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Abstract

Recognising actions in videos relies on labelled super-

vision during training, typically the start and end times of

each action instance. This supervision is not only subjec-

tive, but also expensive to acquire. Weak video-level su-

pervision has been successfully exploited for recognition in

untrimmed videos, however it is challenged when the num-

ber of different actions in training videos increases. We

propose a method that is supervised by single timestamps

located around each action instance, in untrimmed videos.

We replace expensive action bounds with sampling distri-

butions initialised from these timestamps. We then use the

classifier’s response to iteratively update the sampling dis-

tributions. We demonstrate that these distributions converge

to the location and extent of discriminative action segments.

We evaluate our method on three datasets for fine-

grained recognition, with increasing number of different ac-

tions per video, and show that single timestamps offer a rea-

sonable compromise between recognition performance and

labelling effort, performing comparably to full temporal su-

pervision. Our update method improves top-1 test accuracy

by up to 5.4%. across the evaluated datasets.

1. Introduction

Typical approaches for action recognition in videos rely

on full temporal supervision, i.e. on the availability of the

action start and end times for training. When the action

boundaries are available, all (or most of) the frames en-

closed by the temporal bounds can be considered relevant

to the action, and thus state-of-the-art methods randomly or

uniformly select frames to represent the action and train a

classifier [30, 12, 33, 6, 34, 16]. Collecting these bound-

aries is not only notoriously burdensome and expensive, but

also potentially ambiguous and often arbitrary [21, 29, 7].

With an increasing need for bigger video datasets, it

is important to scale up the annotation process to foster

more rapid advance in video understanding. In this work,

we attempt to alleviate such annotation burden, using sin-

gle roughly aligned timestamp annotations in untrimmed

videos - i.e. videos labelled with only one timestamp per

action, located close to the action of interest. Such labelling

is quicker to collect, and importantly is easier to commu-

nicate to annotators who do not have to decide when the

action starts or ends, but only label one timestamp within or

close to the action. Single timestamps can alternatively be

collected from audio narrations and video subtitles [8, 1].

To utilise this weak supervision, we propose a sampling

distribution, initialised from the single timestamps, to select

relevant frames to train an action recognition classifier. Due

to the potential coarse location of the timestamps, and to

actions having different lengths, the initial sampling distri-

butions may not be well aligned with the actions, as showed

in Figure 1 (top). We thus propose a method to update the

parameters of the sampling distributions during training, us-

ing the classifier’s response, in order to sample more rele-

vant frames and reinforce the classifier (Figure 1, bottom).

Our attempt is inspired by similar approaches for sin-

gle point annotations in image based semantic segmenta-

tion [2], where results achieved using such point supervi-

sion have slightly lower accuracy than those obtained with

fully annotated masks, but outperform results obtained with

image-level annotations. Correspondingly, we show that

single timestamp supervision for action recognition outper-

forms video-level supervision.

We test our method on three datasets [15, 9, 8], of

which [8] is annotated with single timestamps from live au-

dio commentary. We show that our update method con-

verges to the location and temporal extent of actions in

the three datasets, and boosts initial accuracy on the three

datasets. We additionally demonstrate the advantages of

curriculum learning during this update process, and the ro-

bustness of our approach to the initial parameters of the

sampling distributions. When single timestamps are con-

sistently within the action boundaries, our approach is com-

parable to strongly supervised models on all datasets.
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Figure 1. Replacing action boundaries with sampling distributions in an untrimmed video, given single timestamps (coloured dots at the

centre of each distribution). The initial distributions (top) may overlap (e.g. ‘put jar’, ‘take spoon’) and contain background frames. We

iteratively refine the distributions (bottom) using the classifier response during training.

2. Related Work

We review recent works using weak temporal labels for

action recognition and localisation. For a review of works

that use strong supervision, we refer the reader to [13]. We

divide the section into works using video-level, transcript

and point-level supervision.

Video-level supervision provides the weakest cue, sig-

nalling only the presence or absence of an action in an

untrimmed video, discarding any temporal ordering. When

only a few different actions are present in an untrimmed

video, video-level supervision can prove sufficient to learn

the actions even from long videos, as recently shown in [32,

22, 31, 28, 23]. In these works, the authors use such super-

vision to train a model for action classification and locali-

sation, achieving results often comparable to those obtained

with strongly supervised approaches. However, all these

works evaluate their approach on the THUMOS 14 [15] and

Activity Net [11] datasets, which contain mainly one class

per training video. In this work, we show that as the number

of different actions per training video increases, video-level

labels do not offer sufficient supervision.

