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Abstract

We investigate the multi-step prediction of the driv-

able space, represented by Occupancy Grid Maps (OGMs),

for autonomous vehicles. Our motivation is that accu-

rate multi-step prediction of the drivable space can effi-

ciently improve path planning and navigation resulting in

safe, comfortable and optimum paths in autonomous driv-

ing. We train a variety of Recurrent Neural Network (RNN)

based architectures on the OGM sequences from the KITTI

dataset. The results demonstrate significant improvement

of the prediction accuracy using our proposed difference

learning method, incorporating motion related features,

over the state of the art. We remove the egomotion from

the OGM sequences by transforming them into a common

frame. Although in the transformed sequences the KITTI

dataset is heavily biased toward static objects, by learn-

ing the difference between consecutive OGMs, our pro-

posed method provides accurate prediction over both the

static and moving objects. A video of the performance of

our method on the KITTI dataset is available at https:

//youtu.be/Bskd0Z7eLFE.

1. Introduction

Determining the environment state is a crucial ability for

autonomous vehicles to have. Particularly for path planning

and navigation, the state of the environment is required to

determine safe areas to drive, that is, the drivable space. In a

driving scenario, the classic approach is to detect and track

objects, and based on the state of the tracked objects, deter-

mine the drivable space [21, 5]. Figure 1(a) illustrates the

general pipeline of the classic approach. As the new data

comes in, the objects in the environment are detected (and

classified). To keep track of objects, each object is given an

ID. The Data Association module assigns existing IDs to the

detected objects, or initiates new IDs if there is no matched

tracks. The states of the tracked objects are updated using
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Figure 1. Classic approach versus ours for providing the drivable

space to a motion planner in autonomous driving.

models which are assigned to them based on their class. Fi-

nally, the updated states (possibly along with the assigned

models) are used to determine the drivable space.

The various stages in the classic approach require hand-

engineered features. Additionally, any error occurred at an

early stage of the pipeline can propagate towards the next

stages leading to an overall performance degradation. An

alternative approach is to predict the drivable space at a level

closer to the sensory information, requiring fewer abstrac-

tion levels. However, for such prediction to be useful, first a

proper representation of the drivable space should be chosen

which can be directly obtained from sensor measurements.

One such proper means in this context is an Occupancy Grid

Map (OGM) [3, 24]. An OGM divides the space around

the ego-vehicle into equal cells which represent the occu-

pancy state of surrounding regions, i.e., free or occupied.

The state of the cells can be constructed using Laser range

finders (and images [22]).

Given an OGM, methods such as Probabilistic Road-

Maps and Rapidly exploring Random Trees can be em-

ployed to generate a collision-free path [24]. In the presence

of dynamic objects, however, a single OGM is insufficient
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for guaranteeing a safe passage in general, as it does not

properly represent the moving objects. Planning based on

the updated OGMs results in inefficient and uncomfortable

paths requiring frequent steering corrections or even inad-

missible paths. In such scenarios, one common approach

is to “grow” the occupied regions by padding the occupied

cells, which artificially creates a safe distance from obsta-

cles. However, the amount of padding is difficult to deter-

mine a priori and depends on the objects’ type, velocity,

etc. Without proper object detection and classification, the

padding size has to be chosen above a safe threshold which

may result in severely restricting the ego-vehicle movement

in crowded areas, such as urban environments, and failing

to detect useful drivable spaces in highway scenarios where

the objects may move relatively fast.

Alternatively, it is possible to provide multi-steps of

OGM prediction into the future [2, 4, 10]. In a dynamic en-

vironment, such predictions can provide the drivable space

to a planning algorithm without the need for the several

stages required in the classic approach. The idea is to en-

code the observed states of the environment, represented

as OGMs, into latent variables of a recursive model, from

which the future OGMs can be produced recursively. Re-

current Neural Networks (RNNs) are, therefore, a potential

model candidate, which have also been successfully applied

to various other problems with dynamic nature, such as un-

supervised video prediction [12, 7], multi-step prediction of

mobile robots [15] and visual odometry [25]. Moreover, it

is shown that RNNs can produce promising results in the

context of OGM prediction [2, 4].

