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Abstract

Deep Neural Networks have achieved extraordinary re-

sults on image classification tasks, but have been shown to

be vulnerable to attacks with carefully crafted perturbations

of the input data. Although most attacks usually change val-

ues of many image’s pixels, it has been shown that deep net-

works are also vulnerable to sparse alterations of the input.

However, no computationally efficient method has been pro-

posed to compute sparse perturbations. In this paper, we

exploit the low mean curvature of the decision boundary,

and propose SparseFool, a geometry inspired sparse attack

that controls the sparsity of the perturbations. Extensive

evaluations show that our approach computes sparse per-

turbations very fast, and scales efficiently to high dimen-

sional data. We further analyze the transferability and the

visual effects of the perturbations, and show the existence

of shared semantic information across the images and the

networks. Finally, we show that adversarial training can

only slightly improve the robustness against sparse additive

perturbations computed with SparseFool. 1

1. Introduction

Deep neural networks (DNNs) are powerful learning

models that achieve state-of-the-art performance in many

different classification tasks [27, 49, 1, 22, 9], but have been

shown to be vulnerable to very small, and often impercepti-

ble, adversarial manipulations of their input data [46]. In-

terestingly, the existence of such adversarial perturbations

is not only limited to additive perturbations [21, 12, 48] or

classification tasks [8], but can be found in many other ap-

plications [47, 7, 28, 31, 39, 41, 42].

For image classification tasks, the most common type

of adversarial perturbations are the `p minimization ones,

since they are easier to analyze and optimize. Formally, for

a given classifier and an image x 2 R
n, we define as adver-

sarial perturbation the minimal perturbation r that changes

1The code of SparseFool is available at https://github.com/

LTS4/SparseFool.
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Figure 1: Adversarial examples for ImageNet, as computed

by SparseFool on a ResNet-101 architecture. Each column

corresponds to different level of perturbed pixels. The fool-

ing labels are shown below the images.

the classifier’s estimated label k(x):

min
r

krkp s.t. k(x+ r) 6= k(x), (1)

Several methods (attacks) have been proposed for com-

puting `2 and `∞ adversarial perturbations [46, 15, 24, 33,

6, 32]. However, understanding the vulnerabilities of deep

neural networks in other perturbation regimes remains im-

portant. In particular, it has been shown [38, 44, 35, 2, 18]

that DNNs can misclassify an image, when only a small

fraction of the input is altered (sparse perturbations). In

practice, sparse perturbations could correspond to some

raindrops that reflect the sun on a “STOP” sign, but that

are sufficient to fool an autonomous vehicle; or a crop-field

with some sparse colorful flowers that force a UAV to spray

pesticide on non affected areas. Understanding the vulnera-

bility of deep networks to such a simple perturbation regime

can further help to design methods to improve the robust-

ness of deep classifiers.

Some prior work on sparse perturbations have been de-

veloped recently. The authors in [38] proposed the JSMA
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method, which perturbs the pixels based on their saliency

score. Furthermore, the authors in [44] exploit Evolution-

ary Algorithms (EAs) to achieve extremely sparse perturba-

tions, while the authors in [35] finally proposed a black-box

attack that computes sparse adversarial perturbations using

a greedy local search algorithm.

However, solving the optimization problem in Eq. (1) in

an `0 sense is NP-hard, and current algorithms are all char-

acterized by high complexity. The resulting perturbations

usually consist of high magnitude noise, concentrated over

a small number of pixels. This makes them quite perceptible

and in many cases, the perturbed pixels might even exceed

the dynamic range of the image.

Therefore, we propose in this paper an efficient and prin-

cipled way to compute sparse perturbations, while at the

same time ensuring the validity of the perturbed pixels.

Our main contributions are the following:

• We propose SparseFool, a geometry inspired sparse at-

tack that exploits the boundaries’ low mean curvature

to compute adversarial perturbations efficiently.

• We show through extensive evaluations that (a) our

method computes sparse perturbations much faster

than the existing methods, and (b) it can scale effi-

ciently to high dimensional data.

• We further propose a method to control the percepti-

bility of the resulted perturbations, while retaining the

levels of sparsity and complexity.

• We analyze the visual features affected by our attack,

and show the existence of some shared semantic infor-

mation across different images and networks.

• We finally show that adversarial training using slightly

lowers the vulnerability against sparse perturbations,

but not enough to lead to more robust classifiers yet.