Transcript supervision offers an ordered list of action

labels in untrimmed videos, without any temporal annota-

tions [4, 5, 14, 24, 18, 25, 26, 10]. Some works [10, 18, 24]

assume the transcript includes knowledge of ‘background’,

specifying whether the actions occur in succession or with

gaps. In [10], uniform sampling of the video is followed

by iterative refinement of the action boundaries. The re-

finement uses the pairwise comparison of softmax scores

for class labels around each boundary, along with linear in-

terpolation. This iterative boundary refinement strategy is

conceptually similar to ours. However, the approach in [10]

assumes no gaps are allowed between neighbouring actions.

This requires knowledge of background labels in order for

the method to operate.

Point-level supervision refers to using a single pixel or a

single frame as a form of supervision. This was attempted

for semantic segmentation, by annotating single points in

static images [2] and subsequently used for videos [20, 7].

In [20] a single pixel is used to annotate the action, in

a subset of frames, both spatially and temporally. When

combining this weak supervision with action proposals, the

authors show that it is possible to achieve comparable re-

sults to those obtained with full and much more expensive

per-frame bounding boxes. More recently, several forms

of weak supervision, including single temporal points, are

evaluated in [7] for the task of spatio-temporal action lo-

calisation. This work uses an off-the-shelf human detector

to extract human tracks from the videos, integrating these

with the various annotations in a unified framework based

on discriminative clustering.

In this work, we also use a single temporal point per ac-

tion for fine-grained recognition in videos. However, un-

like the works above [20, 7] which consider the given an-

notations correct, we actively refine the temporal scope of

the given supervision, under the assumption that the given

annotated points may be misaligned with the actions and

thus lead to incorrect supervision. We show this to effec-

tively converge, when tested on three datasets with varying

complexity, in the number of different actions in untrimmed

training videos. We detail our method next.

3. Recognition from Single Timestamp Super-

vision

In this work, we consider the case where a set of

untrimmed videos, containing multiple different actions,

are provided for the task of fine-grained action recognition.

That is the task of training a classifier f(x) = y that takes a

frame (or a set of frames) x as input to recognise a class y

from the visual content of x. Our method is classifier agnos-

tic, i.e. we do not make any assumptions about the nature

of the classifier.

The typical annotation for this task is given by the ac-

tions’ start and end times, which delimit the temporal scope

of each action in the untrimmed video, as well as the class

labels. We refer to this labelling as temporal bounds anno-

tation. When using this supervision, the classifier can be

trained using frames between the corresponding start/end

timestamps. When replacing these annotations with a sin-

gle timestamp per action instance, training a classifier is not
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Figure 2. When start/end times are available (a), all frames within labelled boundaries can be assigned to the class label. Since action

bounds are not available (b), our method aims to iteratively update the mapping between frames and class labels (c). Top and bottom plots

depict different videos.

straightforward. Figure 2 compares temporal bounds (a) to

the single timestamp annotations (b). In Figure 2b, it is not

evident which frames could be used to train the classifier

when only roughly aligned single timestamps are available.

While being close to the action, the frame corresponding

to the single timestamp could represent the background or

another action. Additionally, the extent of the action is un-

known. Our method is based on the reasonable assumption

that multiple instances of each class have been labelled, al-

lowing the model to converge to the correct frames.

We propose a sampling distribution (Section 3.1) to se-

lect training frames for a classifier starting from the anno-

tated timestamps, as depicted in Figure 2c. After initiali-

sation (Section 3.2), we iteratively update the parameters of

the sampling distributions based on the classifier’s response,

in the attempt to correct misplaced timestamps and rein-

force the classifier with more relevant frames (Section 3.3).

3.1. Sampling Distribution

We propose to replace the unavailable action bounds

with a sampling distribution that can be used to select

frames for training a classifier. For simplicity, we assume

here our classifier is frame-based and takes as input a single

frame. We relax this assumption later.

