these solutions

significantly improve the performance of detectors. Among

them, adopting several layers with different resolutions for

prediction is the most popular one, since it achieves better

performance, especially for detecting small objects.

It is generally believed that the advantage of prediction

over multiple layers stems from the multi-scale feature rep-

resentation, which is more robust to scale variation than the

feature from a single layer. However, we find that this is

not the case, at least for face detection. We observe that

making predictions on multiple layers will produce differ-

ent numbers of anchors for different scales1, which is the

reason why pyramid features outperform single layer fea-

ture instead of the pyramid representation, and this factor

is overlooked in the comparison between pyramid features

and single layer feature conducted in FPN [35]. Empirically

we show that single layer predictions, if imposed with the

same number of anchors as that in FPN [35], achieve almost

the same accuracy.

Motivated by this observation, we carefully examine the

factors affecting face detection performance through exten-

sive empirical analysis and identify a key issue in existing

anchor based face detectors, i.e., the anchors sampled at

different scales are imbalanced. To show this, we use two

representative detection architectures, the Region Proposal

Network (RPN) in Faster R-CNN [46] and FPN [35], as ex-

amples. Figure 1 illustrates the network architectures. We

calculate the number of training samples received by an-

chors at each scale during the training process and report

them in Figure 2 (a) and (b) for RPN and FPN, respectively.

1The scale of a bounding box with size (w, h) is defined as
√
wh.

3446



𝑪𝟐𝑪3
𝑪4 16/16

32/16

64/16

128/16

(a) RPN

𝑪𝟐𝑪3
𝑪4𝑪5

𝑷𝟐𝑷3
𝑷4𝑷5 128/32

64/16

32/8

16/4

(b) FPN

𝑪𝟐𝑪3
𝑪4𝑪5

𝑷𝟐𝑷3
𝑷4𝑷5 16/4

32/8

64/16

128/32

(c) FPN-finest-stride

𝑪𝟐𝑪3
𝑪4𝑪5

𝑷𝟐𝑷3
𝑷4𝑷5 16/4

32/4

64/4

128/4

(d) FPN-finest

𝑪𝟐𝑪3
𝑪4𝑪5

𝑷𝟐𝑷3
𝑷4𝑷5 16/4+GS

32/4+GS

64/4+GS

128/4+GS

(e) FPN-finest-sampling

Figure 1: Illustration of network architectures of five different detectors described in Section 3. The term “16/4” associated

with the feature map denote that anchors with scale 16 and anchor stride 4 (with respect to the input image) have been placed

on that feature map. The difference between (d) FPN-finest and (e) FPN-finest-smapling which have the same network

architecture, is that (e) used the proposed group sampling in (d).
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Figure 2: The distribution of positive and negative anchors at different scales on WIDER FACE training set with different

network architectures. The number is normalized by the total amount of training samples.

For RPN, since the strides of anchors for different scales

are the same, the small anchors are more difficult to match

an appropriate labeled object, resulting in fewer positive

samples and thus lower accuracy for small objects. On the

other hand, FPN uses high-resolution feature maps for small

object prediction, this gives rise to several more times neg-

ative training samples for small objects than large objects.

Such trained classifiers would get higher accuracy for

small objects than RPN like detectors, which might be

the reason why FPN based methods perform better on the

COCO detection benchmark [37] and the WIDER FACE

database [65], where small objects are dominant. We fur-

ther report the number of training samples when only using

the last layer of FPN, which is shown in Figure 2 (d). The

distribution is similar to RPN, though the absolute values

are different. Empirically we show that similar to RPN,

predictions made only on the last layer of FPN get lower

accuracy for small objects due to the insufficient positive

samples.

To handle this issue, we propose a group sampling

method, which is simple and straightforward. The idea is

to randomly sample the same number of positive samples

as well as the same number of negative samples at each

scale during each iteration of the training process. Thus

the classifier is fed with balanced training samples at dif-

ferent scales. Figure 2 (e) shows the anchor distribution of

our method, where the distribution becomes more balanced.