The rest of the paper is organized as follows: in Section 2,

we describe the challenges and the problems for computing

sparse adversarial perturbations. In Section 3, we provide

an efficient method for computing sparse adversarial per-

turbations, by linearizing and solving the initial optimiza-

tion problem. Finally, the evaluation and analysis of the

computed sparse perturbations is provided in Section 4.

2. Problem description

2.1. Finding sparse perturbations

Most of the existing adversarial attack algorithms solve

the optimization problem of Eq. (1) for p = 2 or1, result-

ing in dense but imperceptible perturbations. For the case

of sparse perturbations, the goal is to minimize the num-

ber of perturbed pixels required to fool the network, which

corresponds to minimizing krk0 in Eq. (1). Unfortunately,

this leads to NP-hard problems, for which reaching a global

minimum cannot be guaranteed in general [3, 37, 40]. There

exist different methods [34, 40] to avoid the computational

burden of this problem, with the `1 relaxation being the

most common; the minimization of krk0 under linear con-

straints can be approximated by solving the corresponding

convex `1 problem [5, 10, 36]2. Thus, we are looking for an

efficient way to exploit such a relaxation to solve the opti-

mization problem in Eq. (1).

DeepFool [33] is an algorithm that exploits such a re-

laxation, by adopting an iterative procedure that includes a

linearization of the classifier at each iteration, in order to es-

timate the minimal adversarial perturbation r. Specifically,

assuming f is a classifier, at each iteration i, f is linearized

around the current point x(i), the minimal perturbation r
(i)

(in an `2 sense) is computed as the projection of x(i) onto

the linearized hyperplane, and the next iterate x
(i+1) is up-

dated. One can use such a linearization procedure to solve

Eq. (1) for p = 1, so as to obtain an approximation to the `0
solution. Thus, by generalizing the projection to `p norms

(p 2 [1,1)) and setting p = 1, `1-DeepFool provides an

efficient way for computing sparse adversarial perturbations

using the `1 projection.

2.2. Validity of perturbations

Although the `1-DeepFool efficiently computes sparse

perturbations, it does not explicitly respect the constraint

on the validity of the adversarial image values. When com-

puting adversarial perturbations, it is very important to en-

sure that the pixel values of the adversarial image x+ r lie

within the valid range of color images (e.g., [0, 255]). For

`2 and `∞ perturbations, almost every pixel of the image is

distorted with noise of small magnitude, so that most com-

mon algorithms usually ignore such constraints [33, 15]. In

such cases, it is unlikely that many pixels will be out of their

valid range; and even then, clipping the invalid values after

the computation of such adversarial images have a minor

impact.

This is unfortunately not the case for sparse perturba-

tions however; solving the `1 optimization problem results

in a few distorted pixels of high magnitude noise, and clip-

ping the values after computing the adversarial image can

have a significant impact on the success of the attack. In

other words, as the perturbation becomes sparser, the con-

tribution of each pixel is typically much stronger compared

to `2 or `∞ perturbations.

We demonstrate the effect of such clipping operation on

the quality of adversarial perturbations generated by `1-

DeepFool. For example, with perturbations computed for

a VGG-16 [43] network trained on ImageNet [9], we ob-

2Under some conditions, the solution of such approximation is indeed

optimal [4, 11, 16].
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Figure 2: The approximated decision boundary B in the

vicinity of the datapoint x that belongs to class 1. B can be

seen as a one-vs-all linear classifier for class 1.

served that `1-DeepFool achieves almost 100% of fooling

rate by perturbing only 0.037% of the pixels on average.

However, clipping the pixel values of adversarial images to

[0, 255] results in a fooling rate of merely 13%. Further-

more, incorporating the clipping operator inside the itera-

tive procedure of the algorithm does not improve the re-

sults. In other words, `1-DeepFool fails to properly com-

pute sparse perturbations. This underlies the need for an

improved attack algorithm that natively takes into account

the validity of generated adversarial images, as proposed in

the next sections.

2.3. Problem formulation

Based on the above discussion, sparse adversarial pertur-

bations are obtained by solving the following general form

optimization problem:

minimize
r

krk1

subject to k̂(x+ r) 6= k̂(x)

l 4 x+ r 4 u,

(2)

where l,u 2 R
n denote the lower and upper bounds of the

values of x+ r, such that li  xi + ri  ui, i = 1 . . . n.