We argue that the sampling distribution should resemble

the output of a strong classifier, i.e. a plateau of high classi-

fication scores for consecutive frames containing the action,

with low response elsewhere. Another desirable property of

this function is differentiability, so that it can be learnt or

tuned. The Gaussian probability density function (pdf) is

commonly used to model likelihoods, however it does not

exhibit a plateau response, peaking instead around the mean

and steadily dropping from the peak. The gate function by

definition exhibits a sharp plateau, however it is not differ-

entiable. We propose the following function to model the

probability density of the sampling distributions:

g(x | c, w, s) =
1

(es(x−c−w) + 1)(es(−x+c−w) + 1)
(1)

The parameter c models the centre of the plateau, while

w and s model respectively its width (equal to 2w) and

the steepness of its side slopes. The range of the function

is [0, 1]. In our setting, g is defined over the frames x of an

untrimmed video. We refer to g as the plateau function for

the remainder of the text.

3.2. Initialising the Model

We initialise the sampling distributions from the single

timestamp annotations. Let avi be the i-th single timestamp

in an untrimmed video v and let yvi be its corresponding

class label, with i ∈ {1..Nv} and v ∈ {1..M}. For each avi ,

we initialise a sampling distribution centred on the times-

tamp, with default parameters w and s. We denote the pa-

rameters of the corresponding sampling distribution with

βv
i = (cvi , w

v
i , s

v
i ), where cvi = avi , and accordingly we de-

note the corresponding sampling distribution with G(βv
i ).

We will use G(βv
i ) to sample training frames for the class

indicated by yvi .

Note that, due to the close proximity of some times-

tamps, the initialised plateaus may overlap consider-

ably (Figure 1, top). We could decrease the overlap by

shrinking the plateaus. However, given that we do not know

the temporal extent of the actions, this may result in missing

important frames. We choose to allow the overlap, and set

w and s to default values that give all actions the chance to

be learnt from the same number of frames.

Frames sampled from these distributions might be back-

ground frames, or be associated with incorrect action la-

bels. To decrease noise, we rank frames sampled from all

untrimmed videos based on the classifier’s response, and se-

lect the most confident frames for training, inspired by cur-

riculum learning [3]. Let P (k|x) denote the softmax scores

of a frame x for a class k. Let:

Fk =
(
x← G(βv

i ) : yvi = k, ∀i ∈ {1..Nv}, ∀v ∈ {1..M}
)

s.t. P (k|Fk
t−1) ≥ P (k|F

k
t )
(2)

be all the sampled frames from the distributions with cor-

responding class k, ordered according their softmax scores.

We select the top T frames in Fk for training:
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Figure 3. Finding multiple update proposals. ‘cc’ denotes the con-
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(
Fk

t

)T
t=1

: T = h|Fk|, h ∈ [0, 1] (3)

With this approach, we select the frames where the classi-

fier is most confident, which amounts to selecting the most

relevant frames for each class within the plateaus. Note that

Equation 3 ranks frames from all videos, and thus is inde-

pendent of the number of action repetitions in one video.

While with this strategy we feed the classifier fewer noisy

samples, we are still potentially missing relevant frames

outside the initial plateaus. After training the base model,

we proceed to update the sampling distributions aiming to

correct misplaced plateaus so that we can feed more rele-

vant frames.

3.3. Updating the Distribution Parameters

We assume that, overall, the initial plateaus are reason-

ably aligned with the actions. Under such assumptions, we

iteratively update the sampling distributions parameters, re-

shaping and moving the initialised plateaus over more rele-

vant frames, in order to reinforce the classifier. We first pro-

duce update proposals from the softmax scores, then rank

the proposals to select the parameters that provide the most

confident updates.

Finding Update Proposals For each sampling distribu-

tion G(βv
i ), we find update proposals given the softmax

scores for the corresponding class k = yvi . For simplic-

ity, we describe this process for one sampling distribution

and the softmax scores of its corresponding class k.

We fit the pdf in Equation 1 to the softmax scores at mul-

tiple positions and temporal scales. This is done through

setting a threshold τ ∈ [0, 1] over the softmax scores, and

finding all the connected components of consecutive frames

with softmax scores above τ . For each connected compo-

nent, we fit the pdf and consider the resulting fitted parame-

ters as one candidate for updating the sampling distribution.

As τ is varied, multiple proposals at various scales can be

produced. Figure 3 illustrates an example of three update

proposals, where both the position and scale of the action

are ambiguous, i.e. it is unclear which plateau is the best fit.

We denote each update proposal with γvj = (cvj , w
v
j , s

v
j ).