OGMs may also be looked upon as black-and-white im-

ages. However, predicting images in a video stream, i.e.,

video prediction [7, 13, 23], can be studied either as a

regression problem, or multinomial classification (with at

least 256 classes for gray-scale images), where OGM pre-

diction is a binary classification problem. As a sanity check,

we employed PredNet [12] and the CDNA model [7], but

both methods failed to provide a reliable OGM prediction.

Particularly, the occlusions that occur within OGMs, due to

the nature of range finder sensors, are difficult to be dealt

with in the video prediction task where the primary goal

is to predict the future images as similar as possible to the

ground truth. Therefore, in this work we do not consider the

multi-step prediction of OGMs as a video prediction task.

In [2], a network of Gated Recurrent Units [1] (GRUs),

with dilated convolutions, is used whose states are initial-

ized as it receives and reconstructs observed OGMs, for a

limited number of steps. Then, the initialized states are em-

ployed to generate next OGMs, while the input OGMs are

blank. Inspired by [2], we propose an approach to learn

the difference between consecutive OGMs as a compensa-

tion matrix. The current OGM, modified by the compensa-

tion matrix, provides the features for a predictive classifica-

tion. This choice stems from the fact that the current OGM

provides a reliable prior for the drivable space. The ma-

jor source of discrepancy between consecutive OGMs is the

egomotion, which presumably is available (e.g., from the

Drive-By-Wire system or GPS). Therefore, in this work, the

observed OGMs are transferred to a common frame using

egomotion information. The common frame corresponds to

the ego-vehicle coordinate system at the present time, i.e.,

the frame at which we want to predict future OGMs.

The OGMs are also predicted into the future with respect

to the common frame. In fact, in our approach the drivable

space is predicted as OGMs in a frame which is absolute

over the observed history and the prediction period, but is

attached to the ego-vehicle. This is different to the approach

taken in [2] where a Spatial Transformer Module (STM)

[11] is employed to take account for the egomotion. Since

our intention is to predict OGMs suitable for planning, it

is reasonable to predict the OGMs regardless of the future

egomotion. Providing the environment state in an absolute

frame makes it possible for a planning algorithm to examine

and plan based on virtually all ego trajectories that are safe,

i.e., those which do not interfere with other objects’ paths

in the environment.

Training a network for OGM prediction is supervised as

the target output is the OGM. However, the targets directly

come from the sensors and do not need human supervision

to be generated. Such datasets are easy to collect which sig-

nificantly reduces the human labor and improves the time-

to-market. One difficulty is that the number of static ob-

jects is quite often dominant in OGM datasets. Conse-

quently, the network can easily trap in a local minimum

where it assumes the surrounding environment is basically

static. Learning the difference between OGMs partially pre-

vents such local minima as the network only needs to com-

pensate for the moving objects. Additionally, we propose

to incorporate motion relevant information as inputs to the

networks, either by using standard optical-flow extraction

algorithms such as the Farneback method [6], or by feed-

ing the OGM differences. Both methods are considered and

evaluated for performance and computation time.

Our contributions are summarized as follows,

• A novel RNN-based architecture is proposed to predict

OGMs over multi-steps into the future, based on learn-

ing the OGM differences between consecutive frames,

• Motion related features are employed which enhances

OGM prediction over dynamic objects significantly,

• A conclusive comparison between various RNN-based

architectures is presented for the problem at hand.

In the following, relevant works are reviewed in Sec-

tion 2. Section 3 formulates the OGM prediction problem

and describes our methods to address it. Section 4 presents

the experimental results and discussions. We conclude the

paper in Section 5.
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2. Related Work

In [20], the authors propose a deep tracking scheme,

where a simple RNN is leveraged to learn OGM-to-OGM

mappings. The training data consists of OGMs that are built

by synthesized laser readings collected from a static sen-

sor. This work is improved and expanded in [2], where the

egomotion is handled with STMs, and convolutional GRUs,

with dilation, replace the vanilla RNN architecture. How-

ever, the two approaches in [20] and [2] are similar: a se-

quence of observed OGMs, followed by blank OGMs, are

fed to an RNN, whose output is trained on the observed

OGMs for the entire sequence. Therefore, the RNN acts as

an autoencoder while it receives the observed OGM, to ini-

tialize its states. The accumulated information in the states

is employed to predict the OGM evolution as the network

receives blank OGMs. However, feeding blank inputs cause

the output OGMs to fade out rapidly. Also, approaches

in [20] and [2] become computationally inhibitive as the

OGM size increases unless the OGMs are either resized or

an encoder-decoder architectures is employed.

