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Abstract

Multi-person pose estimation from a 2D image is an es-

sential technique for human behavior understanding. In

this paper, we propose a human pose refinement network

that estimates a refined pose from a tuple of an input image

and input pose. The pose refinement was performed mainly

through an end-to-end trainable multi-stage architecture in

previous methods. However, they are highly dependent on

pose estimation models and require careful model design.

By contrast, we propose a model-agnostic pose refinement

method. According to a recent study, state-of-the-art 2D

human pose estimation methods have similar error distri-

butions. We use this error statistics as prior information

to generate synthetic poses and use the synthesized poses

to train our model. In the testing stage, pose estimation

results of any other methods can be input to the proposed

method. Moreover, the proposed model does not require

code or knowledge about other methods, which allows it to

be easily used in the post-processing step. We show that

the proposed approach achieves better performance than

the conventional multi-stage refinement models and consis-

tently improves the performance of various state-of-the-art

pose estimation methods on the commonly used benchmark.

The code is available in 1.

1. Introduction

The goal of human pose estimation is to localize seman-

tic keypoints of a human body. It is an essential technique

for human behavior understanding and human-computer

interaction. Recently, many methods [4, 6, 9, 12, 13, 16,

18, 20, 21, 24, 28] utilize deep convolutional neural net-

works (CNNs) and achieved noticeable performance im-

provement. They are also updating performance limits in

annual competitions for 2D human keypoint detection such

as MS COCO keypoint detection challenge [17].

In this paper, we propose a human pose refinement net-

1https://github.com/mks0601/PoseFix_RELEASE
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Figure 1: Testing pipeline of the PoseFix. It takes pose

estimation results of any other method with an input image

and outputs a refined pose. Note that the PoseFix does not

require any code or knowledge about other methods.

work that estimates a refined pose from a tuple of an in-

put image and a pose. Conventionally, the pose refine-

ment has been mainly performed by multi-stage architec-

tures [3,6,19,27]. In other words, the initial pose and image

features generated in the first stage go through subsequent

stages, and each stage outputs a refined pose. These multi-

stage architectures are usually trained in an end-to-end man-

ner. However, the conventional multi-stage architecture-

based refinement approach is highly dependent on the pose

estimation model and requires careful design for successful

refinement. By contrast, in this work, we propose a model-

agnostic pose refinement method that does not depend on

the pose estimation model.

Recent research by Ronchi et al. [22] gave us a clue on

how to design a general model-agnostic pose refiner. They

analyzed the results of the MS COCO 2016 keypoint detec-

tion challenge winners [4,20] by using new pose estimation

evaluation metrics, i.e., keypoint similarity (KS) and object

keypoint similarity (OKS). They taxonomized pose estima-

tion errors into several types such as jitter, inversion, swap,
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and miss and described how frequently these errors occur

and how much they can negatively affect performance. Al-

though the winners [4, 20] used very different approaches,

their pose error distributions are very similar, which indi-

cates that common issues exist for more accurate pose esti-

mation.

Our basic idea is to use this error statistics as prior infor-

mation to generate synthetic poses and use the synthesized

poses to train the proposed pose refinement model (Pose-

Fix). To train our model, we generate each type of the er-

rors (i.e., jitter, inversion, swap, and miss) based on the pose

error distributions from Ronchi et al. [22], and construct di-

verse and realistic poses. The generated input pose is fed to

the PoseFix with the input image, and the PoseFix learns to

refine the pose. We design our PoseFix as a single-stage ar-

chitecture with a coarse-to-fine estimation pipeline. It takes

the input pose in a coarse form and estimates the refined

pose in a finer form. The coarse input pose enables the pro-

posed model to focus not only on an exact location of the

input pose but also around it, allowing our model to fix the

error of the input pose. Furthermore, the finer form of the

output pose enables the proposed model to localize the loca-

tion of the pose more exactly compared to existing methods.

After training, our PoseFix can be applied to and refine the

pose estimation results of any single- or multi-person pose

estimation method. Figure 1 shows such a pose refinement

pipeline of the proposed PoseFix.