The set of update proposals for βv
i is thus:

Qv
i =

{
γvj : cvi−1 < cvj < cvi+1

}
(4)

Note that the constraint cvi−1 < cvj < cvi+1 enforces the or-

der of the actions in v to be respected.

Selecting the Update Proposals We first define the score

ρ for a given plateau function g(x|βv
i ) by averaging the soft-

max scores enclosed by the plateau as follows. Let X be

the set of frames such that X = {x : g(x|βv
i ) > 0.5}. The

score is then defined as follows:

ρ(βv
i ) =

1

|X |

∑

x∈X

P (yvi |x) (5)

We define the confidence ψ of each proposal γvj ∈ Q
v
i as:

ψ(γvj ) = ρ(γvj )− ρ(β
v
i ) (6)

The underlying idea is to reward proposals whose plateaus

contain frames that, on average, are scoring higher than

those contained within the plateau to be updated, and thus

are likely to be more relevant to the action. Accordingly, we

discard update proposals with nonpositive confidence. We

select the proposal γ̂vi with highest confidence for each βv
i :

γ̂vi = argmax
γv
j

ψ(γvj ) : γvj ∈ Q
v
i (7)

Updating Proposals We adopt a curriculum learning

paradigm for the update as well, updating only distributions

for which the selected proposals have high scores. Let:

Γ =
(
γ̂vi , ∀i ∈ {1..Nv}, ∀v ∈ {1..M}

)

s.t. ψ(Γt−1) ≥ ψ(Γt)
(8)

be the sequence of all selected update proposals ordered ac-

cording their confidence. We pick the top R proposals in Γ
to update the corresponding sampling distributions:

ΓR =
(
Γt

)R
t=1

: R = z|Γ|, z ∈ [0, 1] (9)

The corresponding sampling distribution parameters βv
i are

then updated as follows:

∀γ̂vi ∈ ΓR → βv
i = βv

i − Λ
(
βv
i − γ̂

v
i

)
(10)

where Λ = {λc, λw, λs} denotes the set of hyperparameters

controlling the velocity of the update. Note that we use a

different update rate for the various parameters (c, w, s):

cvi = cvi − λc

(
cvi − ĉ

v
i

)
(11)

and similarly for wv
i and svi . We update proposals until con-

vergence. This is readily assessed by observing the average

confidence of the selected proposals approaching 0.
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Figure 4. Updating the sampling distribution using the classifier response - example from action ‘open fridge’ in EPIC Kitchens [8].

Different colours indicate different training iterations.

Figure 5. Different actions per video for various datasets. Numbers

between parenthesis indicate (min, max, average) unique actions

per video. For Activity Net [11] both train and validation sets were

considered, while for THUMOS 14 [15] we considered only the

validation set. We used the ‘s1’ split and fine segmentation labels

for Breakfast [17]. For EPIC Kitchens [8] we consider only the

videos in the used subset.

Figure 4 shows an example for updating one sampling

distribution for class ‘open fridge’. The labelled timestamp

and the corresponding initial sampling distribution (dotted

blue and dashed blue lines) are not well aligned with the

action, both positioned before the actual occurrence of the

action. After a few iterations, the classifier is predicting

the action with more confidence over frames located outside

the initial plateau (dotted orange, top). The final sampling

distribution (solid green, bottom) successfully aligns with

the frames of the subject opening the fridge.

Set Dataset
N. of

classes

N. of

videos

N. of

actions

Avg video

length

Avg classes

per video

Avg actions

per video

T
ra

in

THUMOS 14 20 200 3003 208.90 1.08 15.01

BEOID 34 46 594 61.31 5.09 12.91

EPIC Kitchens 274 79 7060 477.37 34.87 89.36

T
es

t THUMOS 14 20 210 3307 217.16 1.09 15.74

BEOID 34 12 148 57.78 6.58 12.33

EPIC Kitchens 274 26 1949 399.62 32.08 74.96

Table 1. Datasets information. Average video length is in seconds.

4. Experiments

4.1. Datasets

Figure 5 compares various common datasets [11, 15,

19, 9, 17, 8] for action recognition and localisation, based

on the number of different actions per video in both train

(top) and test (bottom) sets. The figure shows how these

datasets range from an average of one action per video

(Activity Net, THUMOS 14) to a maximum average of 34

actions per video (EPIC Kitchens). When learning from

untrimmed videos with weak temporal supervision, the

number of different actions per video plays a crucial role.