Authors in [10] and [4] employ Dynamic OGMs

(DOGMa). DOGMa is the result of fusing a variety of

sensor readings using Bayesian filtering, which associates

dynamic information to each cell as well as the occupancy

state [18]. The dynamic information contains the veloc-

ity and its uncertainty. An encoder-decoder structure with

Convolutional Long-Short-Term-Memory network (Con-

vLSTM) [27] receives DOGMa and produces the occu-

pancy probability of static regions alongside the anchor

boxes for dynamic objects [4]. An automatic output label

generation is also used which can have a “relatively high

false negative rate” [10]. Additionally, the datasets in [10]

and [4] are collected from a static sensor (parked car).

OGM prediction has already been used in path planning

of autonomous robots. In [17], Variable Length Markov

Model is employed to predict the OGM in an environment

whose main occupants are humans. However, in [17], the

experiments are restricted to cases where there is only one

human exists in the vicinity of the autonomous robot. Sim-

ilarly in [19], multi-steps of predicted OGMs are stacked in

an XYT space (T stands for time) which is then used for

path planning of rescue robots. The XYT stack of predicted

OGMs is also used in other works, such as [9], however,

the OGMs are either updated using object models (classic

approach) or the main occupant are of the same object type,

e.g. human in [17] and [19].

3. OGM Prediction in Autonomous Driving

In practice, an OGM cell can be either fully occupied,

partially occupied or completely free. However, in this

work, it is assumed that a cell can be either fully occupied or

free, with a probability of occupancy associated to it. For-

mally, the state of the cell located at ith row and jth col-

umn of the OGM, at time-step k, is represented by a binary

random variable ck(i, j) ∈ {0, 1}. For now, assume that

the OGM at time-step k, Ok, is the probability matrix of

ck(i, j), that is,

Ok =
[

p
(

ck(i, j)
)

]

=







p
(

ck(1, 1)
)

. . . p
(

ck(1, X)
)

...
. . .

...

p
(

ck(Y, 1)
)

. . . p
(

ck(Y,X)
)






,

(1)

where X and Y indicate the grid size. In order not to

lose generality, we assume that at each time-step, ck(i, j)s,

where i = 1, ..., Y and j = 1, ..., X , are independent with

possibly different distributions. However, ck(i, j)s are de-

pendent over time. In general, the probability of ck(i, j) is

conditioned on the set of random variables Ci,j ,

Ci,j =
{

cv(m,n)|v = k − 1, k − 2, ...

m = i− αi, ..., i+ βi,

n = j − αj , ..., , j + βj ,

0 ≤ αi < i, 0 ≤ βi ≤ X − i,

0 ≤ αj ≤ j, 0 ≤ βj < Y − j
}

,

(2)

where αi, βi and αj , βj are integers and indicate some

neighborhood around i and j. In general, the values αi, βi

and αj , βj depend on a number of factors, such as the ego-

vehicle’s velocity and/or the speed of the surrounding ob-

jects. Therefore, we assign the extreme possible values to

them, in which case, (m,n) covers the entire OGM. There-

fore, the elements of OGM matrix in (1) are, in fact, condi-

tional probabilities,

p
(

ck(i, j)|Ck−1, Ck−2, ...
)

, (3)

Ck =
{

ck(m,n)|m = 1, ..., Y ;n = 1, ..., X
}

, (4)

and we define the OGM as the matrix of the conditional

probabilities (3),

Ok =
[

p
(

ck(i, j)|Ck−1, Ck−2, ...
)

]

, i = 1, ..., Y ; j = 1, ...X.

