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Abstract

Recognition of defects in concrete infrastructure, espe-

cially in bridges, is a costly and time consuming crucial first

step in the assessment of the structural integrity. Large vari-

ation in appearance of the concrete material, changing illu-

mination and weather conditions, a variety of possible sur-

face markings as well as the possibility for different types of

defects to overlap, make it a challenging real-world task. In

this work we introduce the novel COncrete DEfect BRidge

IMage dataset (CODEBRIM) for multi-target classification

of five commonly appearing concrete defects. We investi-

gate and compare two reinforcement learning based meta-

learning approaches, MetaQNN and efficient neural archi-

tecture search, to find suitable convolutional neural network

architectures for this challenging multi-class multi-target

task. We show that learned architectures have fewer overall

parameters in addition to yielding better multi-target accu-

racy in comparison to popular neural architectures from the

literature evaluated in the context of our application.

1. Introduction

To assess a concrete bridge’s structural safety, it is de-

sirable to determine the level of degradation by accurately

recognizing all defect types. Defects tend to be small with

respect to bridge elements and often occur simultaneously

with overlap of defect categories. Although one could

imagine treating each defect category independently, over-

lapping defects are more severe with respect to the struc-

tural safety. The requirement to recognize these multi-class

multi-target defects forms the basis for a challenging real-

world task that is further complicated by a variety of envi-

ronmental factors. Concrete, as a composite material, has

a wide range of variation in surface reflectance, roughness,

color and, in some cases, applied surface coatings. Chang-

ing lighting conditions, weather dependent wetness of the
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surface and a diverse set of safety irrelevant surface alter-

ations like small holes, markings, stains or graffiti, add to

the factors of variation. This necessitates computer vision

techniques that are capable of addressing such rich appear-

ance spaces.

Deep learning techniques in conjunction with labelled

datasets have turned out to be ideal candidates for recog-

nition tasks of similar complexity. Especially convolu-

tional neural networks (CNNs) [21, 32, 1, 37, 16] have been

shown to excel at object and material recognition bench-

marks [29, 10, 35, 3]. Unfortunately, defect recognition in

concrete bridges is largely yet to benefit from deep learning

approaches. Due to the necessity of expert knowledge in the

annotation process along with tedious image acquisition,

the task is traditionally focused on cracks with algorithms

based on domain specific modelling or manual inspection

by a human. Recently, datasets [31, 36, 26] and correspond-

ing deep learning applications [36, 23, 18, 8] have presented

significant efforts towards data-driven approaches in this

domain. Their work focuses on cracks as only a subset of

structurally relevant defects and concentrates on CNNs pro-

posed in the object recognition literature, that might not be

the best choice for material defect recognition.

In this work we address two crucial open aspects of con-

crete defect recognition: the establishment of a labelled

multi-target dataset with overlapping defect categories for

use in machine learning and the design of deep neural net-

works that are tailored to the task. For this purpose we in-

troduce our novel COncrete DEfect BRidge IMage (CODE-

BRIM) dataset and employ meta-learning of CNN archi-

tectures specific to multi-class multi-target defect classifi-

cation. CODEBRIM features six mutually non-exclusive

classes: crack, spallation, efflorescence, exposed bars, cor-

rosion (stains) and non-defective background. Our images

were acquired at high-resolution, partially using an un-

manned aerial vehicle (UAV) to gain close-range access,

and feature varying scale and context. We evaluate a va-

riety of best-practice CNN architectures [21, 32, 1, 37, 16]

in the literature on the CODEBRIM’s multi-target defect
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recognition task. We show that meta-learned neural archi-

tectures achieve equivalent or better accuracies, while be-

ing more parameter efficient, by investigating and compar-

ing two reinforcement learning neural architecture search

approaches: MetaQNN [2] and ”efficient neural architec-

ture search” (ENAS) [27]. The CODEBRIM dataset is pub-

licly available at: https://doi.org/10.5281/zenodo.2620293

. We also make the code for training the CNN baselines

and both meta-learning techniques available open-source at:

https://github.com/MrtnMndt/meta-learning-CODEBRIM .