Our contributions can be summarized as follows.

• We show that model-agnostic general pose refinement

is possible. The PoseFix is trained independently of

the pose estimation model. Instead, it is based on error

statistics obtained through empirical analysis.

• Our PoseFix can take the pose estimation result of any

pose detection method as the input. As the PoseFix

does not require any code or knowledge about other

methods, our model has very high flexibility and ac-

cessibility.

• We design the PoseFix as a coarse-to-fine estimation

system. We empirically observed that this coarse-to-

fine pipeline is crucial for successful pose refinement.

• Our PoseFix achieves a better result than the conven-

tional multi-stage architecture-based refinement meth-

ods. Also, the PoseFix consistently improves the per-

formance of various state-of-the-art pose estimation

methods on the commonly used benchmark.

2. Related works

Single-person pose estimation. Toshev et al. [26] di-

rectly estimated the Cartesian coordinates of body joints

by using a multi-stage deep network and achieved state-of-

the-art performance. Tompson et al. [25] jointly trained

a CNN and a graphical model. The CNN estimated 2D

heatmaps for each joint, and they were used as the unary

term for the graphical model. Liu et al. [27] used multi-

stage CNN which progressively enlarges receptive fields

and refines the pose estimation result. Newell et al. [19]

proposed a stacked hourglass network which repeats down-

sampling and upsampling to exploit multi-scale informa-

tion effectively. Carreria et al. [5] proposed an iterative er-

ror feedback-based human pose estimation system. Chu et

al. [7] enhanced the stacked hourglass network [19] by in-

tegrating it with a multi-context attention mechanism. Ke et

al. [14] proposed a multi-scale structure-aware network

which achieved leading position in the publicly available

human pose estimation benchmark [2].

Multi-person pose estimation. There are two main ap-

proaches in the multi-person pose estimation. The first one,

top-down approach, relies on a human detector that predicts

bounding boxes of humans. The detected human image is

cropped and fed to the pose estimation network. The second

one, bottom-up approach, localizes all human body key-

points in an input image and assembles them using proposed

clustering algorithms in each work.

[6,9,12,20,24,28] are based on the top-down approach.

He et al. [9] proposed Mask R-CNN that can perform hu-

man detection and keypoint localization in a single model.

Instead of cropping the detected humans in the input image,

it crops human features from a feature map via the differen-

tiable RoIAlign layer. Chen et al. [6] proposed a cascaded

pyramid network (CPN) which consists of two networks.

The first one, GlobalNet, is based on deep backbone net-

work and upsampling layers with skip connections. The

second one, RefineNet, is built to refine the estimation re-

sults from the GlobalNet by focusing on hard keypoints.

Xiao et al. [28] used a simple pose estimation network that

consists of a deep backbone network and several upsam-

pling layers. Although it is based on a simple network ar-

chitecture, it achieved state-of-the-art performance on the

commonly used benchmark [17].

[4, 13, 16, 18, 21] are based on the bottom-up approach.

DeepCut [21] assigned the detected keypoints to each per-

son in an image by formulating the assignment problem as

an integer linear program. DeeperCut [21] improves the

DeepCut [21] by introducing image-conditioned pair-wise

terms. Cao et al. [4] proposed part affinity fields (PAFs)

that directly expose the association between human body

keypoints. They assembled the localized keypoints of all

persons in the input image by using the estimated PAFs.

Newell et al. [18] introduced a pixel-wise tag value to as-

sign localized keypoints to a certain human. Kocabas et

al. [16] proposed a pose residual network to assign detected

keypoints to each person. Their model can jointly handle

person detection, keypoint detection, and person segmenta-

tion.
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Figure 2: Overall pipeline of the PoseFix. In the training stage, the input pose is generated by synthesizing the pose errors

based on the real pose error distributions on the groundtruth pose. In the testing stage, pose estimation results of any other

methods become the input pose. The heatmaps are visualized by performing max pooling along the channel axis.

