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Abstract

We propose a data-driven approach for deep convolu-

tional neural network compression that achieves high accu-

racy with high throughput and low memory requirements.

Current network compression methods either find a low-

rank factorization of the features that requires more mem-

ory, or select only a subset of features by pruning entire

filter channels. We propose the Cascaded Projection (CaP)

compression method that projects the output and input fil-

ter channels of successive layers to a unified low dimen-

sional space based on a low-rank projection. We optimize

the projection to minimize classification loss and the dif-

ference between the next layer’s features in the compressed

and uncompressed networks. To solve this non-convex opti-

mization problem we propose a new optimization method

of a proxy matrix using backpropagation and Stochastic

Gradient Descent (SGD) with geometric constraints. Our

cascaded projection approach leads to improvements in all

critical areas of network compression: high accuracy, low

memory consumption, low parameter count and high pro-

cessing speed. The proposed CaP method demonstrates

state-of-the-art results compressing VGG16 and ResNet

networks with over 4× reduction in the number of compu-

tations and excellent performance in top-5 accuracy on the

ImageNet dataset before and after fine-tuning.

1. Introduction

The compression of deep neural networks is gaining

attention due to the effectiveness of deep networks and

their potential applications on mobile and embedded de-

vices. The powerful deep networks developed today are

often overparameterized [9] and require large amounts of

memory and computational resources [3]. Thus, efficient

network compression, that reduces the number of computa-

tions and memory required to process images, enables the

broader application of deep neural networks.

Methods for network compression can be categorized

into four types, based on quantization, sparsification, fac-

torization and pruning. In this work we leverage the advan-

Figure 1. Visual representation of network compression methods

on a single CNN layer. Top row: Factorization compression with

a reprojection step that increases memory. Middle row: Pruning

compression where individual filters are removed. Bottom row:

Proposed CaP method which forms linear combinations of the fil-

ters without requiring reprojection.

tages of factorization and pruning methods, as they are the

most popular. Quantization methods accelerate deep net-

works and reduce storage by using mixed precision arith-

metic and hashing codes [4, 6, 13]. However most of them

require mixed precision arithmetic, which is not always

available on standard hardware. Sparsification methods

eliminate individual connections between nodes that have

minimal impact on the network, however, they are not well

suited for current applications because most neural network

libraries are not optimized for sparse convolution operations

and fail to achieve significant speedup.

Factorization methods [10, 29, 33, 55] reduce computa-

tions by factorizing the network kernels, often by splitting

large kernels into a series of convolutions with smaller fil-

ters. These methods have the drawback of increasing mem-

ory consumption due to the intermediate convolution op-

erations. Such memory requirements pose a problem for

mobile applications, where network acceleration is needed

most. Pruning methods [13, 19, 35, 37, 39, 44, 54, 56] com-

press layers of a network by removing entire convolutional
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filters and the corresponding channels in the filters of the

next layer. They do not require feature map reprojection,

however they discard a large amount of information when

eliminating entire filter channels.

In this paper, we propose the Cascaded Projection (CaP)

compression method which combines the superior recon-

struction ability of factorization methods with the multi-

layer cascaded compression of pruning methods. Instead

of selecting a subset of features, as is done in pruning meth-

ods, CaP forms linear combinations of the original features

that retain more information. However, unlike factorization

methods, CaP brings the kernels in the next layer to low di-

mensional feature space and therefore does not require ad-

ditional memory for reprojection.

Figure 1 provides a visual representation of the differ-

ences between the three methods: factorization (top row)

reprojects to higher dimensional space and increases mem-

ory, pruning (middle row) masks filters and eliminates their

channels, and our proposed CaP methods (bottom row)

combines filters to a smaller number without reprojecting.

Our results demonstrate that by forming filters based on lin-

ear combinations instead of pruning with a mask, more in-

formation is kept in the filtering operations and better net-

work classification accuracy is achieved. The primary con-

tributions of this paper are the following:

1. We propose the CaP compression method that finds a

low dimensional projection of the feature kernels and

cascades the projection to compress the input channels

of the kernels in the next layers.