To find an efficient relaxation to problem (2), we focus

on the geometric characteristics of the decision boundary,

and specifically on its curvature. It has been shown [13,

14, 20] that the decision boundaries of state-of-the-art deep

networks have a quite low mean curvature in the neighbor-

hood of data samples. In other words, for a datapoint x

and its corresponding minimal `2 adversarial perturbation

v, the decision boundary at the vicinity of x can be locally

well approximated by a hyperplane passing through the dat-

apoint xB = x+ v, and a normal vector w (see Fig. 2).

Hence, we exploit this property and linearize the op-

timization problem (2), so that sparse adversarial pertur-

bations can be computed by solving the following box-

Algorithm 1: LinearSolver

Input: image x, normal w, boundary point xB ,

projection operator Q.

Output: perturbed point x(i)

1 Initialize: x(0)  x, i 0, S = {}

2 while w
T (x(i) � xB) 6= 0 do

3 r  0

4 d argmax
j /∈S

|wj |

5 rd  
|wT (x(i) � xB)|

|wd|
· sign(wd)

6 x
(i+1)  Q(x(i) + r)

7 S  S [ {d}

8 i i+ 1

9 end

10 return x
(i)

constrained optimization problem:

minimize
r

krk1

subject to w
T (x+ r)�w

T
xB = 0

l 4 x+ r 4 u.

(3)

In the following section, we provide a method for solving

the optimization problem (3), and introduce SparseFool, a

fast yet efficient algorithm for computing sparse adversarial

perturbations, which linearizes the constraints by approxi-

mating the decision boundary as an affine hyperplane.

3. Sparse adversarial perturbations

3.1. Linearized problem solution

In solving the optimization problem (3), the computation

of the `1 projection of x onto the approximated hyperplane

does not guarantee a solution. For a perturbed image, con-

sider the case where some of its values exceed the bounds

defined by l and u. Thus, by readjusting the invalid values

to match the constraints, the resulted adversarial image may

eventually not lie onto the approximated hyperplane.

For this reason, we propose an iterative procedure, where

at each iteration we project only towards one single coordi-

nate of the normal vector w at a time. If projecting x to-

wards a specific direction does not provide a solution, then

the perturbed image at this coordinate has reached its ex-

trema value. Therefore, at the next iteration, this direction

should be ignored, since it cannot contribute any further to

finding a better solution.

Formally, let S be a set containing all the directions of

w that cannot contribute to the minimal perturbation. Then,

9089



x
(0)

x
(1)

x
(2)

x
(0)
B

x
(1)
B

Figure 3: Illustration of SparseFool algorithm. With green

we denote the `2-DeepFool adversarial perturbations com-

puted at each iteration. In this example, the algorithm

converges after 2 iterations, and the total perturbation is

r = x
(2) � x

(0).

the minimal perturbation r is updated through the `1 pro-

jection of the current datapoint x(i) onto the estimated hy-

perplane as:

rd  
|wT (x(i) � xB)|

|wd|
· sign(wd), (4)

where d is the index of the maximum absolute value of w

that has not already been used

d argmax |wj |
j /∈S

. (5)

Before proceeding to the next iteration, we must ensure

the validity of the values of the next iterate x
(i+1). For

this reason, we use a projection operator Q(·) that read-

justs the values of the updated point that are out of bounds,

by projecting x
(i) + r onto the box-constraints defined

by l and u. Hence, the new iterate x
(i+1) is updated as

x
(i+1)  Q(x(i) + r). Note here that the bounds l, u are

not limited to only represent the dynamic range of an image,

but can be generalized to satisfy any similar restriction. For

example, as we will describe later in Section 4.2, they can

be used to control the perceptibility of the computed adver-

sarial images.

The next step is to check if the new iterate x
(i+1) has

reached the approximated hyperplane. Otherwise, it means

that the perturbed image at the coordinate d has reached

its extrema value, and thus we cannot change it any further;

perturbing towards the corresponding direction will have no

effect. Thus, we reduce the search space, by adding to the

forbidden set S the direction d, and repeat the procedure

until we reach the approximated hyperplane. The algorithm

for solving the linearized problem is summarized in Algo-

rithm 1.

Algorithm 2: SparseFool

Input: image x, projection operator Q, classifier f .