(5)

Our goal is to predict the OGMs, as depicted in (5), over

multi-steps into the future. To this end, we employ and train

a variety of RNN-based architectures. The feedback con-

nections in an RNN are particularly useful to establish the

recursive dependency represented in (5). The RNN-based

models in this work are employed as sequence-to-sequence

maps, i.e., they receive a sequence of input OGMs and pro-

duce a sequence of OGMs, of the same length. Therefore,

given a fixed sequence length, T , a prediction task is defined

as feeding the input OGM sequence, O, to an RNN-based

model which generates the output OGM sequence, Ô,

O = {Ok}, k = 1, ..., T, (6a)

Ô = {Ôk}, k = 1, ..., T, (6b)
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where Ôk is the model output at time-step k whose form

depends on the model architecture. Based on [2] we initially

form the input sequence as follows,

Ok =

{

O
∗

k, k = 1, ..., τI ,

[0], k = τI + 1, ...T,
(7)

where O
∗

k is the observed OGM at k and [0] represents a

matrix of zeros whose size is the same as O∗

k, i.e., a blank

OGM. Later we will modify the input sequence. Equa-

tion (6) and (7) indicate that a prediction task consists of

two phases. During the first phase, where k = 1, ..., τI , the

observed OGMs are given to the model. The first phase

is mainly intended for RNN state initialization [16], and

therefore, we will refer to it as the initialization phase, or

init-phase for short. The second phase, namely the predic-

tion phase, starts at k = τ +1 and is intended for multi-step

prediction, as the input OGMs are blank. The length of the

prediction phase is τP = T − τI .

It is worthwhile to mention that in [2], authors train their

network to reconstruct the input during the init-phase, there-

fore, their architecture behaves similar to an autoencoder.

From our point of view, such approach does not necessar-

ily result in extracting features that are useful for predic-

tion, rather, those features are useful for reconstructing the

inputs. In contrary, our models are trained to generate one-

step-ahead prediction during the init-phase. Therefore, we

force the models to learn useful features for prediction.

3.1. Base Architecture

To handle large OGMs, an encoder/decoder architecture

is employed, as depicted in Figure 2. The encoder mod-

ule consists of a number of convolutional layers, each fol-

lowed by a max pooling, to reduce the input OGM size and

extract features. Then, the features are passed through an

RNN, followed by a decoder module. The decoder module

upsamples the RNN output using transposed convolutional

layers. The number of layers in the encoder and the decoder

is the same. Also, the decoder’s output has the same XY di-

mension as the input OGM.

… …

Encoder Decoder

Features Prediction in 

feature 

space

Input 

OGM

Predicted

OGM

Core RNN 

Figure 2. Base Architecture.

To account for the egomotion, the OGMs are transferred

to the frame at which the prediction starts, i.e., k = τ . We

use standard geometric image transformation using the dis-

placement in x, y and the heading directions over consec-

utive frames. This transformation is applied to all of the

OGMs in each prediction task. As a result, the OGMs (ob-

served and predicted per each prediction task) are treated as

if they are seen from a stationary sensor whose location is

the same as the sensor location at k = τ . To avoid notation

clutter, we use the same notation for the OGMs as before,

keeping in mind that they are all transformed accordingly.

3.2. Extended Architectures

We extend the base architecture by feeding the output

back to the network. Therefore, (7) becomes,

Ok =
[

1− u(k − τ − 1)
]

O
∗

k + u(k − τ − 1)Ôk, (8)

where Ôk, is the predicted OGM at time-step k and u(.) is

the standard step function1. The output feedback connec-

tion incorporates the information, that are coded inside the

decoder module, back into the network.

The second extension is to include motion-related fea-

tures using Motion-Flow (MF) extraction algorithms (e.g.,

Farneback algorithm [6]), or a two-channel difference

method. An MF extraction algorithm, receives two con-

secutive OGMs and provides a tensor of the same size and

depth of two. Each of the two channels correspond to the

movement in X and Y directions. The two-channel differ-

ence method takes the difference between two past consec-

utive OGMs and places the result into two channels; one

channel for the positive values and the other for (the ab-

solute value of) the negative values. The resulting two-

channel tensor, from either of the methods, is then passed

through an encoder module, whose output is stacked with

the output of the OGM encoder. The extended architectures

is illustrated in Figures 3.