2. We introduce proxy matrix projection backpropaga-

tion, the first method to optimize the compression pro-

jection for each layer using end-to-end training with

standard backpropagation and stochastic gradient de-

scent.

3. Our optimization method allows us to use a new loss

function that combines the reconstruction loss with

classification loss to find a better solution.

4. The CaP method is the first to simultaneously optimize

the compression projection for all layers of residual

networks.

5. Our results illustrate that CaP compressed networks

achieve state-of-the-art accuracy while reducing the

network’s number of parameters, computational load

and memory consumption.

2. Related Work

The goal of network compression and acceleration is

to reduce the number of parameters and computations

performed in deep networks without sacrificing accuracy.

Early work in network pruning dates back to the 1990’s

[14]. However, the area did not gain much interest until

deep convolutional networks became common [31, 32, 43]

and the redundancy of network parameters became apparent

[9]. Recent works aim to develop smaller network architec-

tures that require fewer resources [20, 25, 42].

Quantization techniques [4, 6, 13, 28] use integer or

mixed precision arithmetic only available on state-of-the-

art GPUs [38]. These methods reduce the computation time

and the amount of storage required for the network param-

eters. They can be applied in addition to other methods

to further accelerate compressed networks, as was done in

[30].

Network sparsification [36], sometimes referred to as un-

structured pruning, reduces the number of connections in

deep networks by imposing sparsity constraints. The work

in [21] proposed recasting the sparsified network into sepa-

rate groups of operations where the filters in each layer are

only connected to a subset of the input channels. In [52]

k-means clustering is used to encourage similarity between

features to aid in compression. However, these methods re-

quire training the network from scratch which is not practi-

cal or efficient.

Filter factorization methods reduce computations at the

cost of increased memory load for storing intermediate fea-

ture maps. Initial works focused on factorizing the three-

dimensional convolutional kernels into three separable one-

dimensional filters [10, 29]. In [33] CP-decomposition is

used to decompose the convolutional layers into five lay-

ers with lower complexity. More recently [55] performed a

channel decomposition that found a projection of the con-

volutional filters in each layer such that the asymmetric re-

projection error was minimized.

Channel pruning methods [35, 37, 39, 44, 56] remove

entire feature kernels for network compression. In [13] ker-

nels are pruned based on their magnitudes, under the as-

sumption that kernels with low magnitudes provide little in-

formation to the network. Li et al. [35] suggested a similar

pruning technique based on kernel statistics. He et al. [19]

proposed pruning filters based on minimizing the recon-

struction error of each layer. Luo et al. [37] further extended

the concepts in [19] to prune filters that have minimal im-

pact on the reconstruction of the next layer. Yu et al. [54]

proposed Neuron Importance Score Propagation (NISP) to

calculate the importance of each neuron based on its contri-

bution to the final feature representation and prune feature

channels that provide minimal information to the final fea-

ture representation.

Other recent works have focused less on finding the op-

timal set of features to prune and more on finding the op-

timal amount of features to remove from each layer of the

network. This is important to study because the amount of

pruning performed in each layer is often set arbitrarily or

through extensive experimentation. In [53, 54] the authors

propose automatic pruning architecture methods based on

statistical measures. In [18, 24] methods are proposed

which use reinforcement learning to learn an optimal net-
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work compression architecture. Additional work has been

done to reduce the number of parameters in the final lay-

ers of deep networks [5], however the fully connected layer

only contributes a small fraction of the overall computa-

tions.

3. Cascaded Projection Methodology

In this section we provide an in depth discussion of the

CaP compression and acceleration method. We first intro-

duce projection compression when applied to a single layer,

and explain the relationship between CaP and previous filter

factorization methods [55]. One of the main goals of CaP

compression is eliminating the feature reprojection step per-

formed in factorization methods. To accomplish this, CaP

extends the compression in the present layer to the inputs

of the kernels in the next layer by projecting them to the

same low dimensional space, as shown in Figure 2. Next

we demonstrate that, with a few alterations, the CaP com-

pression method can perform simultaneous optimization of

the projections for all of the layers in residual networks [15].