Output: perturbation r

1 Initialize: x(0)  x, i 0

2 while k̂(x(i)) = k̂(x(0)) do

3 radv = DeepFool(x(i))

4 x
(i)
B = x

(i) + radv

5 w
(i) = rf

k(x
(i)
B

)
(x

(i)
B )�rfk(x(i))(x

(i)
B )

6 x
(i+1) = LinearSolver(x(i), w(i), x

(i)
B , Q)

7 i i+ 1

8 end

9 return r = x
(i) � x

(0)

3.2. Finding the point xB and the normal w

In order to complete our solution to the optimization

problem (3), we now focus on the linear approximation of

the decision boundary. Recall from Section 2.3 that we need

to find the boundary point xB , along with the corresponding

normal vector w.

Finding xB is analogous to computing (in a `2 sense)

an adversarial example of x, so it can be approximated by

applying one of the existing `2 attack algorithms. How-

ever, not all of these attacks are proper for our task; we

need a fast method that finds adversarial examples that are

as close to the original image x as possible. Recall that

DeepFool [33] iteratively moves x towards the decision

boundary, and stops as soon as the perturbed data point

reaches the other side of the boundary. Therefore, the re-

sulting perturbed sample usually lies very close to the deci-

sion boundary, and thus, xB can be very well approximated

by x+radv, with radv being the corresponding `2-DeepFool

perturbation of x. Then, if we denote the network’s classi-

fication function as f , one can estimate the normal vector to

the decision boundary at the datapoint xB as:

w := rfk(xB)(xB)�rfk(x)(xB). (6)

Hence, the decision boundary can now be approximated by

the affine hyperplane B ,
�

x : wT (x � xB) = 0
 

, and

sparse adversarial perturbations are computed by applying

Algorithm 1.

3.3. SparseFool

However, although we expected to have a one-step solu-

tion, in many cases the algorithm does not converge. The

reason behind this behavior lies on the fact that the decision

boundaries of the networks are only locally flat [13, 14, 20].

Thus, if the `1 perturbation moves the datapoint x away
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Figure 4: The fooling rate, the sparsity of the perturbations, and the average iterations of SparseFool for different values of

�, on 4000 images from ImageNet dataset using an Inception-v3 [45] model.

from the flat area, then the perturbed point will not reach

the other side of the decision boundary.

We mitigate the convergence issue with an iterative

method, namely SparseFool, where each iteration includes

the linear approximation of the decision boundary. Specif-

ically, at iteration i, the boundary point x
(i)
B and the nor-

mal vector w(i) are estimated using `2-DeepFool based on

the current iterate x
(i). Then, the next iterate x

(i+1) is up-

dated through the solution of Algorithm 1, having though

x
(i) as the initial point, and the algorithm terminates when

x
(i) changes the label of the network. An illustration of

SparseFool is given in Fig. 3, and the algorithm is summa-

rized in Algorithm 2.

However, we observed that instead of using the bound-

ary point x
(i)
B at the step 6 of SparseFool, better conver-

gence can be achieved by going further into the other side of

the boundary, and find a solution for the hyperplane passing

through the datapoint x(i) + �(x
(i)
B � x

(i)), where � � 1.

Specifically, as shown in Fig. 4, this parameter is used to

control the trade-off between the fooling rate, the sparsity,

and the complexity. Values close to 1, lead to sparser per-

turbations, but also to lower fooling rate and increased com-

plexity. On the contrary, higher values of � lead to fast

convergence – even one step solutions –, but the resulted

perturbations are less sparse. Since � is the only parame-

ter of the algorithm, it can be easily adjusted to meet the

corresponding needs in terms of fooling rate, sparsity, and

complexity.

Finally, note that B corresponds to the boundary be-

tween the adversarial and the estimated true class, and thus

it can be seen as an affine binary classifier. Since at each

iteration the adversarial class is computed as the closest (in

an `2 sense) to the true one, we can say that SparseFool op-

erates as an untargeted attack. Even though, it can be easily

transformed to a targeted one, by simply computing at each

iteration the adversarial example – and thus approximating

the decision boundary – of a specific category.

4. Experimental results

4.1. Setup

We test SparseFool on deep convolutional neural

network architectures with the 10000 images of the

MNIST [26] test set, 10000 images of the CIFAR-10 [23]

test set, and 4000 randomly selected images from the

ILSVRC2012 validation set. In order to evaluate our al-

gorithm and compare with related works, we compute the

fooling rate, the median perturbation percentage, and the

average execution time. Given a dataset D , the fooling rate

measures the efficiency of the algorithm, using the formula:
�

�x 2 D : f(x + rx) 6= f(x)
�

�/
�

�D
�

�, where rx is the per-

turbation that corresponds to the image x. The median per-

turbation percentage corresponds to the median percentage

of the pixels that are perturbed per fooling sample, while

the average execution time measures the average execution

time of the algorithm per sample3.