We thus evaluate our method covering this spectrum by se-

lecting three datasets with increasing number of classes per

video, namely THUMOS 14 [15], BEOID [9] and EPIC

Kitchens [8]. We show in Section 4.4 that, as the number of

different actions per video increases, video-level labels no

longer provide sufficient temporal supervision, while single

timestamps constitute a valid compromise between annota-

tion effort and accuracy.

For THUMOS 14 we use the subset of videos that were

temporally labelled for 20 classes, while for BEOID we ran-

domly split the untrimmed videos in an 80-20% proportion

for training and testing. For EPIC Kitchens we use a sub-

set of the dataset selecting participants P03, P04, P08 and

P22. With a total of 13.5 hours footage length this subset

amounts to 25% of full the dataset. Table 1 summarises

various statistics of the chosen datasets. Despite consid-

ering a subset of the full dataset, EPIC Kitchens is by far

the most challenging, given its very long videos containing
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many different actions. Additionally, EPIC-Kitchens offers

novel narration annotations, as we discuss in Section 4.3.

4.2. Implementation Details

We use the Inception architecture with Batch Normali-

sation (BN-Inception) [27] pre-trained on Kinetics [6], and

use TV-L1 optical flow images [35], with stack size 5. For

training, we sample 5 stacks per action instance, and use

average consensus as proposed in [33]. When comparing to

full temporal supervision using the start/end action times,

the stacks are sampled randomly within equally sized snip-

pets, as in [33]. For faster evaluation, we uniformly sample

10 stacks from the trimmed test videos and take the cen-

tre crop using the average score for the final prediction. We

use Adam Optimiser with batch size 256, fixed learning rate

equal to 10−4, dropout equal to 0.7 and no weight decay.

We initialise the sampling distributions with w = 45
frames (1.5 seconds at 30 fps) and s = 0.75 for all datasets.

As we show in Section 4.4, our method is robust to the

choice of the initial parameters. We train the base model

for 500 epochs, to ensure a sufficient initialisation, then up-

date the sampling distributions running the method for 500

additional epochs. The initial 500 epochs were largely suffi-

cient for the test error to converge in all experiments before

the update started. After training the base model with cur-

riculum learning, we gradually increase h (see Equation 3)

until reaching h = 1, which corresponds to using all the

sampled frames. We use a fixed z = 0.25 to select the top

R update proposals (see Equation 9). We vary h to con-

trol noise in training frames, and keep z fixed. Increasing

z primarily speeds the update of the distribution parame-

ters and is akin to changing the method’s learning rate. To

produce the update proposals, we use τ ∈ {0.1, 0.2, . . . , 1}
and discard connected components shorter than 15 frames.

We set update parameters (λc, λw, λs) = (0.5, 0.25, 0.25)
for all datasets, updating the sampling distributions every 20

epochs. Our code uses PyTorch and is publicly available1.

4.3. Single Timestamps

The EPIC Kitchens dataset [8] was annotated using a two

stages approach: videos were firstly narrated by the partici-

pants, through audio live narration, to produce a rough tem-

poral location of the performed actions, from which action

boundaries were then refined using crowd sourcing. We use

the narration start timestamp as our single timestamp for

training. These timestamps come from the narration au-

dio track and exhibit a challenging offset with respect to

the actions occurrences in the videos: 55.8% of the narra-

tion timestamps are not contained in the corresponding la-

belled boundaries. For the timestamps outside the bounds,

the maximum, average and standard deviation distance to

1https://bitbucket.org/dmoltisanti/action_

recognition_single_timestamps/

Dataset CL h Before update After update

THUMOS 14

0.25 26.10 28.88

0.50 32.69 55.15

0.75 33.59 56.42

1.00 63.41 63.53

BEOID

0.25 47.97 52.70

0.50 71.62 83.11

0.75 74.32 83.11

1.00 64.86 70.27

EPIC Kitchens

0.25 20.47 22.83

0.50 21.39 25.35

0.75 20.73 23.86

1.00 23.55 24.17

Table 2. Top-1 accuracy obtained with single timestamp supervi-

sion on the TS point set. CL h indicates the h parameter used for

training the base model (see Equation 3).

the labelled boundaries were respectively 11.2, 1.4 and 1.6

seconds. To the best of our knowledge, this paper offers the

first attempt to train for fine-grained action recognition on

EPIC Kitchens using only the narration timestamps.