Lastly we present the core component of the CaP method,

which is our new end-to-end optimization method that op-

timizes the layer compression projections using standard

back-propagation and stochastic gradient descent.

3.1. Problem Definition

In a convolutional network, as illustrated in the top row

of Fig. 2, the ith layer takes as input a 4-Tensor Ii of dimen-

sion (n×ci×hi×wi), where n is the number of images (mini-

batch size) input into the network, ci is the number channels

in the input and wi and hi are the height and width of the

input. The input is convolved with a set of filters Wi repre-

sented as a 4-Tensor with dimensions (ci+1×ci×k×k), where

ci+1 is the number of kernels and k is the spatial dimensions

of the kernels, generally 3 pixels. In many networks, there

is an additional bias, bi, of dimension (ci+1 × 1 × 1 × 1),
that is added to each channel of the output. More formally,

the convolution operation for layer i of a CNN is given as:

Oi = Ii ∗Wi + bi (1)

where (∗) is the convolution operator. The input to the next

layer is calculated by applying a nonlinearity to the output

as Ii+1 = G(Oi), where G(·) is often a ReLU [40].

Network compression aims to reduce the number of fil-

ters so that the classification accuracy of the network is min-

imally impacted. In this work we find a projection Pi that

maps the features to a lower dimensional space by minimiz-

ing both the reconstruction error and the classification loss,

as described in the rest of this section.

3.2. Single Layer Projection Compression

We first present how projection based compression is

used to compress a single layer of a network. To com-

Figure 2. Visual representation of the compression of a CNN layer

using the CaP method to compress the filters Wi and Wi+1 in the

current and next layers using projections Pi and P
T

i respectively.

The reconstruction error in the next layer is computed after the

nonlinearity G(·).

press layer i, the output features are projected to low di-

mensional representation of rank r using an orthonormal

projection matrix Pi represented as a 4-Tensor of dimen-

sion (ci+1×r×1×1). The optimal projection, P∗

i for layer

i, based on minimizing the reconstruction loss is given as:

P
∗

i = argmin
Pi

∥

∥Oi−(Ii∗Wi∗Pi + bi∗Pi)∗P
T
i

∥

∥

2

F
(2)

where ‖·‖
2

F is the Frobenious norm.

Inspired by [55], we alter our optimization criteria to

minimize the reconstruction loss of the input to the next

layer. This results in the optimization:

P
∗

i =argmin
Pi

∥

∥G(Oi)−G((Ii∗Wi∗Pi+bi∗Pi)∗P
T
i )

∥

∥

2

F

(3)

The inclusion of the nonlinearity makes this a more difficult

optimization problem. In [55] the problem is relaxed and

solved using Generalized SVD [12, 49, 50]. Our Cascaded

Projection method is based on the end-to-end approach de-

scribed next.

3.3. Cascaded Projection Compression

Factorization methods, including the single layer projec-

tion compression discussed above, are inefficient due to the

additional convolution operations required to reproject the

features to high dimensional space. Pruning methods avoid

reprojection by removing all channels associated with the

pruned filters. CaP takes a more powerful approach that

forms linear combination of the kernels by projecting with-

out the extra memory requirements of factorization meth-

ods. Following the diagram in Figure 2, we consider two

successive convolutional layers, labeled i and i+1, with

kernels Wi, Wi+1 and biases bi, bi+1 respectively. The
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input to layer i is Ii, while the output of layer i+1 is the

input to layer i+ 2, denoted by Ii+2 and given below.