To summarize our contributions:

• We introduce a novel high-resolution multi-class

multi-target dataset featuring images of defects in con-

text of concrete bridges.

• We evaluate and compare best-practice CNN architec-

tures for the task of multi-target defect classification.

• We adapt and contrast two reinforcement learning

based architecture search methods, MetaQNN and

ENAS, on our multi-target scenario. We show how re-

sulting meta-learned architectures from both methods

improve the presented task in terms of higher accuracy

and lower model parameter count.

2. Prior and related work

Datasets. Image classification and object detection

benchmarks predominantly focus on the single-target sce-

nario. Popular examples are the ImageNet [29], Pascal

VOC [10] or the scene understanding SUN dataset [35],

where the task is to assign a specific class to an image, area

or pixel. Much of the recent computer vision deep learning

research is built upon improvements based on these pub-

licly available datasets. The ”materials in context” database

(MINC) [3] followed in spirit and has created a dataset for

material and texture related recognition tasks. To a large

degree MINC has extended previous datasets and applica-

tions built upon prior work of the (CUReT) database [9],

the FMD dataset [30] and KTH-TIPS [11, 5]. With respect

to defects in concrete structures, or bridges in particular,

openly available datasets remain scarce. Depending on the

defect type that needs to be recognized, our task combines

texture anomalies such as efflorescence or cracks with ob-

jects such as exposed reinforcement bars. Domain specific

dataset contributions were very recently proposed with the

”CrackForest” dataset [31], the CSSC database [36] and

SDNET2018 [26]. However, as all of the former works fea-

ture a single-target and in fact single-class task, we have

decided to extend existing work with the multi-class multi-

target CODEBRIM dataset.

Defect (crack) recognition. Koch et al. [20] provide a

comprehensive review on the state of computer vision in

concrete defect detection and open aspects. In summary,

the majority of approaches follow task specific modelling.

Data-driven applications are still the exception and are yet

to be leveraged fully. Recent works [23, 8, 18] show appli-

cation to crack versus non-crack classification using images

with little clutter and lack of structural context. An addi-

tional defect class of spalling is considered by the authors of

[36]. Similar to other works, they focus on the single-target

scenario and evaluation of well-known CNN baselines from

prior object recognition literature. We extend their work

by meta-learning more task specific neural architectures for

more defect categories and overlapping defects.

Convolutional neural networks. A broader review of

deep learning, its history and neural architecture innova-

tions is given by LeCun et al. [22]. We recall some CNN

architectures that serve as baselines and give a frame of ref-

erence for architectures produced by meta-learning on our

task. Alexnet [21] had a large success on the ImageNet

[29] challenge that was later followed by a set of deeper

architectures commonly referred to as VGG [32]. Texture-

CNN [1] is an adapted version of the Alexnet design that

includes an energy-based adaptive feature pooling and FV-

CNN [7] augments VGG with Fisher Vector pooling for tex-

ture classification. Recent works address information flow

in deeper networks by adding skip connections with resid-

ual networks [14], wide residual networks (WRN) [37] and

densely connected networks (DenseNet) [16].

Meta-learning neural architectures. Although deep

neural networks empirically work well in many practical

applications, networks have initially been designed for dif-

ferent tasks. A recent trend to bypass the human design

intuition is to treat neural architectures themselves from

a meta-learning perspective and conduct a black-box op-

timization on top of the training of weights to find suit-

able task-specific architecture designs. Several works in

the literature have posed architecture meta-learning from

a variety of perspectives based on reinforcement learning

(RL) controllers [2, 38, 27, 4], differentiable methods [24]

or evolutionary strategies [28]. In our work, we evaluate

and adapt two RL based approaches to multi-target defect

classification: MetaQNN [2] and ”efficient neural architec-

ture search” (ENAS) [27]. We pick these two approaches as

they share underlying principles of training RL controllers.