THUMOS 14 and BEOID do not have single timestamp

annotations. We simulate rough single timestamps from the

available labels, drawing each ai from the uniform distri-

bution [σi − 1sec, ǫi + 1sec], where σi and ǫi denote the

labelled start and end times of action i. This approximately

simulates the same live commentary annotation approach of

EPIC Kitchens. We refer to this set of annotations as TS.

We also use another set of single timestamps for all the

three datasets, where each ai is sampled using a normal

distribution with mean σi+ǫi
2 and standard deviation 1sec.

This assumes that annotators are likely to select a point

close to the middle of the action when asked to provide

only one timestamp. We refer to this second set of points

as TS in GT.

4.4. Results

The evaluation metric used for all experiments is top-1

accuracy. We first evaluate the TS timestamps with cur-

riculum learning (CL) for training the base model running

experiments with h ∈ {0.25, 0.50, 0.75}, as well as using

all the sampled frames for training (h = 1).

As shown in Table 2, results obtained after the update

consistently outperform those obtained before the update,

for all datasets and for all h values. For BEOID and EPIC,

our CL strategy reduces the amount of noisy frames when

training the base model, i.e. the best results are obtained

with h = 0.50. However, on THUMOS 14, the CL ap-

proach for the base model is less effective, with the best

performance achieved when all frames are used in train-

ing. We further analyse this in Figure 7, which illustrates
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selected frames discarded frames

250 500125 3750 250 500125 3750 250 500125 3750

Figure 7. Percentage of sampled framed contained within labelled

bounds, over training epochs (CL h = 0.50, before update).

the percentage of selected and discarded frames that were

enclosed by the labelled action boundaries (used only for

plotting), before update. For BEOID and EPIC Kitchens,

we notice a neat separation between the selected and dis-

carded frames. This shows that the CL strategy was effec-

tively picking the most relevant frames within the plateaus

during training. For THUMOS 14, we do not observe the

same distinct trend. A balance between the plateau width

and the number of sampled frames might resolve this, but

we leave this for future work.

In Figure 8, we assess the update convergence by plot-

ting the average confidence of the selected update proposals

over training epochs. For all cases, the average confidence

decreases steadily, indicating the classifier’s convergence.

We illustrate a few examples from each dataset in Fig-

ure 6, showing the iterative update of the sampling distribu-

tions. The examples are plotted from results obtained with

CL h = 0.50 on the TS point set. Our update method is

able to successfully refine the sampling distributions even

when the initial plateaus are considerably overlapping with

other unrelated actions (subplots e, g, i, j) or when the initial

plateaus contain much background (subplots b, c, e, f, k).

We highlight a few failure cases as well. In subplots g (light

green plateau) and h (grey plateau), the initial plateaus are

pushed outside the relevant frames. In both cases, the num-

ber of training examples was small (8 and 5 instances), with

the single timestamps located almost always outside the ac-

tion. In subplot l, the pink and grey initial plateaus were

shifted with respect to the corresponding actions, reflecting

250 500125 3750 250 500125 3750 250 500125 3750
ψ(
γ)

Figure 8. Average confidence of selected update proposals, as cal-

culated in Equation 6, over training epochs.

the challenge EPIC Kitchens poses when using narration

timestamps. While the update method managed to recover

the correct location for the pink plateau, the grey plateau

did not converge to the relevant frames.

Parameters initialisation We assess the impact of the

initial parameters w and s for the sampling distributions

through a grid search. Figure 9 compares top-1 accuracy ob-

tained after update with different (w, s) combinations, us-

ing CL h = 1.00. We observe that for the two large datasets

(THUMOS 14 and EPIC Kitchens), our method is robust to

the initialisation of both w and s, i.e. similar performance

is obtained for all parameters combinations. Decreased ro-

bustness for BEOID is potentially due to the small size of

the dataset.

We note that the best results obtained via the grid search

(highlighted with red boxes in the Figure) are slightly su-

perior to those previously reported in Table 2. This is be-

cause when the plateaus are optimally initialised, we are

less likely to sample noisy frames when training.

4.5. Comparing Levels of Supervision

We now compare different levels of temporal supervi-

sion, namely the weakest video-level labels, single times-

tamps (both TS and TS in GT point sets) and full tempo-

ral boundaries. Particularly, we show that video-level su-

pervision, while being the least expensive to gather, cannot

provide a sufficient supervision when dealing with videos

containing multiple different actions.