Ii+2 = G(G(Ii ∗Wi + bi) ∗Wi+1 + bi+1) (4)

After substituting our compressed representation with re-

projection for layer i in the above we get:

Ii+2 = G(G((Ii∗Wi∗Pi+bi∗Pi)∗P
T
i )∗Wi+1+bi+1) (5)

To avoid reprojecting the low dimensional features back

to higher dimensional space with P
T
i , we seek two projec-

tions. The first PO
i which captures the optimal lower di-

mensional representation of the features in the current layer,

and the second P
I
i which pulls the kernels of the next layer

down to lower dimensional space. This formulation leads

to an optimization problem over the projection operators:

{PI
i

∗

,PO
i

∗

}=argmin
PI

i
,PO

i

‖Ii+2−G(G((Ii∗Wi∗P
O
i

+bi∗P
O
i ))∗PI

i ∗Wi+1+bi+1)‖
2
F

(6)

To make the problem tractable, we enforce two strong

constraints on the projections. We require that they are

orthonormal and transposes of each other: P
I
i = (PO

i )T .

For the remainder of this work we replace P
O
i and P

I
i with

Pi and P
T
i , respectively. These constraints make the opti-

mization problem more feasible by reducing the parameter

search space to a single projection operator for each layer.

P
∗

i = argmin
Pi,Pi∈On×m

‖Ii+2−G(G((Ii∗Wi∗Pi

+bi∗Pi))∗P
T
i ∗Wi+1+bi+1)‖

2
F

(7)

We solve the optimization of a single projection oper-

ator for each layer using a novel data-driven optimization

method for projection operators discussed in Section 3.6.

3.3.1 Kernel Compression and Relaxation

Once the projection optimization is complete, we re-

place the kernels and biases in the current layer with their

projected versions WO
i =Wi∗Pi and b

O
i =bi∗Pi respec-

tively. We also replace the kernels in the next layer with

their input compressed versions WI
i+1=P

T
i ∗Wi+1. Thus,

Ii+2 = G(G((Ii ∗W
O
i + b

O
i )) ∗WI

i+1 + bi+1) (8)

Figure 2 depicts how the filters W
I
i+1 in the next layer

are compressed using the projection P
T
i and are therefore

smaller than the kernels in the original network. Utilizing

the compressed kernels W
O
i and W

I
i results in twice the

speedup over traditional factorization methods for all com-

pressed intermediate layers (other than first and last layers).

Following kernel projection, we perform an additional

round of training in which only the compressed kernels are

optimized. We refer to this step as kernel relaxation because

we are allowing the kernels to find a better optimal solution

after our projection optimization step.

3.4. Mixture Loss

A benefit of gradient based optimization is that a loss

function can be altered to minimize both reconstruction and

classification error. Previous methods have focused on ei-

ther reconstruction error minimization [19, 37] or classi-

fication [54] based metrics when pruning each layer. We

propose using a combination of the standard cross entropy

classification loss, LClass, and the reconstruction loss LR,

shown in Figure 2. The reconstruction loss for layer i is

given as:

LR(i) = ‖Ii+2 −G(G((Ii ∗Wi ∗Pi

+bi ∗Pi)) ∗P
T
i ∗Wi+1 + bi+1)‖

2
F

(9)

The mixture loss used to optimize the projections in layer i

is given as

L(i) = LR(i) + γLClass (10)

where γ is a mixture parameter that allows adjusting the im-

pact of each loss during training. By using a combination of

the two losses we obtain a compressed network that main-

tains classification accuracy while having feature represen-

tations for each layer which contain the maximal amount of

information from the original network.

3.5. Compressing Multi­Branch Networks

Multi-branch networks are popular due to their excellent

performance and come in a variety of forms such as the In-

ception networks [46, 47, 45], Residual networks (ResNets)

[15] and Dense Networks (DenseNets) [22] among others.

We primarily focus on applying CaP network compression

to ResNets, but our method can be integrated with other

multi-branch networks. We select the ResNet architecture

for two reasons. First, ResNets have a proven record of pro-

ducing state-of-the art results [15, 16]. And second, the skip

connections work well with network compression, as they

allow propagating information through the network regard-

less of the compression process within the individual layers.