With our approach, only using the feature map on the finest

level of FPN with group sampling is able to achieve better

performance than FPN on WIDER FACE [65].

In addition, we notice that the second stage of the Faster

R-CNN [46] also suffers from data imbalance issue, since

the scale distribution of the objects in the dataset is imbal-

anced. We show that our proposed method can be used here

by evenly sampling the features after RoI Pooling for differ-

ent scales and thus further improve the detection accuracy.

In summary, our main contribution lies in three aspects:

(1) We observe that anchor distribution across scales in-

stead of the multi-scale feature representation is the key

factor when making predictions over multiple layers, which

challenges our understanding of FPN; (2) We further care-

fully examine the factors affecting detection performance

and identify the key issue in existing anchor-based detec-

tors: the anchors are imbalanced at different scales; (3) We

present a simple and straightforward solution to handle that

issue and the proposed solution achieves noticeable effect

on detection performance.

2. Related Work

Single scale feature for multi-scale detection. Modern de-

tectors, such as Fast R-CNN [15] and Faster R-CNN [46],

use single scale feature for multi-scale detection by extract-

ing scale-invariant features through RoI operation. They

offer a good trade-off between accuracy and speed, while

still perform not well on small objects. One of the reasons

might be the insufficient positive training samples for small

objects, and we show that the proposed group sampling al-

leviates this issue and improves the detection accuracy.
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Top-down architecture with lateral connections. Top-

down structure with lateral connections is getting popular

ever since proposed and has been widely used in various

computer vision tasks, e.g., U-Net [47] and SharpMask [44]

for semantic segmentation, Recombinator Network [20] for

face detection, and Stacked Hourglass Network [42] for hu-

man pose estimation. The advantage of such an architecture

is that a single high-resolution feature map which captures

both semantic information and fine grained details can be

obtained through the combination of the low-level feature

maps and the high-level feature maps. In our experiments,

we show that top-down architecture with lateral connections

is indeed very helpful for face detection.

Multi-scale feature for multi-scale detection. Some re-

cent works adopt the feature pyramid for object detection,

in which features at different levels are used to handle ob-

jects at different scales, e.g., SSD [38], MS-CNN [6] and

FPN [35]. FPN also exploits the top-down architecture

with lateral connections for strong feature representation.

Such multi-scale feature representation is also widely used

for face detection to improve accuracy, e.g., SSH [41] and

S3FD [75]. However, we show that the improvement comes

from the anchor distribution toward small objects rather

than the multi-level feature representation.

Data imbalance. Learning from class imbalanced data,

in which the distribution of training data across different

object classes is significantly skewed, is a long-standing

problem. A common approach to address class imbal-

ance issue in machine learning is re-sampling the training

data [8, 16, 18, 68, 3], e.g., under-sampling instances of the

majority classes [40] or over-sampling the instances of the

minority classes with generative and discriminative mod-

els [21, 79, 12]. Another common approach is cost-sensitive

learning, which reformulates existing learning algorithms

by penalizing the misclassifications of the minority classes

more heavily than the misclassifications of the majority

class [54, 76]. For detection, the imbalanced scale distri-

bution can also be regarded as one kind of class imbalance

issue. Previous works using hard example mining [49] or

carefully designed loss functions [36] have implicitly miti-

gated this issue to some degree. For instance, S3FD [75] has

observed that the positive training samples is insufficient for

small objects and propose to increase the number of small

positive training samples by decreasing the IoU threshold.

In this work, we point out that the scale imbalance distribu-

tion over not only the positive samples but also the negative

samples is a key issue and propose a simple group sampling

method to explicitly handle it, resulting in better detection

accuracy.

3. Motivation: Scale Imbalance Distribution

In this section, we provide an in-depth analysis of two

factors that might affect detection accuracy: multi-scale fea-
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Figure 3: Network architecture used in our experiments, ×2
is bilinear upsampling and

⊕

is element wise summation.

ture representation and scale imbalance distribution. We

use ResNet-50 [19] combined with top down and skip con-

nections. Figure 3 briefly illustrates the network structure.