9921



Figure 9. Top-1 accuracy obtained after update with different ini-

tial w and s, with CL h = 1. Red boxes highlight best results.

We choose Untrimmed Net [32] amongst the aforemen-

tioned works [32, 22, 28, 23], which is used to extract fea-

tures in [23] and is the backbone model of [28], due to the

availability of published code. We train Untrimmed Net us-

ing uniform sampling and hard selection module, using the

same BN-Inception architecture and Kinetics pre-trained

weights used for our baselines. For Untrimmed Net we re-

port results obtained on RGB images as these performed

better than flow images in all our experiments.

Table 3 compares the results obtained with the three tem-

poral supervisions. Single timestamps results are reported

after update, with CL h = 1.00. When only one class

of action is contained in the videos, as in THUMOS 14,

Untrimmed Net notably achieves virtually the same results

as the fully supervised baseline. However, as the average

number of different actions per video increases, it becomes

increasingly harder for video-level supervision to achieve

sufficient accuracy. In [32] when a video contains ac-

tion instances from multiple classes, the label vector is L1-

normalised so that all the present classes contribute equally

to the cross-entropy loss. As a consequence, without any

temporal labels, it is very hard to train the model when a

large number of classes are present in a video.

Results obtained with single timestamps remain compa-

rable to full supervision for all datasets, though requiring

significantly less labelling effort2. For THUMOS 14 and

BEOID, we observe little difference between the point sets

TS and TS in GT. For EPIC Kitchens, which has the largest

number of distinct classes per video, we notice a larger gap

in performance with respect to the fully supervised base-

line. However, when drawing the initial timestamps from

the labelled bounds (TS in GT), we achieve higher accu-

racy. From these results we conclude that single timestamps

supervision constitutes a good compromise between accu-

racy and annotation effort.

2For completion, accuracy before update for TS was 64.74, 73.65 and

25.19 for THUMOS 14, BEOID and EPIC Kitchens. For TS in GT, accu-

racy before update was 64.74, 85.81 and 31.66.

Baseline U. Net[32] Ours

Supervision APV Video-level TS TS in GT Full

THUMOS 14 1.08 64.92 66.68 64.53 67.10

BEOID 5.09 28.37 85.14 88.51 87.83

EPIC Kitchens 34.87 2.20 26.22 32.53 35.97

Table 3. Comparison between different levels of temporal super-

vision. APV indicates the average number of unique actions per

training video. TS results refer to the accuracy obtained with the

best initialisation (see Figure 9). Timestamp results are reported

after update, with h = 1.00.

Baseline mAP@0.1 mAP@0.2 mAP@0.3 mAP@0.4 mAP@0.5

Ours (Full) 26.7 22.5 18.5 14.3 11.1

Ours (TS) 24.3 19.9 15.9 12.5 9.0

U. Net [32] 44.4 37.7 28.2 21.1 13.7

Table 4. Localisation results on THUMOS 14 at different IoUs.

4.6. Future Direction: Localisation with TS

In this work we focus on single timestamp supervision

for action classification. Using solely frame-level classifi-

cation scores to localise the extent of actions would be sub-

optimal. We show this in Table 4, which presents mean

average precision (mAP) on THUMOS 14 obtained with

our baselines, compared to [32]. We follow the localisation

pipeline of [32], fusing RGB and flow scores obtained with

full and single timestamp (TS) supervision. While TS per-

forms comparably to full supervision, even full supervision

is inferior to [32], which is optimised for localisation. Our

approach could be extended to localisation by supervising a

temporal model (e.g. RNN) from plateau functions to learn

the temporal boundaries. We leave this for future work.

5. Conclusions

In this work we investigate using single timestamp su-

pervision for training multi-class action recognition from

untrimmed videos. We propose a method that initialises

and iteratively updates sampling distributions to select rel-

evant training frames, using the classifier’s response. We

test our approach on three datasets, with increasing num-

ber of unique action classes in training videos. We show

that, compared to video-level supervision, our method is

able to converge to the locations and extents of action in-

stances, using only single timestamp supervision. Results

also demonstrate that, despite using a much less burden-

some annotation effort, we are able to achieve comparable

results to those obtained with full, expensive, temporal su-

pervision. Extending these annotations to other tasks such

as localisation is left for future work. Future directions also

include updating the sampling distribution parameters in an

end-to-end differentiable manner.
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[7] Guilhem Chéron, Jean-Baptiste Alayrac, Ivan Laptev, and