Ôk

O
∗

k Ok
Ôk+1

En.

En.

De.

MFE

Core

RNN
S

D

D

δk

D : Delay

S : Stack

Figure 3. Extensions over the base architecture. “MFE” stands for

Motion-related Feature Extraction. The switch δk changes posi-

tion at k = τI+1. “En.” and “De.” stand for Encoder and Decoder,

respectively.

3.3. Difference Learning Architecture

With the current technology, high resolution OGMs can

be constructed at 10 Hz rate and faster. In a normal driving

scenario, it is quite unlikely that the consecutive OGMs at

1
u(x) returns 1 for x ≥ 0 and 0 otherwise.
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such rates differ dramatically. In other words, current OGM

provides a reasonable prior for predicting the next OGM.

We embed the above idea into a difference learning ar-

chitecture, which is based on a two-stage process as illus-

trated in Figure 4. The first stage, depicted by Diff. Learn,

generates a compensation matrix, ∆Ok, whose size is the

same as the input OGM. The Diff. Learn module em-

ploys the extended architecture depicted in Figure 3. The

result of adding ∆Ok to the input OGM provides the ba-

sis on which the Classifier module produces the next OGM

prediction. Therefore, the Diff. Learn module should im-

plicitly distinguish between the static and dynamic objects

which is then reflected in ∆Ok. The elements of ∆Ok are

real values in [−1, 1]. A value near zero corresponds to a

cell whose occupancy should not be altered, i.e., a free cell

or a cell occupied by a static object). Similarly, a value

closer to 1 (or -1) attempts to add (or clear) occupancy to

(from) the corresponding cells, indicating the cell is being

occupied by (or freed from) a dynamic object. The Clas-

sifier module refines the modified OGM further to predict

the next OGM, i.e., Ôk+1. Figure 5 illustrated the detailed

difference-learning model. Note that the Classifier module

can be a simple feed-forward or a recurrent network.

Diff.

Learn
Classifier+

D

Ôk

O
∗

k Ok
Ôk+1

δk

∆Ok

Figure 4. Difference OGM learning model.

Diff. Learn

Ôk

O
∗

k Ok

∆Ok+1

Ôk+1

En.

En.

De.

MFE

Core

RNN
S

+
Classi-

fier

D

D

δk

Figure 5. Detailed architecture for the difference learning model.

3.4. Training Cost

As the problem at hand is classification (occlusion vs.

free), we employ pixel-wise Cross-Entropy cost between

the output, Ôk, and the target, O∗

k. Because the majority

of the cells are normally unoccupied, the cost is normalized

with respect to the number of occupied/free cells. Also, the

pixel-wise cost is multiplied by the visibility matrix as in

[2], to let the network handle occlusions.

To make sure the Diff. Learn module is effectively em-

ployed, two extra terms are added for the difference learn-

ing models. First, based on the idea that most of the objects

are static in a driving scenario, an L2 norm on the com-

pensation matrix, ∆Ok+1, is added to the total cost. This

term ensures that the non-zero elements inside ∆Ok+1 cor-

respond to the cells whose occupancy should be changed

during the prediction task, i.e., the dynamic objects. To

force the classifier inputs towards the target, a multi-scale

Structural Similarity Index Metric [26] (SSIM) between the

summation result and the target OGM is added to the cost.

4. Experimental Results

The OGM sequences are obtained from the KITTI raw

dataset [8]. The raw Lidar point-clouds, collected at 10Hz,

are converted to bird’s eye view OGMs (with ground re-

moval) [14]. Then, the OGM sequences are partitioned into

segments of 20 frames, preserving the order within each

segment. Every segment corresponds to 2 seconds of OGM

measurement and is regarded as one sample. The init-phase

length is set to 10 steps, i.e., τ = 10. Since the models’

ability to handle occlusion is important to us, in addition to

the natural occlusions that exist in the raw data, we impose

a constant occlusion pattern over the OGMs by filtering out

occupancies outside the front camera field of view (FOV).