Our CaP modification for ResNet compression is illus-

trated in Figure 3. In our approach, we do not alter the

structure of the residual block outputs, therefore we do not

compress the outputs of the last convolution layers in each

residual block, as was done by [37]. In [35, 54] pruning

is performed on the residual connections, but we do not af-

fect them, because pruning these layers has a large negative

impact on the network’s accuracy.

We calculate the reconstruction error in ResNets at the

outputs of each residual block, as shown in Fig. 3, in con-

trast to single branch networks where we calculate the re-

construction error at the next layer as shown in Fig. 2. By

calculating the reconstruction error after the skip connec-

tions, we leverage the information in the skip connections

in our projection optimization.
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Figure 3. Illustration of simultaneous optimization of the projections for each layer of the ResNet18 network using a mixture loss that

includes the classification loss and the reconstruction losses in each layer for intermediate supervision. We do not alter the structure of the

residual block outputs, therefore we do not affect residual connections and we do not compress the outputs of the last convolution layers in

each residual block.

3.5.1 Simultaneous Layer Compression

Most network compression methods apply a greedy

layer-wise compression scheme, where one layer is com-

pressed or pruned at a time. However, this layer-by-layer

approach to network compression can lead to sub-optimal

results [54]. We now present a version of CaP where all

layers are simultaneously optimized. This approach allows

the latter layers to help guide the projections of the earlier

layers and minimize the total reconstruction error through-

out the network.

In our experiments, we found that simultaneous opti-

mization of the projection matrices has the risk of becom-

ing unstable when we compress more than one layer in each

residual block. To overcome this problem we split the train-

ing of the projections in residual blocks with more than one

compressible layer into two rounds. In the first round, the

projections for the odd layers are optimized, and in the sec-

ond round the even layer projections are optimized.

Additionally, we found that using the reconstruction loss

at the final layers did not provide enough supervision to the

network. We therefore introduced deep supervision for each

layer by minimizing the sum of normalized reconstruction

losses for each layer, given by:

argmin
Pi∈P

N
∑

i=0

LR(i) +γLClass (11)

where Pi is the projection for the ith layer, and N is the

total number of layers. We outline our approach to finding

a solution for the above optimization using iterative back-

propagation next.

3.6. Back­Propagated Projection Optimization

In this section we present an end-to-end Proxy Matrix

Projection (PMaP) optimization method, which is an it-

erative optimization of the projection using backpropaga-

tion with Stochastic Gradient Descent (SGD). The proposed

method efficiently optimizes the network compression by

combining backpropagation with geometric constraints.

In our framework, we restrict the projection operators

to be orthogonal and thus satisfy Pi
T
Pi = I. The set of

(n×m) real-valued orthogonal matrices O
n×m, forms a

smooth manifold known as a Grassmann manifold. There

are several optimization methods on Grassmann manifolds,

most of which include iterative optimization and retraction

methods [7, 1, 48, 2, 51].

With CaP compression, the projection for each layer is

dependent on the projections in all previous layers adding

dependencies in the optimization across layers. Little work

had been done in the field of optimization over multiple de-

pendent Grassmann manifolds. Huang et al. [23] impose

orthogonality constraints on the weights of a neural network

during training using a method for backpropagation of gra-

dients through structured linear algebra layers developed in

[26, 27]. Inspired by these works, we utilize a similar ap-

proach where instead of optimizing each projection matrix

directly, we use a proxy matrix Xi for each layer i and a

transformation Φ(·) such that Φ(Xi) = Pi.

We obtain the transformation Φ(·) that projects each

proxy matrix Xi to the closest location on the Grass-

mann manifold by performing Singular Value Decomposi-

tion (SVD) on Xi, such that Xi=UiΣiV
T
i , where Ui and

V
T
i are orthogonal matrices and Σi is the matrix of singular
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values. The projection to the closest location on the Grass-

mann manifold is performed as Φ(Xi)=UiV
T
i = Pi.