The output features from the last residual block of conv2,

conv3, conv4 and conv5 are denoted as C2, C3, C4, C5

respectively. The bottom-up feature map first undergoes

a 1 × 1 convolution layer to reduce the channel dimen-

sions and then is merged with the up-sampled feature

map by element-wise addition. This process is repeated

three times. We denote the final output feature maps as

{P2, P3, P4, P5}, and Pi has the same spatial size with Ci.

The anchor scales are {16, 32, 64, 128} and the aspect ratio

is set as 1. Based on this network architecture, we compare

five types of detectors:

1. RPN: The feature map C4 is used as the detection layer

where all anchors are tiled with stride 16 pixels.

2. FPN: {P2, P3, P4, P5} are used as the detection layers

with the anchor scales {16, 32, 64, 128} corresponding

to feature stride {4, 8, 16, 32} pixels respectively.

3. FPN-finest-stride: All anchors are tiled on the

finest layer of the feature pyramid, i.e., P2. The

stride is {4, 8, 16, 32} pixels for anchors with scale

{16, 32, 64, 128}, respectively. This is implemented

by sub-sampling P2 for larger strides.

4. FPN-finest: All anchors are also tiled on P2. The stride

for each anchor is 4 pixels.

5. FPN-finest-sampling: This adopts the same setting

with FPN-finest. Additionally, we use the proposed

group sampling method to balance the training sam-

ples for different scales.

To ensure fair comparison, all detectors use the same

setting for both training and inference on the challenging

WIDER FACE dataset [65]. The results are evaluated on

the WIDER FACE validation dataset. we have following

observations.
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Using multiple layer features is little helpful. The only

difference between FPN and FPN-finest-stride lies in that

whether the features used for detection come from one sin-

gle layer or come from multiple layers. The Average Preci-

sion (AP) of FPN is 90.9%, 91.3%, 87.6% for easy, medium

and hard subsets respectively. In contrast, the results for

FPN-finest-stride are 90.4%, 91.0%, 87.1%. The results are

comparable, showing that using single layer feature is suffi-

cient for face detection.

Scale imbalance distribution matters. We further com-

pare FPN-finest-stride with FPN-finest, which set the stride

for all different anchors as 4 pixels. We observe that 1)

FPN-finest gets better performance on easy and medium

subsets as expected, since more training examples for large

anchors are selected than FPN-finest-stride, and 2) loses

1.1% AP on hard subset, even though FPN-finest has the

same number of anchors for scale 16. To find out the reason

behind, we plot the proportions of training positive samples

and negative ones at different scales for all the compared

detectors in Figure 2 and show the AP results in Table 1.

First, the performance of FPN and FPN-finest-stride are

almost the same and their anchor distribution at different

scales are also similar as shown in Figure 2 (b) and (c), sug-

gesting that similar distribution, when the total number of

anchors is the same, gives rise to similar performance.

Second, as shown in Figure 2 (c) and (d), the sample

distribution at different scales for both FPN-finest-stride

and FPN-finest is imbalanced and quite different. It seems

that FPN-finest-stride has more small negative anchors and

achieves higher accuracy on hard set, while FPN-finest has

more large positive anchors and achieves higher accuracy

on easy set. This leads to our hypothesis that scale imbal-

ance distribution is a key factor affecting the detection accu-

racy. RPN as shown in Figure 2 (a) also has more large pos-

itive anchors and gets 2.0% higher on easy subset compared

with FPN-finest-stride, future supporting our hypothesis.

Motivated by above observations, we propose a group

sampling method to handle the scale imbalance distribu-

tion. Figure 2 (e) shows that the anchor distribution of FPN-

finest-sampling which uses the proposed group sampling

method during training is more balanced, and as a result,

FPN-finest-sampling achieves the best performance.

4. Group Sampling Method

For anchor based face detection, there is an important

step which is to match ground-truth boxes with anchors and

assign those anchors with labels based on their IoU ratios.