Human pose refinement. Many methods attempted

to refine the estimated keypoint for more accurate perfor-

mance. Newell et al. [19], Bulat and Tzimiropoulos [3],

Liu et al. [27], and Chen et al. [6] utilized an end-to-

end trainable multi-stage architecture-based network. Each

stage tries to refine the pose estimation results of the previ-

ous stage via end-to-end learning. Carreria et al. [5] itera-

tively estimated error feedback from a shared weight model.

The output error feedback of the previous iteration is trans-

formed into the input pose of the next iteration, which is

repeated several times for progressive pose refinement. All

of these methods combine pose estimation and refinement

into a single model, and each refinement module is depen-

dent on estimation. Therefore, the refinement modules have

different structures, and they are not guaranteed to work

successfully when they are combined with other estimation

methods. On the other hand, our pose refinement method

is independent of the estimation, and therefore the results

can be consistently improved regardless of the prior pose

estimation method.

Recently, Fieraru et al. [8] proposed a post-processing

network to refine the pose estimation results of other meth-

ods, which is conceptually similar to ours. They synthe-

sized pose for training and employed simple network ar-

chitecture that estimates refined heatmaps and offset vec-

tors for each joint. While their method follows ad-hoc rules

to generate input pose, our method is based on actual er-

ror statistics obtained through empirical analysis. Also,

our network with coarse-to-fine structure achieves a much

stronger refinement performance than their simpler one.

3. Overview of the proposed model

The goal of the PoseFix is to refine the input 2D coordi-

nates of the human body keypoints of all persons in an input

image. To address this problem, our system is constructed

based on the top-down pipeline which processes a tuple of

a cropped human image and a given pose estimation result

of that human instead of processing an entire image includ-

ing multiple persons. In the training stage, the input pose

is synthesized on the groundtruth pose realistically and di-

versely. In the testing stage, pose estimation results of any

other methods can be the input pose to our system. The

overall pipeline of the PoseFix is illustrated in Figure 2.

4. Synthesizing poses for training

To train the PoseFix, we generate synthesized poses us-

ing the groundtruth poses. As the PoseFix should cover

different pose estimation results from various methods in

the testing stage, synthesized poses need to be diverse and

realistic. To satisfy these properties, we generate synthe-

sized poses randomly based on the error distributions of

real poses as described in [22]. The distributions include

the frequency of each pose error (i.e., jitter, inversion, swap,

and miss) according to the joint type, number of visible key-

points, and overlap in the input image. There may also be

joints that do not have any error, which should be synthe-

sized very close to the groundtruth to simulate correct esti-
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Figure 3: Visualization of synthesized pose errors for each

type. The keypoint with pose error is highlighted by a yel-

low rectangle, and the groundtruth keypoints are drawn in a

yellow circle.

mations. Ronchi et al. [22] called this status good. Consid-

ering most of the empirical distributions in [22], we com-

pute the probability that each joint will have one of the pose

errors or be in the good status.

The detailed error synthesis procedure on each

groundtruth keypoint θ
p
j of joint j which belongs to a per-

son p is described in below. For more clear description, we

define j′ as a left/right inverted joint from the j, and p′ as a

different person from the p in the input image. Also, dkj is

defined as a L2 distance that makes KS with the groundtruth

keypoint becomes k for joint j. Note that dkj depends on the

type of joint j because the error distribution of each joint

has different scale [22]. For example, eyes require more

precise localization than hips to obtain the same KS k. Fig-

ure 3 visualizes examples of synthesized pose errors of each

type.

Good. Good status is defined as a very small dis-

placement from the groundtruth keypoint. An offset vector

whose angle and length are uniformly sampled from [0, 2π)

and [0, d0.85j ), respectively, is added to the groundtruth θ
p
j .

The synthesized keypoint position should be closer to the

original groundtruth θ
p
j than θ

p
j′ , θ

p′

j , and θ
p′

j′ .