During training, the projection matrix Pi is not updated

directly; instead the proxy parameter Xi is updated based

on the partial derivatives of the loss with respect to Ui and

Vi,
∂L
∂Ui

and ∂L
∂Vi

respectively. The partial derivative of the

loss L with respect to the proxy parameter Xi was derived

in [26, 27] using the chain rule and is given by:

∂L

∂Xi

= Ui

{

2Σi

(

K
T
i ◦

(

V
T
i

∂L

∂Vi

))

sym

+
∂L

∂Σi

}

V
T
i

(12)

where ◦ is the Hadamard product, Asym is the symmet-

ric part of matrix A given as Asym = 1

2
(AT+A). Since

Φ(Xi)=UiV
T
i , the loss does not depend on the matrix Σi.

Thus, ∂L
∂Σi

=0, and equation (12) becomes:

∂L

∂Xi

= Ui

{

2Σi

(

K
T
i ◦

(

V
T
i

∂L

∂Vi

))

sym

}

V
T
i (13)

The above allows us to optimize our compression pro-

jection operators for each layer of the network using back-

propagation and SGD. Our method allows for end-to-end

network compression using standard deep learning frame-

works for the first time.

4. Experiments

We first perform experiments on independent layer com-

pression of the VGG16 network to investigate how each

layer responds to various levels of compression. We then

perform a set of ablation studies on the proposed CaP algo-

rithm to determine the impact for each step of the algorithm

on the final accuracy of the compressed network. We com-

pare CaP to other state-of-the-art methods by compressing

the VGG16 network to have over 4× fewer floating point

operations. Finally we present our experiments with vary-

ing levels of compression of ResNet architectures, with 18

or 50 layers, trained on the CIFAR10 dataset.

All experiments were performed using PyTorch 0.4 [41]

on a work station running Ubuntu 16.04. The workstation

had an Intel i5-6500 3.20GHz CPU with 15 GB of RAM

and a NVIDIA Titan V GPU.

4.1. Layer­wise Experiments

In these experiment we investigate how each layer of

the network is affected by increasing amounts of compres-

sion. We perform filter compression using CaP for each

layer independently, while leaving all other layers uncom-

pressed. We considered a range of compression for each

layer, from 5% to 99%, and display the results in Figure

4. This plot shows two trends. Firstly the reconstruction

error does not increase much until 70% compression, indi-

cating that a large portion of the parameters in each layer

Figure 4. Plot of the reconstruction error (vertical axis) for the

range of compression (left axis) for each layer of the network

(right axis). The reconstruction error is lower when early layers

are compressed.

Figure 5. Plot of the classification accuracy (vertical axis) for the

range of compression (left axis) for each layer of the network

(right axis). The classification accuracy remains unaffected for

large amounts of compression in a single layer anywhere in the

network.

are redundant and could be reduced without much loss in

accuracy. The second trend is the increase in reconstruction

error for each level of compression for the deeper layers of

the network (right axis).

In Figure 5 we plot the network accuracy resulting from

each level of compression for each layer. The network is rel-

atively unaffected for a large range of compression, despite

the fact that there is a significant amount of reconstruction

error introduced by the compression shown in Figure 4.

4.2. CaP Ablation Experiments

We ran additional experiments to determine the contri-

bution of the projection optimization and kernel relaxation

steps of our algorithm. We first trained the ResNet18 net-

work on the CIFAR100 dataset and achieved a baseline ac-

curacy of 78.23%. We then compressed the network to 50%

of the original size using only parts of the CaP method to as-

sess the effects of different components. We present these

results in Table 1.

We also trained a compressed version ResNet18 from

scratch for 350 epochs, to provide a baseline for the com-
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pressed ResNet18 network. When only projection compres-

sion is performed on the original ResNet18 network, there

was a drop in accuracy of 1.58%. This loss in classifica-

tion accuracy decreased to 0.76% after kernel relaxation. In

contrast, when the optimized projections are replaced with

random projections and only kernel relaxation training is

performed, there is a 1.96% drop in accuracy, a 2.5 times

increase in classification error. These results demonstrate

that the projection optimization is an important aspect of

our network compression algorithm, and the combination

of both steps outperforms training the compressed network

from scratch.