Therefore the classifiers are optimized based on these as-

signed positive and negative anchors. In this section, we

first introduce the anchor matching strategy that we adopt

and then present the proposed group sampling method.

4.1. Anchor Matching Strategy

Current anchor matching strategies usually follow a

two-pass policy, which has been widely used in detection

works [46, 38]. In the first pass, each anchor is matched

with all ground-truth boxes and it is assigned with a posi-

tive/negative label if its highest IoU is above/below a prede-

fined threshold. However, some ground-truth boxes may be

unmatched in this step. The second pass is to further asso-

ciate those unmatched ground-truth boxes with anchors. We

also adopt such policy and the details are described below.

Formally, the set of anchors is denoted as {pi}
n
i=1, where

i is the index of the anchor and n is the number of the an-

chors for all scales. Similarly, the ground-truth boxes are

denoted as {gj}
m
j=1, where j is the index of the ground-

truth and m is he number of ground-truth boxes. Before

the matching step, a matching matrix M ∈ Rn×m is first

constructed, representing the IoUs between anchors and

ground-truth boxes, i.e., M(i, j) = IoU(pi, gj).
In the first pass, each anchor pi is matched with all

the ground-truth boxes to find the highest IoU, denoted as

C(i) = max
1≤j≤m

M(i, j). Hence pi is assigned with a label

according to the following equation:

L(i) =











1, λ1 ≤ C(i)

−1, λ2 ≤ C(i) < λ1

0, C(i) < λ2

(1)

where λ1 and λ2 are two preset thresholds, the label 1 rep-

resents the positive samples, 0 represents the negative sam-

ples, and −1 means that pi will be ignored during training.

It is likely that some ground-truth bounding boxes are

not matched to any anchor in the first pass, especially for

small objects. So the second pass often aims to make full

use of all ground-truth boxes to increase the number of pos-

itive training samples. Specifically, for each unmatched

ground-truth box, say gj , we match it with the anchor

pi which satisfies three conditions: 1) this anchor is not

matched to any other ground-truth boxes; 2) IoU(pi, gj) ≥
λ2; 3) j = argmax

1≤u≤m

IoU(pi, gu).

4.2. Group Sampling

After each anchor is associated with a label, we find that

there exist two kinds of imbalance in the training samples.

• Positive and negative samples are not balanced: the

number of negative samples in the image is much

greater than the number of positive samples due to the

nature of object detection task.

• Samples at different scales are not balanced: small ob-

jects are more difficult to find a suitable anchor than

large objects due to IoU based matching policy.
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Previous methods often notice the first point and usually

handle it by hard negative example mining, e.g., the posi-

tive and negative sample ratio is set to 1:3 when sampling

training examples. But they all ignored the second point.

To handle above two issues, we propose a scale aware

sampling strategy called group sampling. We first divide

all the training samples into several groups according to the

anchor scale, i.e., all anchors in each group have the same

scale. Then we randomly sample the same number of train-

ing samples for each group, and ensure that the ratio of pos-

itive and negative samples in each sampled group is 1:3. If

there is a shortage of positive samples in a group, we will

increase the number of negative samples in this group to

make sure that the total number of samples for each group

remains the same.

Formally, let Ps and Ns represent the set of randomly

sampled positive and negative anchors with scale s, that is

Ps ⊆ {pi|L(i) = 1,S(i) = s} and Ns ⊆ {pi|L(i) =
0,S(i) = s}. Thus our proposed approach is to first guar-

antee that |Ps|+ |Ns| = N where N is a constant, and then

ensure that 3|Ps| = |Ns| for scale s. Therefore, for all the

scales, each classifier would have sufficient and balanced

positive and negative samples for training.