Jitter. Jitter error is defined as a small displacement from

the groundtruth keypoint. An offset vector whose angle and

length are uniformly sampled from [0, 2π) and [d0.85j ,d0.5j ),

respectively, is added to the groundtruth θ
p
j . Similar to the

good status, the synthesized keypoint position should be

closer to the original groundtruth θ
p
j than θ

p
j′ , θ

p′

j , and θ
p′

j′ .

Inversion. Inversion error occurs when a pose estima-

tion model is confused between semantically similar parts

that belong to the same instance. We restrict the inversion

error to the left/right body part confusion following [22].

The jitter error is added to θ
p
j′ . The synthesized keypoint

position should be closer to the θ
p
j′ than θ

p
j , θ

p′

j , and θ
p′

j′ .

Swap. Swap error represents a confusion between the

same or similar parts which belong to different persons. The

jitter is added to θ
p′

j or θ
p′

j′ . The closest keypoint from the

synthesized keypoint should be θ
p′

j or θ
p′

j′ , not any of θ
p
j and

θ
p
j′ .

(a) GT pose

(b) Input pose in training stage

+ synthesized error

Figure 4: Visualization of the groundtruths and synthesized

input poses. The synthesized poses are generated by adding

errors to the groundtruth poses, which are used for training

PoseFix.

Miss. Miss error represents a large displacement from

the groundtruth keypoint position. An offset vector whose

angle and length are uniformly sampled from [0, 2π) and

[d0.5j ,d0.1j ), respectively, is added to one of θ
p
j , θ

p′

j , θ
p
j′ , and

θ
p′

j′ . The synthesized keypoint position should be at least

d0.5j away from all of θ
p
j , θ

p
j′ , θ

p′

j , and θ
p′

j′ .

Some examples of synthesized input poses are shown in

Figure 4.

5. Architecture and learning of PoseFix

5.1. Model design

We design the PoseFix to directly estimate a refined pose

from a tuple of an input image and an input pose as shown in

Figure 2. The input image and the input pose provide con-

textual and structured information to the PoseFix, respec-

tively, and the PoseFix learns to use these information to fix

pose errors in the input pose. Although some errors exist in

the input pose, it still provides useful structured information

because, as indicated by Ronchi et al. [22], most keypoints

in the input pose are in good status or have jitter error which

represent a small displacement from the groundtruth pose.

This rough structured information acts like attention which

tells the PoseFix where to focus on at the human body.

We observed that by learning to fix the pose errors in

the input pose, the PoseFix learns where to focus on at the

human body as in Figure 5. As it shows, although some

errors exist in the input pose, the PoseFix initially focuses

well on the reliable keypoint locations of the input pose.

And then, it successfully localizes correct keypoints without

being influenced by the errors of the input pose.
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Input pose Refined poseImage Feature maps Heatmap

Figure 5: Visualization of feature maps and final heatmaps

of the PoseFix. The feature maps and heatmaps are reduced

into one channel by max pooling along the channel axis for

visualization. The order of the feature maps and heatmaps

in the figure is the same with that of the feedforward.

5.2. Coarse­to­fine estimation

To make it more robust to errors, we design the proposed

PoseFix to operate in a coarse-to-fine manner. We use the

terms “coarse” and “fine” by the degree of uncertainty in

representing the pose. For example, in representing the po-

sition of each joint constituting a pose, a Gaussian blob has

a high uncertainty as much as the size of its standard de-

viation. On the other hand, a one-hot vector has relatively

low uncertainty up to the size of a quantized grid. The co-

ordinates of a keypoint has the least amount of uncertainty

because it provides the exact information about the location

itself. Therefore, in our work, the coarse-to-fine estimation

implies that the coarse input pose (P = {Pn}
N
n=1

) repre-

sented by the set of Gaussian blobs is fed to the network,

producing the finer pose in the form of the one-hot vector

(H = {Hn}
N
n=1

), and then the finest pose in terms of the

keypoint coordinates (C = {Cn}
N
n=1

) is generated as the fi-

nal output as illustrated in Figure 2. N denotes the number

of keypoints. In this subsection, we describe this coarse-to-

fine estimation in more detail.