ResNet18 Network Variation Accuracy

ResNet18 Uncompressed (upper bound) 78.23

Compressed ResNet18 from Scratch 77.22

CaP Compression with Projection Only 76.65

CaP with Random Proj. & Kernel Relax 76.27

CaP with Projection & Kernel Relax 77.47

Table 1. Network compression ablation study of the CaP method

compressing the ResNet18 Network trained on the CIFAR100

dataset. (Bold numbers are best).

Figure 6. Classification accuracy drop on CIFAR10, relative to

baseline, of compression methods (CaP, PCAS [53], PFEC [35]

and LPF [24]) for a range of compression levels on ResNet18

(Top) and ResNet50 (Bottom).

4.3. ResNet Compression on CIFAR 10

We perform two sets of experiments using ResNet18 and

ResNet50 trained on the CIFAR10 dataset [31]. We com-

ResNet Method FT FLOPs% Acc. / Base

56

PFEC [35] N 72.4 91.31 / 93.04

CP [19] N 50.0 90.90 / 92.80

SFP [17] N 47.4 92.26 / 93.59

AMC [18] N 50.0 90.1 / 92.8

CaP N 50.2 92.92 / 93.51

PFEC [35] Y 72.4 93.06 / 93.04

NISP [54] Y 57.4 (-0.03) *

CP [19] Y 50.0 91.80 / 92.80

SFP [17] Y 47.4 93.35 / 93.59

AMC [18] Y 50.0 91.9 / 92.8

DCP [56] Y 35.0 93.7 / 93.6

CaP Y 50.2 93.22 / 93.51

110

PFEC [35] N 61.4 92.94 / 93.53

MIL [11] N 65.8 93.44 / 93.63

SFP [17] N 59.2 93.38 / 93.68

CaP N 50.1 93.95/ 94.29

PFEC [35] Y 61.4 93.30 / 93.53

NISP [54] Y 56.3 (-0.18) *

SFP [17] Y 59.2 93.86 / 93.68

CaP Y 50.1 94.14/ 94.29

Table 2. Comparison of CaP with pruning and factorization based

methods using ResNet56 and ResNet110 trained on CIFAR10. FT

denotes fine-tuning. (Bold numbers are best). * Only the relative

drop in accuracy was reported in [54] without baseline accuracy.

press 18 and 50 layer ResNets with varying levels of com-

pression and compare the relative drop in accuracy of CaP

with other state-of-the-art methods [53, 35, 24]. We plot the

drop in classification accuracy for ResNet18 and ResNet50

in Figure 6. For both networks, the CaP method outper-

forms the other methods for the full range of compression.

In Table 2, we present classification accuracy of

ResNet56 and ResNet110 with each residual block com-

pressed to have 50% fewer FLOPs using CaPs. We compare

the results obtained by CaP with those of [17, 18, 35, 54, 19]

where the networks have been subjected to similar compres-

sion ratios. We report accuracy results with and without

fine-tuning and include the baseline performance for com-

parison.

Results with fine-tuning are generally better, except in

cases when there is over-fitting. However, fine-tuning for

a long period of time can hide the poor performance of

a compression algorithm by retraining the network filters

away from the compression results. The results of the CaP

method without fine-tuning are based on projection opti-

mization and kernel relaxation on the compressed filters

with reconstruction loss, while the fine-tuning results are

produced with an additional round of training based on mix-

ture loss for all of the layers in the network.
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Method Parameters Memory (Mb) FLOPs GPU Speedup Top-5 Accuracy / Baseline

VGG16 [43] (Baseline) 14.71M 3.39 30.9B 1 89.9

Low-Rank [29] - - - 1.01* 80.02 / 89.9

Asym. [55] 5.11M 3.90 3.7B 1.55* 86.06 / 89.9

Channel Pruning [19] 7.48M 1.35 6.8B 2.5* 82.0 / 89.9

CaP (based on [19] arch) 7.48M 1.35 6.8B 3.05 86.57 / 90.38

CaP Optimal 7.93M 1.11 6.8B 3.44 88.23 / 90.38

Table 3. Network compression results of pruning and factorization based methods without fine-tuning. The top-5 accuracy of the baseline

VGG16 network varies slightly for each of the methods due to different models and frameworks. (Bold numbers are best). Results marked

with * were obtained from [19].