Grouped Fast R-CNN. It is known that after obtaining the

candidate regions, using Region-of-Interest (RoI) operation

to extract features for each proposal and then feeding these

features into another network to further improve the de-

tection accuracy. However, directly applying Fast R-CNN

brings a little performance improvement (about 1%). Con-

sidering the huge computation cost introduced, this prac-

tice is quite cost-ineffective. Interestingly, we notice that

the scale distribution of the training samples for Fast R-

CNN is also unbalanced, where the proposed group sam-

pling method can be used again. Therefore, we use group

sampling here to ensure that the number of training sam-

ples in each group is the same, and the ratio for positive and

negative sample remains 1:3. We show that this can effec-

tively improve the accuracy of Fast R-CNN. We denote Fast

R-CNN with group sampling as Grouped Fast R-CNN.

Relation to OHEM and Focal Loss. Online hard exam-

ple mining (OHEM) [38] is to keep the top K samples with

highest training loss for back propagation. Focal Loss [36]

proposes giving each sample a specific weight. Both seem

similar to the cost-sensitive learning often used in address-

ing data imbalance by penalizing the misclassifications of

the minority class more heavily. However, the weight for

each sample in OHEM and Focal Loss is set with respect

to the sample’s loss in a hard/soft manner, which can be

viewed as an implicit and dynamic way of handling data

imbalance. Our approach, on the other hand, is able to ex-

plicitly handle the data imbalance for different scales and

achieve better performance as shown in Table 4.

5. Training Process

In this section, we introduce the training dataset, loss

function and other implementation details. Note that we

propose a new IoU based loss function for regression to get

better performance compared with Smooth-L1 loss [46].

Training dataset. As with previous works [38, 75], we

train our models on the WIDER FACE training set which

contains 12, 880 images and test on the WIDER FACE val-

idation and testing set, as well as the FDDB dataset.

Loss function. We use softmax loss for classification. For

regression, we propose a new IoU based loss, denoted as

IoU least square loss,

Lreg =
1

Nreg

∑

(pi,gj)

‖1− IoU(pi, gj)‖
2
2, (2)

where (pi, gj) is a matching pair of an anchor pi and a

ground-truth gj . Compared to smooth-L1 loss, this loss

function directly optimizes the IoU ratio, which is consis-

tent with the evaluation metric. Another IoU based loss

function is − ln(IoU) proposed in [69]. It is clear that when

IoU equals to 1, which is the ideal case, previous IoU loss

will get non-zero gradient, while our IoU least square loss

gets zero gradient, allowing the network to converge stably.

Empirically we show that the proposed IoU loss achieves

better performance.

Optimization details. All models are initialized

with the pre-trained weights of ResNet-50 provided by

torchvision
2 and fine-tuned on the WIDER FACE train-

ing set. Each training iteration contains one image per GPU

for an 8 NVIDIA Tesla M40 GPUs server. We set the initial

learning rate to 0.01 and decrease the learning rate by 0.1
at 60th and 80th epoch. All the models are trained for 100
epochs by synchronized SGD. The momentum and weight

decay is set to 0.9 and 5 × 10−5 respectively. Our code is

based on PyTorch [43].

During training, we use scale jitter and random horizon-

tal flip for data augmentation. For scale jitter, each image

will be resized by 0.25×n, and n is randomly chosen from

[1, 8]. Then we randomly crop a patch from the resized im-

age to ensure that each side of the image does not exceed

1,200 pixels due to the GPU memory limitation. We set

λ1 = 0.6 and λ2 = 0.4 for the two-pass anchor matching

policy. At the inference stage, we build the image pyramid

for multi-scale test. The proposals from each level of the

image pyramid will be merged by Non-Maximum Suppres-

sion (NMS). Due to the GPU memory limitation, each side

of the test image will not exceed 3,000 pixels.

2https://github.com/pytorch/vision
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Table 1: Average Precision (AP) of face detection on WIDER FACE validation set. GS represents the proposed group

sampling method. @16 represents the AP on all data when only using outputs from the sub-dector at scale 16 for detection.

So dose @32, @64 and @128.