The input pose is constructed in a coarse form by a

single-mode Gaussian heatmap representation as follows:

Pn(i, j) = exp

(

−
(i− in)

2 + (j − jn)
2

2σ2

)

, (1)

where Pn and (in,jn) are the input heatmap and 2D coor-

dinates of nth keypoint, respectively, and σ is the standard

deviation of the Gaussian peak. The generated input pose is

concatenated with the input image and fed into the PoseFix.

This Gaussian heatmap representation is suitable for sub-

sequent convolutional operations because it is pixel-wise

aligned with the input image. Moreover, as the input pose

can contain some errors, non-zero values around the center

of the blob can be used to encourage the PoseFix to focus

not only on the exact location of the input pose, but also

around it.

From the input Gaussian heatmap in a coarse form, the

proposed network generates the heatmap Hn and the key-

point coordinates Cn for the nth keypoint, sequentially. To

make Hn a finer form, we supervise it using a one-hot vec-

tor. Then, soft-argmax operation [24] is applied to Hn

to generate Cn in a differentiable manner. Soft-argmax

is defined as the element-wise product between the input

heatmap and the meshgrid followed by the summation, as

shown in Figure 2. More precisely, the 2D coordinates are

calculated from Hn as follows:

Cn =





w
∑

i=1

h
∑

j=1

iHn(i, j),

w
∑

i=1

h
∑

j=1

jHn(i, j)





T

, (2)

where w and h are the width and height of Hn, respectively.

Our network is trained by minimizing the cross-entropy-

based integral loss [24], which is defined as follows:

L = LH + LC , (3)

where L is the cross-entropy-based integral loss, and two

losses LH and LC are described below.

The LH is a cross-entropy loss which is calculated after

applying the softmax function to the output heatmap along

the spatial axis. The definition of the LH is as follows:

LH = −
1

N

N
∑

n=1

∑

i,j

H∗

n(i, j) logHn(i, j), (4)

where H∗

n and Hn are the groundtruth and estimated

heatmaps with softmax applied, respectively. The

groundtruth heatmap H∗

n is a one-hot vector if the

groundtruth keypoint coordinates are integers. Otherwise,

two grids for each x and y axis are selected by floor and

ceil operations and are filled with probabilities by linear ex-

trapolation. The LC is the sum of all L1 losses applied to

the coordinates as follows:

LC =
1

N

N
∑

n=1

‖C∗

n − Cn‖1, (5)

where C∗

n is the groundtruth coordinates vector for nth key-

point. The LH forces the PoseFix to select a single grid

point in the estimated heatmap, and the LC enables the

PoseFix to localize keypoints more precisely because it is

calculated in the continuous space which is free from quan-

tization errors.
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5.3. Network architecture

We used network architecture of Xiao et al. [28] which

consists of a deep backbone network (i.e., ResNet [11]) and

several upsampling layers. The final upsampling layer be-

comes heatmaps (H) after applying the softmax function.

The soft-argmax operation extracts coordinates (C) from

the heatmaps (H), and it becomes the final estimation of

the PoseFix.

6. Implementation details

Training. The proposed PoseFix is trained in an end-to-

end manner. The weights of the backbone part are initial-

ized with the publicly released ResNet model pre-trained on

the ImageNet dataset [23], and the weights of the remaining

part are initialized from the zero-mean Gaussian distribu-

tion with σ = 0.01 and as in He et al. [10]. The weights are

updated by Adam optimizer [15] with a mini-batch size of

128. The initial learning rate is set to 5×10−4 and reduced

by a factor of 10 at 90 and 120th epoch. We perform data

augmentation including scaling (±30%), rotation (±40◦),

and flip. To crop humans from an input image, groundtruth

human bounding boxes are extended to a fixed aspect ratio

(i.e., height:width = 4:3) and then cropped without distort-

ing the aspect ratio. The cropped bounding box is resized

to a fixed size, which becomes the input image. We train

the PoseFix 140 epochs with four NVIDIA 1080 Ti GPUs,

which took two days.