Method
Mem.

FLOPs
Top-5 Acc.

(Mb) / Baseline

VGG16 [43] 3.39 30.9B 89.9

Scratch [19] 1.35 6.8B 88.1

COBLA [34] 4.21 7.7B 88.9 / 89.9

Tucker [30] 4.96 6.3B 89.4 / 89.9

CP [19] 1.35 6.8B 88.9 / 89.9

ThiNet-2 [37] 1.44 6.7B 88.86 / 90.01

CaP 1.11 6.8B 89.39 / 90.38

Table 4. Network compression results of pruning and factorization

based methods with fine-tuning. (Bold numbers are best).

4.4. VGG16 Compression with ImageNet

We compress the VGG16 network trained on Ima-

geNet2012 [8] and compare the results of CaP with other

state-of-the-art methods. We present two sets of results,

without fine-tuning and with fine-tuning, in Tables 3 and 4

respectively. Fine-tuning on ImageNet is time intensive and

requires significant computation power. This is a hindrance

for many applications where users do not have enough re-

sources to retrain a compressed network.

In Table 3 we compare CaP with factorization and prun-

ing methods, all without fine-tuning. As expected, factor-

ization methods suffer from increased memory load due

to their additional intermediate feature maps. The chan-

nel pruning method in [19] has a significant reduction in

memory consumption but under-performs the factorization

method in [55] without fine-tuning. We present two sets of

results for the CaP algorithm, each with different levels of

compression for each layer. To match the architecture used

in [19] we compressed layers 1-7 to 33% of their original

size, and filters in layers 8-10 to 50% of their original size,

while the remaining layers are left uncompressed . We also

used the CaP method with a compression architecture that

was selected based on our layer-wise training experiments.

The results in Table 3 demonstrate that the proposed CaP

compression achieves higher speedup and higher classifica-

tion accuracy than the factorization or pruning methods.

In Table 4 we compare CaP with state-of-the-art net-

work compression methods, all with fine-tuning. The un-

compressed VGG16 results are from [43]. We include re-

sults from training a compressed version of VGG16 from

scratch on the ImageNet dataset as reported in [19]. We

compare CaP with the results of two factorization methods

[34, 30] and two pruning methods [19], [37]. Both factor-

ization methods achieve impressive classification accuracy,

but this comes at the cost of increased memory consump-

tion. The pruning methods reduce both the FLOPs and

the memory consumption of the network, while maintain-

ing high classification accuracy. However, they rely heavily

on fine-tuning to achieve high accuracy. We lastly provide

the results of the CaP compression optimized at each layer.

Our results demonstrate that the CaP algorithm gives state-

of-the-art results, has the largest reduction in memory con-

sumption, and outperforms the pruning methods in terms of

top-5 accuracy.

5. Conclusion

In this paper, we propose cascaded projection, an end-

to-end trainable framework for network compression that

optimizes compression in each layer. Our CaP approach

forms linear combinations of kernels in each layer of the

network in a manner that both minimizes reconstruction er-

ror and maximizes classification accuracy. The CaP method

is the first in the field of network compression to optimize

the low dimensional projections of the layers of the network

using backpropagation and SGD, using our proposed Proxy

Matrix Projection optimization method.

We demonstrate state-of-the-art performance compared

to pruning and factorization methods, when the CaP method

is used to compress standard network architectures trained

on standard datasets. A side benefit of the CaP formula-

tion is that it can be performed using standard deep learning

frameworks and hardware, and it does not require any spe-

cialized libraries for hardware for acceleration. In future

work, the CaP method can be combined with other meth-

ods, such as quantization and hashing, to further accelerate

deep networks.
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