We compare SparseFool with the implementation of

JSMA attack [38]. Since JSMA is a targeted attack, we

evaluate it on its “untargeted” version, where the target class

is chosen at random. We also make one more modification

at the success condition; instead of checking if the predicted

class is equal to the target one, we simply check if it is dif-

ferent from the source one. Let us note that JSMA is not

evaluated on ImageNet dataset, due to its huge computa-

tional cost for searching over all pairs of candidates [6]. We

also compare SparseFool with the “one-pixel attack” pro-

posed in [44]. Since “one-pixel attack” perturbs exactly k
pixels, for every image we start with k = 1 and increase it

till “one-pixel attack” finds an adversarial example. Again,

we do not evaluate the “one-pixel attack” on the ImageNet

dataset, due to its high computational cost for high dimen-

sional images.

4.2. Results

Overall performance. We first evaluate the performance

of SparseFool, JSMA, and “one-pixel attack” on differ-

3All the experiments were conducted on a GTX TITAN X GPU.
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ent datasets and architectures. The control parameter � in

SparseFool was set to 1 and 3 for the MNIST and CIFAR-

10 datasets respectively. We observe in Table 1 that Sparse-

Fool computes 2.9x sparser perturbations, and is 4.7x faster

compared to JSMA for the MNIST dataset. This behavior

remains similar for the CIFAR-10 dataset, where Sparse-

Fool computes on average, perturbations of 2.4x higher

sparsity, and is 15.5x faster. Notice here the difference in

the execution time: JSMA becomes much slower as the

dimension of the input data increases, while SparseFool’s

time complexity remains at very low levels.

Then, in comparison to “one-pixel attack”, we observe

that for the MNIST dataset, our method computes 5.5x

sparser perturbations, and is more than 3 orders of mag-

nitude faster. For the CIFAR-10 dataset, SparseFool still

manages to find very sparse perturbations, but less so than

the “one-pixel attack” in this case. The reason is that our

method does not solve the original `0 optimization prob-

lem, but it rather computes sparse perturbations through the

`1 solution of the linearized one. The resulting solution is

often suboptimal, and may be optimal when the datapoint is

very close to the boundary, where the linear approximation

is more accurate. However, solving our linearized problem

is fast, and enables our method to efficiently scale to high

dimensional data, which is not the case for the “one-pixel at-

tack”. Considering the tradeoff between the sparsity of the

solutions and the required complexity, we choose to sacri-

fice the former, rather than following a complex exhaustive

approach like [44]. In fact, our method is able to compute

sparse perturbations 270x faster, and by requiring 2 orders

of magnitude less queries to the network, than the “one-

pixel attack” algorithm.

Finally, due to the huge computational cost of both

JSMA and “one-pixel attack”, we do not use it for the large

ImageNet dataset. In this case, we instead compare Sparse-

Fool with an algorithm that randomly selects a subset of ele-

ments from each color channel (RGB), and replaces their in-

tensity with a random value from the set V = {0, 255}. The

cardinality of each channel subset is constrained to match

SparseFool’s per-channel median number of perturbed el-

ements; for each channel, we select as many elements as

the median, across all images, of SparseFool’s perturbed el-

ements for this channel. The performance of SparseFool

for the ImageNet dataset is reported in Table 2, while the

corresponding fooling rates for the random algorithm were

18.2%, 13.2%, 14.5%, and 9.6% respectively. Observe that

the fooling rates obtained for the random algorithm are far

from comparable with SparseFool’s, indicating that the pro-

posed algorithm cleverly finds very sparse solutions. In-

deed, our method is consistent among different architec-

tures, perturbing on average 0.21% of the pixels, with an

average execution time of 7 seconds per sample.

To the best of our knowledge, we are the first to provide

7 7 9

6 3 2

8 8 2

(a) MNIST

dog dog cat

car car truck

bird deer truck

(b) CIFAR-10

Figure 5: Adversarial examples for (a) MNIST and (b)

CIFAR-10 datasets, as computed by SparseFool on LeNet

and ResNet-18 architectures respectively. Each column cor-

responds to different level of perturbed pixels.

an adequate sparse attack that efficiently achieves such fool-

ing rates and sparsity, and at the same time scales to high

dimensional data. “One-pixel attack” does not necessarily

find good solutions for all the studied datasets, however,

SparseFool – as it relies on the high dimensional geome-

try of the classifiers – successfully computes sparse enough

perturbations for all three datasets.