Testing. In the testing stage, the pose estimation result

of other pose estimation methods becomes the input pose.

To crop human bounding box from an image with multiple

persons, we calculate bounding box coordinates from the

keypoints coordinates of the input pose. Following [6, 19],

we used testing time flip augmentation.

Our model is implemented using TensorFlow [1] deep

learning framework.

7. Experiment

7.1. Dataset and evaluation metric

The proposed PoseFix is trained and tested on the MS

COCO [17] 2017 keypoint detection dataset, which consists

of training, validation, and test-dev sets. The training set

includes 57K images and 150K person instances. The vali-

dation set and the test-dev sets include 5K and 20K images,

respectively. The OKS-based AP metric is used to evaluate

the accuracy of the keypoint localization.

7.2. Ablation study

To validate each component of the PoseFix, we tested

the PoseFix on the validation set. The backbone of all the

models are ResNet-50, and the size of the input image is

Methods AP AP.50 AP.75 APM APL

E2E-refine
70.1

(+0.4)

87.3

(-1.0)

76.8

(-0.2)

66.8

(+0.6)

76.3

(+0.2)

MA-refine (Ours)
72.1

(+2.4)

88.5

(+0.2)

78.3

(+1.3)

68.6

(+2.4)

78.2

(+2.1)

Table 1: AP comparison between the conventional end-

to-end trainable multi-stage refinement model (E2E-refine)

and the proposed model-agnostic refinement model (MA-

refine) on the validation set. The number in the parenthesis

denotes the AP change from the input pose (i.e., CPN).

F2F C2F (Ours) C2F-L
C

C2F-L
H

C2C
68

68.5

69

69.5

70

70.5

71

71.5

72

72.5

m
A

P

CPN

Figure 6: mAP comparison of various pipelines. The mAP

is calculated on the validation set.

set to 256×192. We used the CPN [6] which is a state-of-

the-art human pose estimation method to generate the input

poses.

Model-agnostic pose refinement. We compared the ac-

curacy of the conventional end-to-end trainable multi-stage

architecture-based pose refinement model (E2E-refine) and

the proposed model-agnostic refinement model (MA-refine)

in Table 1. To train the E2E-refine, we added a refinement

module which has the same network architecture as the

PoseFix at the end part of the pre-trained CPN. And then,

we fine-tuned it by additionally giving the cross-entropy-

based integral loss to the added module in an end-to-end

manner. Both the input image and the output pose of the

CPN are fed into the refinement module similarly to the

PoseFix. We used a pre-trained CPN instead of training

it from scratch because fine-tuning the pre-trained model

yielded better performance.

As Table 1 shows, the MA-refine trained in a model-

agnostic manner improves the accuracy greatly more than

the conventional refinement model does. We believe that

this is because the added refinement module can be easily

overfitted to the output pose of the CPN when training the

E2E-refine. In contrast, various input poses that are realisti-

cally synthesized in the training stage of the PoseFix lead to
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Figure 7: OKS change when the PoseFix is applied to state-

of-the-art methods. The dotted line denotes identity func-

tion. OKS is calculated on the validation set.

Figure 8: Frequency of each error type change when the

PoseFix is applied to the CPN. The frequency is calculated

on the validation set.

the effect of data augmentation, which makes the PoseFix

more robust to unseen input poses in the testing stage.

Instead of using the same network architecture of the

PoseFix like in the E2E-refine, one can design their own

refinement module. However, this approach requires care-

ful network design because the amount of GPU memory

available at one time is limited. By contrast, since the Pose-

Fix is a decoupled model in both of the training and testing

stages, it can serve as an add-on module, and thus provides

more flexibility when building pose estimation models.

This analysis clearly demonstrates the benefits of us-

ing the model-agnostic pose refinement model compared

with the conventional end-to-end trainable multi-stage

architecture-based ones.