With a cell size equal to 20(cm)×20(cm), each OGM frame

consists of 256 × 256 cells, arranged in a square matrix,

corresponding to occupancies over 50 meters in front of the

car. The OGMs are visualized as 256×256 pixel, black and

white or gray-scale, images, where the former shows the ac-

tual occupancy and the latter illustrates the discretized oc-

cupancy probabilities. Each pixel represents one OGM cell.

Table 1 lists the models, and their configurations, trained

for this work. The ED (Encoder-Decoder) models provide

a basis for evaluation. The ED-Di (Encoder-Decoder with

Dilated convolutions) models correspond to the model pro-

posed in [2] along with two improvements based on using

the motion-related features. The Diff.1 and Diff.2 models

represent our proposed difference learning architecture.

The encoders’ architecture is identical across the mod-

els; they produce 64×64×32 features from 256×256×n

inputs, where n = 1 for the OGM and n = 2 for motion-

flow related features. The decoders are also similar across

the models; they convert back the 64 × 64 × 32 tensors to

256 × 256 × n, where n = 1 for Diff.1 and Diff.2 models,

and n = 2 for ED and ED-Di models. Also, the decoders in

Diff.1 and Diff.2 models employ a tanh() activation func-

tion on their last layer to produce compensation matrix val-

ues in [−1, 1] while the decoders in ED and ED-Di models

employ a linear activation to produce logits. The Core RNN

module consists of 4 ConvLSTM layers, where dilation at

the kth ConvLSTM layer is equal to k for the ED-Di model

and one for the rest. Therefore, in our settings, the ED-

Di model at #4 row in Table 1 is an attempt to replicate the

model proposed in [2]. Models #5 and #6 represent our sug-

gested improvements on #4. All of the models are trained

to predict one-step-ahead during the init-phase.

Table 2 lists the results. We evaluate the prediction accu-
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# Model Cfg. Arch. Input MFE Di. Diff. Learn Classifier

1

ED

Base Fig. 2 Eq. (7) N/A No N/A N/A

2 Ext1. Fig. 3 Eq. (8) Farenback No N/A N/A

3 Ext2. Fig. 3 Eq. (8) Two-channel difference No N/A N/A

4

ED-Di

Base Fig. 2 Eq. (7) N/A Yes N/A N/A

5 Ext1. Fig. 3 Eq. (8) Farenback Yes N/A N/A

6 Ext2. Fig. 3 Eq. (8) Two-channel difference Yes N/A N/A

7

Diff.1

Base Fig. 4 Eq. (8) N/A No Base (Fig. 2) 2 Layer Conv.

8 Ext1. Fig. 5 Eq. (8) Farenback No Shaded area in Fig. 5 2 Layer Conv.

9 Ext2. Fig. 5 Eq. (8) Two-channel difference No Shaded area in Fig. 5 2 Layer Conv.

10

Diff.2

Base Fig. 4 Eq. (8) N/A No Base (Fig. 2) 1 ConvLSTM

11 Ext1. Fig. 5 Eq. (8) Farenback No Shaded area in Fig. 5 1 ConvLSTM

12 Ext2. Fig. 5 Eq. (8) Two-channel difference No Shaded area in Fig. 5 1 ConvLSTM

Table 1. The models trained in this work. ED models constitute the base line over each configuration (Cfg.), ED-Di models are the closest

replica of the model proposed in [2], in our framework, Diff.1 and Diff.2 models represent our proposed models.

Architectures Whole OGM Objects only
t/f

(ms)
Ord.

Model Cfg.
Whole seq. Prediction seq. Whole seq. Prediction seq.

TP TN S100 TP TN S100 TP TN S100 TP TN S100

Base 87.51 97.85 93.91 85.37 97.38 92.95 77.07 97.88 95.71 70.39 97.56 95.01 3.8 11

Ext.1 87.87 87.29 93.75 85.25 99.07 95.49 77.19 98.94 96.79 70.28 98.59 96.02 9.2 12ED

Ext2. 89.48 98.69 94.85 87.50 98.21 94.31 78.95 98.77 96.55 72.76 98.39 95.77 4.2 5

Base 86.16 97.41 93.89 86.01 97.68 93.10 77.83 98.01 95.91 71.84 97.89 95.14 4.0 9