Perceptibility. In this section, we illustrate some ad-

versarial examples generated by SparseFool, for three dif-

ferent levels of sparsity; highly sparse perturbations, sparse

perturbations, and somewhere in the middle. For the

MNIST and CIFAR-10 datasets (Figures 5a and 5b respec-

tively), we observe that for highly sparse cases, the pertur-

bation is either imperceptible or so sparse (i.e., 1 pixel) that

it can be easily ignored. However, as the number of per-

turbed pixels increases, the distortion becomes even more

perceptible, and in some cases the noise is detectable and

far from imperceptible. The same behavior is observed for

the ImageNet dataset (Fig. 1). For highly sparse perturba-

tions, the noise is again either imperceptible or negligible,

but as the density increases, it becomes more and more vis-

ible.

To eliminate this perceptibility effect, we focus on the

lower and upper bounds of the values of an adversarial im-

age x̂. Recall from Section 2.3 that the bounds l, u are

defined in way such that li  x̂i  ui, i = 1 . . . n. If these

bounds represent the dynamic range of the image, then x̂i

can take every possible value from this range, and the mag-

nitude of the noise at the element i can reach some visible

levels. However, if the perturbed values of each element lie

close to the original values xi, then we might prevent the

magnitude from reaching very high levels. For this reason,

assuming a dynamic range of [0, 255], we explicitly con-

strain the values of x̂i to lie in a small interval ±� around

xi, such that 0  xi � �  x̂i  xi + �  255.

The resulted sparsity for different values of � is depicted

9092



Dataset Network Acc. (%)
Fooling rate (%) Perturbation (%) Time (sec)

SF JSMA 1-PA SF JSMA 1-PA SF JSMA 1-PA

MNIST LeNet [25] 99.14 99.93 95.73 100 1.66 4.85 9.43 0.14 0.66 310.2

CIFAR-10
VGG-19 92.71 100 98.12 100 1.07 2.25 0.15 0.34 6.28 102.7

ResNet18 [17] 92.74 100 100 100 1.27 3.91 0.2 0.69 8.73 167.4

Table 1: The performance of SparseFool (SF), JSMA [38], and “one-pixel attack” (1-PA) [44] on the MNIST and the CIFAR-

10 datasets.3 Note that due to its high complexity, “one-pixel attack” was evaluated on only 100 samples.

Network Acc. (%)
Fooling

rate (%)

Pert.

(%)

Time

(sec)

VGG-16 71.59 100 0.18 5.09
ResNet-101 77.37 100 0.23 8.07

DenseNet-161 77.65 100 0.29 10.07
Inception-v3 77.45 100 0.14 4.94

Table 2: The performance of SparseFool on the ImageNet

dataset, using the pre-trained models provided by PyTorch.3
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Figure 6: The resulted sparsity of SparseFool perturbations

for ±� around the values of x, for 100 samples from Ima-

geNet on a ResNet-101 architecture.

in Fig. 6. The higher the value, the more freedom we give

to the perturbations, and for � = 255 we exploit the whole

dynamic range. Observe though that after � ⇡ 25, the spar-

sity levels seem to remain almost constant, which indicates

that we do not need to use the whole dynamic range. Fur-

thermore, we observed that the average execution time per

sample of SparseFool from this value onward seems to re-

main constant as well, while the fooling rate is always 100%
regardless �. Thus, by selecting appropriate values for �, we

can control the perceptibility of the resulted perturbations,

retain the sparsity around a sufficient level. The influence of

� on the perceptibility and the sparsity of the perturbations

is demonstrated in Fig. 7.

Transferability and semantic information. We now

study if SparseFool adversarial perturbations can general-

ize across different architectures. For the VGG-16, ResNet-

xi ± 255

amphibian

(0.227%)

xi ± 30

amphibian

(1.058%)

xi ± 10

amphibian

(4.296%)

Arabian camel

(0.169%)

Arabian camel

(0.839%)

Arabian camel

(3.202%)

Figure 7: The effect of � on the perceptibility and the spar-

sity of SparseFool perturbations. The values of � are shown

on top of each column, while the fooling label and the per-

centage of perturbed pixels are written below each image.