Coarse-to-fine estimation. To demonstrate the validity

of the coarse-to-fine estimation, we compared the perfor-

mance of fine-to-fine (i.e., F2F), coarse-to-fine (i.e., C2F,

ours), and coarse-to-coarse (i.e., C2C) estimation pipelines

in Figure 6. As described in Section 5.2, the Gaussian

heatmap and one-hot vector are used as coarse and fine

forms of the input pose, respectively. To estimate the re-

fined pose in a coarse form, the model learns to estimate the

Gaussian heatmap by minimizing mean square error follow-

ing [6, 19, 27]. For the fine-form estimation, cross-entropy-

based integral loss is used as a loss function like ours.

As Figure 6 shows, the C2F (i.e., ours) exhibits a more

accurate performance than F2F, which indicates that coarse

input pose representation is more beneficial than fine input

pose representation. Also, C2C fails to improve the input

pose whereas F2F and C2F successfully refine the input

pose. These results indicate that the fine-form estimation is

crucial for a successful refinement.

To further analyze the benefit of the fine-form estima-

tion, we additionally trained two models (C2F-LH and

C2F-LC). Instead of using both of the LC and LH like the

C2F does, they are trained by minimizing only either LH

or LC . The C2F-LH learns to estimate one-hot vector (H)

by minimizing LH , and C2F-LC is supervised to estimate

coordinate (C) by minimizing LC . Among C2C, C2F-LH ,

and C2F-LC , the target form of the C2C is the most coarse

representation. On the other hand, that of C2F-LC is the

finest representation as described in Section 5.2. Figure 6

shows that C2C yields the worst performance while C2F-

LC achieves the best among them. This finding shows that

as the output representation of the PoseFix becomes a finer

form, the performance improves. Thus, by integrating the

two loss functions (i.e., LH and LC) together, we can im-

prove the performance much, as C2F shows.

This analysis clearly shows the benefit of the coarse-to-

fine estimation pipeline.

7.3. Performance improvement of the state­of­the­
art methods by PoseFix

We report the performance improvement when the Pose-

Fix is applied to the recent state-of-the-art human pose es-

timation methods. PAFs [4], AE [18], Mask R-CNN [9],

CPN [6], and Simple [28] are used to generate the input

pose. To obtain the pose estimation results of the previ-

ous methods, we used their released codes and pre-trained

models. We tested them by ourselves without ensembling

and testing time augmentation. We also trained a pose esti-

mation model (IntegralPose) with the same network archi-

tecture and loss function with the PoseFix to show that the

PoseFix can improve a model trained from the same archi-

tecture. To analyze how the PoseFix changes the OKS and

frequency of each error type, we tested the PoseFix on the

validation set. We also report how much the PoseFix im-

proves AP on the test-dev set. The ResNet-152 is used as

the backbone of the PoseFix, and the size of the input image
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Methods AP AP.50 AP.75 APM APL AR AR.50 AR.75 ARM ARL