Cordelia Schmid. A flexible model for training action lo-

calization with varying levels of supervision. arXiv preprint

arXiv:1806.11328, 2018. 1, 2

[8] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-

vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,

and Michael Wray. Scaling egocentric vision: The EPIC-

KITCHENS Dataset. In ECCV, 2018. 1, 5, 6

[9] Dima Damen, Teesid Leelasawassuk, Osian Haines, Andrew

Calway, and Walterio Mayol-Cuevas. You-do, I-learn: Dis-

covering task relevant objects and their modes of interaction

from multi-user egocentric video. In BMVC, 2014. 1, 5

[10] Li Ding and Chenliang Xu. Weakly-supervised action seg-

mentation with iterative soft boundary assignment. In CVPR,

2018. 2

[11] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia

and Juan Carlos Niebles. ActivityNet: A large-scale video

benchmark for human activity understanding. In CVPR,

2015. 2, 5

[12] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In CVPR, 2016. 1

[13] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going

deeper into action recognition: A survey. In Image and vision

computing, 2017. 2

[14] DeAn Huang, Li Fei-Fei, and Juan Carlos Niebles. Con-

nectionist temporal modeling for weakly supervised action

labeling. In ECCV, 2016. 2

[15] Yu-Gang Jiang, Jingen Liu, Amir R. Zamir, George Toderici,

Ivan Laptev, Mubarak Shah, and Rahul Sukthankar. THU-

MOS challenge: Action recognition with a large number of

classes. http://crcv.ucf.edu/THUMOS14/, 2014.

1, 2, 5

[16] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,

and Cordelia Schmid. Action tubelet detector for spatio-

temporal action localization. In ICCV, 2017. 1

[17] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-

directed human activities. In CVPR, 2014. 5

[18] Hilde Kuehne, Alexander Richard, and Juergen Gall. Weakly

supervised learning of actions from transcripts. In CVIU,

2017. 2

[19] Marcin Marszałek, Ivan Laptev, and Cordelia Schmid. Ac-

tions in context. In CVPR, 2009. 5

[20] Pascal Mettes, Jan C. van Gemert, and Cees G.M. Snoek.

Spot on: Action localization from pointly-supervised pro-

posals. In ECCV, 2016. 2

[21] Davide Moltisanti, Michael Wray, Walterio Mayol-Cuevas,

and Dima Damen. Trespassing the boundaries: Labeling

temporal bounds for object interactions in egocentric video.

In ICCV, 2017. 1

[22] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.

Weakly supervised action localization by sparse temporal

pooling network. In CVPR, 2018. 2, 8

[23] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. W-

TALC: Weakly-supervised temporal activity localization and

classification. In ECCV, 2018. 2, 8

[24] Alexander Richard and Juergen Gall. Temporal action de-

tection using a statistical language model. In CVPR, 2016.

2

[25] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly

supervised action learning with RNN based fine-to-coarse

modeling. In CVPR, 2017. 2

[26] Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juer-

gen Gall. Neuralnetwork-viterbi: A framework for weakly

supervised video learning. In CVPR, 2018. 2

[27] Ioffe Sergey and Szegedy Christian. Accelerating deep net-

work training by reducing internal covariate shift. CoRR,

2015. 6

[28] Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa,

and Shih-Fu Chang. Autoloc: Weakly supervised temporal

action localization in untrimmed videos. In ECCV, 2018. 2,

8

[29] Gunnar A. Sigurdsson, Olga Russakovsky, and Abhinav

Gupta. What actions are needed for understanding human

actions in videos? In ICCV, 2017. 1

[30] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, 2014. 1

[31] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:

Forcing a network to be meticulous for weakly-supervised

object and action localization. In ICCV, 2017. 2

[32] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.

UntrimmedNets for weakly supervised action recognition

and detection. In CVPR, 2017. 2, 8

[33] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: towards good practices for deep action recogni-

tion. In ECCV, 2016. 1, 6

9923



[34] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-

Fei. End-to-end learning of action detection from frame

glimpses in videos. In CVPR, 2016. 1

[35] Christopher Zach, Thomas Pock, and Horst Bischof. A du-

ality based approach for realtime tv-l 1 optical flow. In Joint

Pattern Recognition Symposium, pages 214–223. Springer,

2007. 6

9924