101, and DenseNet-161 [19] architectures, we report in Ta-

ble 3 the fooling rate of each model when fed with adver-

sarial examples generated by another one. We observe that

sparse adversarial perturbations can generalize only to some

extent, and also, as expected [29], they are more transfer-

able from larger to smaller architectures. This indicates that

there should be some shared semantic information between

different architectures that SparseFool exploits, but the per-

turbations are mostly network dependent.

Focusing on some animal categories of the ImageNet

dataset, we observe that indeed the perturbations are con-

centrated around “important” areas (i.e., head), but there is

not a consistent pattern to indicate specific features that are

the most important for the network (i.e., eyes, ears, nose

etc.); in many cases the noise also spreads around different

parts of the image. Examining now if semantic information

is shared across different architectures (Fig. 8), we observe

that in all the networks, the noise consistently lies around
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VGG16 ResNet101 DenseNet161

VGG16 100% 10.8% 8.2%
ResNet101 25.3% 100% 12.1%
DenseNet161 28.2% 17.5% 100%

Table 3: Fooling rates of SparseFool perturbations between

pairs of models for 4000 samples from ImageNet. The row

and column denote the source and target model respectively.

(a) VGG-16 (b) ResNet-101 (c) DenseNet-161

Figure 8: Shared information of the SparseFool perturba-

tions for ImageNet, as computed on three different archi-

tectures. For all networks, the first row image was classified

as “Chihuahua” and misclassified as “French Bulldog”, and

second row image as “Ostrich” and “Crane” respectively.

the important areas of the image, but the way it concentrates

or spreads is different for each network.

For the CIFAR-10 dataset, we observe that in many cases

of animal classes, SparseFool tends to perturb some uni-

versal features around the area of the head (i.e., eyes, ears,

nose, mouth etc.), as shown in Fig. 9a. Furthermore, we

tried to understand if there is a correlation between the per-

turbed pixels and the fooling class. Interestingly, we ob-

served that in many cases, the algorithm was perturbing

those regions of the image that correspond to important fea-

tures of the fooling class, i.e., when changing a “bird” la-

bel to a “plane”, where the perturbation seems to represent

some parts of the plane (i.e., wings, tail, nose, turbine). This

behavior becomes even more obvious when the fooling la-

bel is a “deer”, where the noise lies mostly around the area

of the head in a way that resembles the antlers.

Robustness of adversarially trained network. Fi-

nally, we study the robustness to sparse perturbations of

an adversarially trained ResNet-18 network on the CIFAR-

10 dataset, using `∞ perturbations. The accuracy of this

more robust network is 82.17%, while the training proce-

dure and its overall performance are similar to the ones pro-

vided in [30]. Compared to the results of Table 1, the av-

erage time dropped to 0.3 sec, but the perturbation percent-

cat dog dog

dog dog cat

cat cat deer

(a) Universal features

cat deer plane

plane deer deer

deer deer deer

(b) Fooling class features

Figure 9: Semantic information of SparseFool perturbations

for the CIFAR-10 dataset, on a ResNet-18 architecture. Ob-

serve that the perturbation is concentrated on (a) some fea-

tures around the area of the face, and (b) on areas that are

important for the fooling class.

age increased to 2.44%. In other words, the adversarially

trained network leads to just a slight change in the sparsity,

and thus training it on `∞ perturbations does not signifi-

cantly improve its robustness against sparse perturbations.

5. Conclusion

Computing adversarial perturbations beyond simple `p

norms is a challenging problem from different aspects. For

sparse perturbations, apart from the NP-hardness of the `0

minimization, one needs to ensure the validity of the ad-

versarial example values. In this work, we provide a novel

geometry inspired sparse attack algorithm that is fast and

can scale to high dimensional data, where one can also have

leverage over the sparsity of the resulted perturbations. Fur-

thermore, we provide a simple method to improve the per-

ceptibility of the perturbations, while retaining the levels

of sparsity and complexity. We also note that for some

datasets, the proposed sparse attack alters features that are

shared among different images. Finally, we show that ad-

versarial training does not significantly improve the robust-

ness against sparse perturbations computed with Sparse-

Fool. We believe that the proposed approach can be used to

further understand the behavior and the geometry of deep

image classifiers, and provide insights for building more ro-

bust networks.
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