AE [18] 56.6 81.7 62.1 48.1 69.4 62.5 84.9 67.2 52.2 76.5

+ PoseFix (Ours) 63.9 83.6 70.0 56.9 73.7 69.1 86.6 74.2 61.1 79.9

PAFs [4] 61.7 84.9 67.4 57.1 68.1 66.5 87.2 71.7 60.5 74.6

+ PoseFix (Ours) 66.7 85.7 72.9 62.9 72.3 71.3 88.0 76.7 66.3 78.1

Mask R-CNN (ResNet-50) [9] 62.9 87.1 68.9 57.6 71.3 69.7 91.3 75.1 63.9 77.6

+ PoseFix (Ours) 67.2 88.0 73.5 62.5 75.1 74.0 92.2 79.6 68.8 81.1

Mask R-CNN (ResNet-101) 63.4 87.5 69.4 57.8 72.0 70.2 91.8 75.6 64.3 78.2

+ PoseFix (Ours) 67.5 88.4 73.8 62.6 75.5 74.3 92.6 79.9 69.1 81.4

Mask R-CNN (ResNeXt-101-64) 64.9 88.6 71.0 59.6 73.3 71.4 92.4 76.8 65.9 78.9

+ PoseFix (Ours) 68.7 89.3 75.2 64.1 76.4 75.2 93.1 80.9 70.3 81.9

Mask R-CNN (ResNeXt-101-32) 64.9 88.4 70.9 59.5 73.2 71.3 92.2 76.7 65.8 78.9

+ PoseFix (Ours) 68.5 88.9 75.0 64.0 76.2 75.0 92.9 80.7 70.1 81.8

IntegralPose 66.3 87.6 72.9 62.7 72.7 73.2 91.8 79.1 68.3 79.8

+ PoseFix (Ours) 69.5 88.3 75.9 65.7 76.1 75.9 92.4 81.8 71.1 82.5

CPN (ResNet-50) [6] 68.6 89.6 76.7 65.3 74.6 75.6 93.7 82.6 70.8 82.0

+ PoseFix (Ours) 71.8 89.8 78.9 68.3 78.1 78.2 93.9 84.3 73.5 84.6

CPN (ResNet-101) 69.6 89.9 77.6 66.3 75.6 76.6 93.9 83.5 72.0 82.9

+ PoseFix (Ours) 72.6 90.2 79.7 69.0 78.9 78.9 94.1 85.0 74.2 85.1

Simple (ResNet-50) [28] 69.4 90.1 77.4 66.2 75.5 75.1 93.9 82.4 70.8 81.0

+ PoseFix (Ours) 72.5 90.5 79.6 68.9 79.0 78.0 94.1 84.4 73.4 84.1

Simple (ResNet-101) 70.5 90.7 78.8 67.5 76.3 76.2 94.3 83.7 72.1 81.9

+ PoseFix (Ours) 73.3 90.8 80.7 69.8 79.8 78.7 94.4 85.3 74.3 84.8

Simple (ResNet-152) 71.1 90.7 79.4 68.0 76.9 76.8 94.4 84.3 72.6 82.4

+ PoseFix (Ours) 73.6 90.8 81.0 70.3 79.8 79.0 94.4 85.7 74.8 84.9

Table 2: Improvement of APs when the PoseFix is applied to the state-of-the-art methods. The APs are calculated on the

test-dev set.

is set to 384×288.

OKS change. The graph in Figure 7 shows the change of

the OKS of the same instance when the PoseFix is applied

to the baseline state-of-the-art methods.

Error frequency change. Figure 8 shows how the fre-

quency of each status or error type changes when the Pose-

Fix is applied to the CPN.

AP improvement. Table 2 shows the improvements in

AP when the PoseFix is applied to the recent state-of-the-

art human pose estimation methods. We also included the

results of using different backbone networks [11,29] for the

Mask R-CNN, CPN, and Simple.

As Figures 7, 8 and Table 2 show, the PoseFix con-

sistently improves the performance of the state-of-the-art

methods. The PoseFix corrects not only the small displace-

ment error (i.e., jitter), but also the large displacement errors

(i.e., inversion, miss, and swap) as in Figure 8. Taking into

account the fact that the state-of-the-art methods used in the

experiments vary in structure and learning strategies, we be-

lieve that our model has generalizability that can be applied

to other pose estimation methods. It is also noticeable that

the PoseFix does not require any code or knowledge of the

pose estimation methods, which makes our model very easy

and convenient to use in practice.

8. Conclusion

We proposed a novel and powerful network, PoseFix,

for human pose refinement. Unlike conventional end-to-

end multi-stage architecture models, the proposed PoseFix

is a model-agnostic pose refinement network. To train the

PoseFix, we generate the input pose by synthesizing pose

errors according to empirical pose error distributions on

the groundtruth pose. The PoseFix takes an input pose

in a coarse form and estimates the refined pose in a finer

form. Since PoseFix is model-agnostic, it does not require

any code or knowledge about the target models. So, it can

be used as a post-processing add-on module conveniently.

We showed that the PoseFix achieves better performance

than the conventional multi-stage architecture-based pose

refinement module. Furthermore, the PoseFix consistently

improves the accuracy of other methods on the commonly

used pose estimation benchmark.
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