Ext.1 88.09 89.81 94.02 85.89 99.10 96.92 78.24 98.55 97.01 71.25 98.88 97.03 9.8 7ED-Di

Ext.2 88.60 97.90 94.57 87.15 97.52 95.52 76.52 96.26 95.25 69.42 97.93 93.87 4.7 10

Base 85.39 99.35 95.35 84.01 98.89 94.26 78.90 99.34 97.44 72.06 98.92 96.39 4.0 6

Ext.1 88.58 99.07 97.11 85.03 98.29 97.85 79.80 99.12 97.12 77.02 98.56 97.00 10.2 3Diff.1

Ext.2 88.14 97.86 98.10 86.67 98.33 97.12 79.96 98.89 95.99 74.41 97.92 96.28 5.7 4

Base 85.37 99.39 95.55 81.60 99.09 94.45 73.37 99.30 97.39 69.91 99.00 96.57 4.3 8

Ext.1 91.02 99.69 99.47 88.36 99.28 98.41 82.97 98.81 97.37 79.91 98.37 96.73 12.1 1Diff.2

Ext.2 90.31 98.53 98.97 88.89 98.91 97.83 81.09 99.02 97.01 77.43 98.11 96.97 6.1 2

Table 2. The OGM prediction accuracy measured by %True-Positive (%TP), %True-Negative (TN) and S100 (100×[standard SSIM])

measures. The decreasing order of prediction accuracy is listed under “Ord.”, where 1 corresponds to the best overall accuracy. The

bold-faced numbers correspond to the best performance on each column. Within each 3×3 block, the shaded row corresponds to the best

performance over the block. The “t/f” column lists the time it takes to generate one frame of prediction using GTX 1080Ti GPU.

racy using %True-Positive (TP), %True-Negative (TN) and

S100 measures. The S100 is the standard SSIM measure mul-

tiplied by 100, in order to be on the same scale as TP and

TN. The evaluation horizon is either the entire sequence (20

frames) listed under “Whole seq.”, or only over the predic-

tion length (the second 10 frames) listed under “Prediction

seq.”. Also, to evaluate the prediction accuracy over the ar-

eas occupied by the objects only, we employ the tracklets

in the KITTI dataset to mask the target and the predicted

OGMs and then compute the measures. The obtained re-

sults are listed under “Objects only” and partially reflect the

prediction accuracy of dynamic objects. Recall that the la-

bels and/or tracklets are not used for training.

Over each 3-by-3 block the shaded row highlights the re-

sult with the highest sum (TP+TN+S100), reflecting the best

performance among the three corresponding configurations.

The last column (titled Ord.) lists the order at which the pre-

diction accuracy decreases, that is, number 1 corresponds to

the best and 12 to the worst performance, respectively.

Based on the results, our proposed difference learning

model, using Farneback algorithm to extract motion-flow

features, (model #11) outperforms the other models, how-

ever, it is also computationally the most expensive one. If

we switch to the two-channel difference method (model

#12), we gain a considerable improvement over the compu-

tation time, while losing a small amount of accuracy. Con-

sidering online deployment, model #12 can be readily em-

ployed onboard of an autonomous vehicle as it takes about

60ms to predict OGM over 1 second into the future. Addi-

tionally, it is clear that inclusion of the motion-related fea-

tures improves the prediction accuracy for all of the models

we consider in this work.

Figure 6. One image from the ego-vehicle POV corresponding to

the results shown in Figures 7 and 8. The arrows indicate the mov-

ing objects.

To study the predicted OGMs qualitatively, Figure 7 il-

lustrates 10 frames of prediction generated by the four mod-

els in their best configuration. A dark red grid is overlaid on

every OGM as a reference for the inertial coordinate system.

Also, the dashed yellow lines show the border of the FOV.

The initial OGMs (under the column “Init-phase”) are bi-
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k Init-phase k Diff.2 Comp. Mat. Diff.1 Comp. Mat. ED-Di ED

Figure 7. Qualitative results of the four models in their best configuration. The numbers below k indicate time-step.
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Init-phase (k=9) Diff.2 (k=19) Diff.1 (k=19) ED-Di (k=19) ED (k=19)

Figure 8. Last frame of OGM prediction extracted from Figure 7 along with the last frame of initial OGMs.

nary matrices. Therefore, they are illustrated as black and

white images. The Init-phase OGMs indicate that there are

three moving objects, two cars followed by a bus, high-

lighted by red arrows. One frame of the actual scene is

illustrated in Figure 6. The two cars are turning to their

right. However, by the end of the Init-phase, it is difficult to

determine the turning direction for the bus.