Methods Feature Anchor Stride GS Easy Medium Hard All @16 @32 @64 @128

RPN C4 16 92.5 91.0 83.0 74.0 48.6 65.1 43.8 21.5

FPN-finest P2 4 94.1 93.0 86.6 80.2 65.6 66.8 43.9 22.4

FPN {P2, P3, P4, P5} {4, 8, 16, 32} 90.9 91.3 87.6 82.1 72.3 67.3 43.2 21.2

FPN-finest-stride P2 {4, 8, 16, 32} 90.4 91.0 87.1 81.6 72.2 66.6 43.3 21.8

FPN-finest-sampling P2 4 X 94.7 93.8 88.7 82.8 74.1 72.9 47.8 24.5

6. Experiments

In this section, we first examine the factors affect-

ing detection accuracy and then present extensive ablation

experiments to demonstrate the effectiveness of our ap-

proach. Finally, we introduce that our approach using single

layer predictions advances the state-of-the-arts on WIDER

FACE [65] and FDDB [25] datasets.

6.1. Factors Affecting Detection Accuracy

We further present a thorough analysis about the five de-

tectors: RPN, FPN, FPN-finest, FPN-finest-stride and FPN-

finest-sampling, which have been introduced in Section 3.

There are two differences among them: 1) the feature map

on which the anchors are tiled; 2) the stride for different

anchors. The stride of an anchor indicates the number of

anchors and smaller stride gives rise to more anchors. Usu-

ally, the size of the feature map will have a corresponding

anchor stride with respect to the original image. For FPN-

finest-stride, we tile the anchors of scale {16, 32, 64, 128}
with the stride of {1, 2, 4, 8} on the feature map P2, equiv-

alent to stride of {4, 8, 16, 32} on the original image.

We adopt Average Precision (AP) as the evaluation met-

ric. Previous methods usually report AP on the easy,

medium and hard subsets for evaluation. However, the re-

sults cannot reflect the ability of the sub-detector which is

used to handle objects in a specific scale range. This is be-

cause a large face (e.g., 128 × 128 pixels) which is usually

detected by the anchor with scale 128, is possible to be ac-

tually detected by the anchor with scale 16 due to the multi-

scale test. Therefore, to clearly show the ability of each sub-

detector, we also report the performance of 4 sub-detectors

in our model on the ‘All’ subsets and they are denoted as

@16, @32, @64 and @128. The performance comparison is

shown in Table 1. We have following observations:

Imbalanced training data at scales leads to worse (bet-

ter) accuracy for the minority (majority). The only dif-

ference between FPN-finest and FPN-finest-stride is the an-

chor stride, i.e., the number of anchors for different scales

are different. For scale 16, its stride is the same in the two

models. Therefore, the number of anchors at scale 16 is also

the same. However, this is not the case for performance over

@16. FPN-finest-tride achieves 72.3%, 6.7% higher than

that in FPN-finest. This is because that in FPN-finest, the

number of positive samples at scale 16 is fewer than that at

other scales, resulting in lower accuracy. On the contrary, in

FPN-finest-stride, the number of positive as well as negative

samples at scale 16 is greater than other scales, resulting in

higher accuracy.

Similar anchor distribution, similar performance. As we

can see, the results of FPN and FPN-finest-stride are very

close. The only difference between the two models is the

features used for detection coming from multiple layers or

a single layer. This suggests that using multi-level feature

representation is of little help for improving detection accu-

racy. Therefore, we ask a question: does similar anchor dis-

tribution leads to similar performance ? Consider another

comparison between RPN and FPN-finest, whose sample

distributions are similar: both have more large positive ex-

amples, the two models have the same tendency of achiev-

ing lower accuracy for @16 and higher accuracy for @128
compared with FPN (or FPN-finest-stride), suggesting that

similar anchor distribution leads to similar performance.

Data balance achieves better result. All the above dis-

cussed four detectors have imbalanced anchor distribu-

tions. Comparing FPN-finest and FPN-finest-sampling,

which adopts the proposed group sampling method in FPN-

finest, the only difference is the distribution of the training

data at each scale. We can see that using more evenly dis-

tributed training data can significantly improve the results,

increasing from 80.2% to 82.8% on the whole dataset.