The generated compensation matrix from Diff.1 and

Diff.2 models are illustrated under “Comp. Mat.” for each

of the two models. In the compensation matrices, green and

red pixels correspond to numbers in (0, 1] and [−1, 0), re-

spectively, and black pixels correspond to 0. To assess the

prediction quality, the pixels of predicted OGMs are color

coded as green, blue and red which correspond to true pos-

itive, false positive and false negative results.

The qualitative results confirm the superiority of Diff.2

model over the rest; the moving objects are tracked pre-

cisely and occlusions are handled properly. Figure 8 shows

the last predicted frame extracted from Figure 7. An impor-

tant factor to notice is the inadequacy of the ground truth as

a target which the prediction should be compared against. In

fact, an OGM only shows the visible border of the object.

Therefore, a false positive is not undesirable everywhere on

the OGMs. Over the predicted OGM by Diff.2 in Figure 8,

the areas highlighted by the dashed pink rectangles (A and

B) show a relatively large area of false positive. Rectangle

A shows the border of the bus, grabbed from the tracklets.

The ground truth OGM (green and red pixels together) only

provides the visible border of the bus, however, intuitively

we can say the area inside the rectangle A is fully occupied.

In this case, the false positive over A is desirable. The B

rectangle shows the other possible direction of the bus.

The box, labeled C, illustrates another area where a false

positive is desirable. In fact, this box is out of the FOV

where no visible ground truth is provided. However, the

network is managed to track the moving object out of the

FOV and into the occluded area. In Diff.1 predicted OGM,

however, some of the false positive areas are likely undesir-

able. For instance, the circle D on Diff.1 OGM shows that

the areas between two static objects (notice the circle D on

the Init-phase OGM) and the bus are joined and the network

has failed to properly predict occluded parts of the scene.

The predicted OGM from ED and ED-Di models are

considerably less accurate than Diff.2 and Diff.1. Partic-

ularly, the area under the rectangle F (on ED-Di) is wrongly

predicted occupied. Also, the occupancies corresponding

to the moving bus is not accurately predicted as indicated

by the red areas. The ED result is slightly better than ED-

Di, however, the occluded areas are not handled as well as

Diff.2 model. Diff.1 model is a slightly more “cautious”

predictor, among others, due to the more false positive it

generated. One interesting difference is highlighted by the

arrow, where the object’s border is only properly deter-

mined by Diff.1 model.

Interesting patterns emerge from the compensation ma-

trices. For instance, looking at the compensation matrices,

on Figure 7, for the Diff.2 model over k > 11, we may

infer that there are three moving objects in the scene, two

of which are smaller in length. In fact, when the compen-

sation matrix is applied to an OGM, a green area followed

by a red area is a pattern which encourages the occupancies

in those areas to move from the red area towards the green

area. Therefore, both the dynamic objects and their approx-

imate headings may be interpreted from the compensation

matrix. However, since the compensation matrix is a by-

product of our approach, in this work we opt not to employ

any inference on the compensation matrix. Illustrating the

compensation matrix, however, is a supporting evidence for

the difference learning idea.

5. Conclusion

Accurate multi-step prediction of OGMs, as representa-

tions of the future drivable space, is useful for path plan-

ning algorithms and does not require multi stages of en-

gineered features in the classic approach of object detec-

tion and tracking. In this work, a difference learning ar-

chitecture, based on RNNs, is proposed to predict OGMs

multi-steps into the future. We have shown that our pro-

posed architecture outperforms the state of the art in OGM

multi-step prediction and is accurate in predicting the static

and moving objects as well as handling occlusions. Further-

more, as a future work, the generated features by the com-

pensation matrix from our proposed scheme may provide

interesting features for label-less detection and tracking of

dynamic objects.
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