6.2. Ablation Experiments

The effect of feature map. We first compare detection ac-

curacy with and without group sampling when using differ-

ent feature maps. Table 2 shows the detection performance

when using {P2, P3, P4, P5}, P2, and other feature maps.

We have following observations: 1) using top down and

lateral connections to provide more semantic information

always helps, the performance of Pn is superior to Cn un-

der all these settings; 2) using high resolution feature map

produces more small training samples and helps detecting

small faces; 3) regardless of the feature maps, using group

sampling can always improve the results. For the sake of

simplicity, we use P2 as the feature in our final model.
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Figure 4: Illustrating the effect of the number of training samples N . Our approach (FPN-finest-sampling) gets better

performance when N increases, benefiting from more training examples. The performance of FPN and FPN-finest decreases

as N get larger, suffering from more imbalanced data.

Table 2: Comparison of models with/without group sam-

pling using different feature maps.

Feature GS @16 @32 @64 @128 All

{P2, P3, P4, P5}
72.3 67.3 43.2 21.2 82.1

X 75.7 73.4 48.2 24.9 83.6

P2

65.6 66.8 43.9 22.4 80.3

X 74.1 72.9 47.8 24.5 82.8

P3

62.5 66.4 44.2 22.4 79.6

X 72.1 73.2 48.7 25.3 83.7

P4

47.9 65.6 44.2 22.1 74.4

X 57.8 71.0 48.4 25.2 79.6

C3

59.8 61.8 39.2 18.0 71.0

X 68.8 68.9 44.3 21.2 75.4

C4

48.6 65.1 43.8 21.5 74.0

X 58.0 70.8 48.2 24.6 78.9

The effect of the number of training samples N . As in-

troduced in Section 4.2, we randomly choose N training

samples for each scale during training. The performance

under different N is shown in Figure 4. It can be seen that:

1) the performance gets better when N increases; 2) the ac-

curacy gets saturated when N is greater than 2048. Besides,

we also plot the results of FPN and FPN-finest under differ-

ent values of N . We can see that the performance of both

models degrades when N increases, because the distribu-

tion of training examples become more imbalanced.

The effect of the proposed loss. We propose a new IoU

based loss for regression, namely least square IoU loss, to

allow the network converge stably. Here we compare dif-

ferent loss functions, including Smooth-L1, − ln(IoU) and

‖1 − IoU‖22. The detector we used is FPN-finest-sampling.

The comparison results are shown in Table 3. We can see

that the two IoU based loss functions perform better then

Smooth-L1, as they directly optimize the evaluation metric.

Compared with − ln(IoU), our proposed least square IoU

loss achieves better performance.

Comparison with OHEM and Focal Loss. Here we com-

pare our approach with two methods: OHEM [49] and Fo-

cal loss [36], both adopting hard example mining, which

can be regarded as a way of handling data imbalance.

Table 3: Comparison of different loss function for the re-

gression task. The proposed loss function performs better.

Loss @16 @32 @64 @128 All

Smooth-L1 74.1 72.9 47.8 24.5 82.8

− ln(IoU) 74.6 73.1 48.0 25.1 83.5

‖1− IoU‖22 75.0 73.2 48.2 24.9 83.7

Table 4: Performance comparison of the proposed group

sampling, OHEM and Focal Loss, showing that our ap-

proach achieves better performance.

Method @16 @32 @64 @128 All

FPN-finest (baseline) 65.6 66.8 43.9 22.4 80.2

OHEM 76.0 68.9 43.9 22.0 81.5

Focal Loss 75.8 68.5 44.2 21.5 81.2

Group Sampling 74.1 72.9 47.8 24.5 82.8

OHEM dynamically select B samples with highest loss

among all samples during training. We experiment with dif-

ferent values of B and find that using a relatively smaller B
is important to make OHEM work. Hence we set B = 1024
in our experiment. For Focal Loss, we adopt the same set-

ting in [36], in which α = 0.25 and γ = 2.

The performance comparison is shown in Table 4. Both

OHEM and Focal Loss can effectively improve the perfor-

mance of detecting small faces. Take sub-detector @16 as

an example, OHEM and Focal Loss achieve 76.0% and

75.8% respectively, about 10% higher than the baseline

model. However, the performance of sub-detectors for large

scales decrease. For example, the performance of sub-

detector @128 is worse than the baseline. In contrast, our

approach gets improvement for all the sub-detectors com-

pared with the baseline by simply using the proposed group

sampling method, and also achieves better performance on

the whole dataset compared with OHEM and Focal Loss.

6.3. Grouped Fast RCNN

We show that the proposed group sampling method can

be applied to Fast R-CNN to further improve the detec-

tion accuracy. We use FPN-finest-sampling as the baseline

model. The AP is increased from 82.8% to 83.9% through
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Figure 5: Performance comparison with state-of-the-arts in terms of precision-recall curves on WIDER FACE validation set.

Table 5: The results of using group sampling method in Fast

R-CNN, showing that the proposed method is also effective

in Fast R-CNN.

Method Easy Medium Hard All

FPN-finest-sampling 95.1 94.1 88.8 82.7

+Fast R-CNN 96.2 95.1 89.7 83.9

+IoU loss 96.4 95.3 90.3 84.6

+ Group Sampling 96.2 95.5 91.1 85.7
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Figure 6: Performance comparison with state-of-the-arts on

FDDB dataset. The values are calculated by setting the

maximum number of false positives to 200.

directly using Fast R-CNN as shown in Table 5. After using

the proposed least square IoU loss as described in Equa-

tion 2, we can increase the AP for easy, medium and hard

subsets by 0.2%, 0.2% and 0.6% respectively. Next, we fur-

ther adopt the group sampling method and the AP for easy,

medium and hard subsets are 96.3%, 95.6% and 91.2%,

which advances the state-of-the-art on WIDER FACE val-

idation set. It is worth noting that using group sampling

gets 0.9% improvement on hard set, which is significant as

the accuracy after using the least square IoU loss is already

90.3%. The model shown in the last line of Table 5 is our

final model, which is used to compare with other methods.

7. Comparison with State-of-the-Art

We compare our approach on two benchmark datasets:

WIDER FACE and FDDB datasets with other face detection

methods [53, 11, 71, 58, 32, 59, 75, 52, 23, 73, 74, 67, 70,

72, 64, 66, 34, 9, 45, 26, 13, 14, 30, 33, 57].

Results on WIDER FACE dataset. WIDER FACE [65]

has 393,703 faces in 32,203 images. The faces have high

degree of variability in scale, pose and occlusion. All faces

are divided into three subsets, i.e., Easy, Medium and Hard

according to the difficulties of the detection. Our model

based on group sampling is trained only on the training set

and tested on the validation set. The comparison results in

terms of precision-recall curves and AP values are shown in

Figure 5. It can be seen that our method achieves 96.2%,

95.7% and 91.1% on the three subsets, and outperforms all

other methods on Hard subset by a large margin.

Results on FDDB dataset. FDDB [25] has 5,171 faces

in 2,845 images. FDDB adopts the bounding ellipse for

evaluation, while our method only outputs rectangle bound-

ing boxes. Hence we adopt the regressor provided by

S3FD [75] to generate a bounding ellipse from our rectan-

gle output. The performance comparison under discontinu-

ous score is shown in Figure 6. We can see that our method

achieves the best performance in terms of ROC curve.

8. Conclusion

In this paper, we examine the factors affecting detection

accuracy and identify that the scale imbalance distribution

is the key factor. Motivated by this observation, we propose

a simple group sampling method to handle the sample im-

balance across different scales. We show that the proposed

method is effective in existing frameworks, e.g., Faster R-

CNN and FPN, achieving better performance without extra

computational cost. On the challenging benchmarks like

WIDER FACE and FDDB, our method achieves state-of-

the-art performance. In future work, we tend to verify the

effectiveness of group sampling in general object detection.
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