This allows us to pick a common reward metric determined

by proposed CNN candidate accuracies. The main differ-

ences lie in the RL agents’ nature: MetaQNN employs Q-

Learning to learn to suggest increasingly accurate CNNs,

whereas ENAS uses policy gradients [34] to train an auto-

regressive recurrent neural network that samples individual

layers based on previous input.
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(a) Top row from left to right: 1.) exposed bars, spallation, cracks (hard to see) 2.) hairline crack with efflorescence 3.) efflorescence

4.) defect-free concrete. Bottom row from left to right: 1.) large spalled area with exposed bars and corrosion 2.) crack with graffiti 3.)

corrosion stain, minor onset efflorescence 4.) defect-free concrete with dirt and markings.

(b) From left to right: 1.) spalled area with exposed bar, advanced corrosion and efflorescence 2.) exposed corroded bar 3.) larger crack

4.) partially exposed corroded bars, cracks 5.) hairline crack 6.) heavy spallation, exposed bars, corrosion 7.) wet/damp crack with

efflorescence on the top 8.) efflorescence 9.) spalled area 10.) hairline crack with efflorescence.

Figure 1: Dataset examples. Top figure: full high-resolution images. Images heavily down-sampled for view in pdf. Bottom

figure: Image patches cropped from annotated bounding boxes (not corresponding to top images). Images resized for view

in pdf but with original aspect ratio.

3. The CODEBRIM dataset

The acquisition of the COncrete DEfect BRidge IMage:

CODEBRIM dataset was driven by the need for a more

diverse set of the often overlapping defect classes in con-

trast to previous crack focused work [31, 36, 26]. In par-

ticular, deep learning application to a real-world inspec-

tion scenario requires sampling of real-world context due

to the many factors of variation in visual defect appearance.

Our dataset is composed of five common defect categories:

crack, spallation, exposed reinforcement bar, efflorescence

(calcium leaching), corrosion (stains), found in 30 unique

bridges (disregarding bridges that did not have defects).

The bridges were chosen according to varying overall de-

terioration, defect extent, severity and surface appearance

(e.g. roughness and color). Images were taken under chang-

ing weather conditions to include wet/stained surfaces with

multiple cameras at varying scales. As most defects tend to

be very small one crucial requirement was the acquisition

at high-resolution. Considering that large parts of bridges

are not accessible for a human, a subset of our dataset was

acquired by UAV. We continue with the requirements and

rationale behind the camera choices, the annotation process

that led to the dataset and finally give a summary of impor-

tant dataset properties.

3.1. Image acquisition and camera choice

Image acquisition and camera choices were motivated by

typical concrete cracks in bridges having widths as small

as 0.3mm [20]. Resolving such defects on a pixel level
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Figure 2: Top panel: distribution of annotated bounding box

sizes for defects. Bottom panel: distribution of sizes for

sampled non-overlapping background bounding boxes.

imposes a strong constraint on the distance and resolution

at which the images are acquired. In a naive calculation

for a conventional consumer-grade camera with an example

chip of size 23.50 × 15.60mm and maximum resolution

6000 × 4000, this translates to around 0.1mm per pixel at

a focal length of 50mm and a distance of roughly 1.5m

(assuming a pinhole camera model and viewing axis per-

pendicular to the surface). Based on this requirement our

dataset was gathered with four different cameras at high res-

olution and large focal lengths under varying distance and

angles. In addition, to homogeneously illuminate the darker

bridge areas, we made use of diffused flash. Exact camera

models and corresponding detailed parameters can be found

in the supplementary material.

3.2. Dataset properties

We employed a multi-stage annotation process by first

curating acquired images, annotating bounding boxes per

defect and sequentially labelling each class separately. The

rationale and exact annotation process is outlined in the sup-

plementary material. The acquisition and annotation pro-

cess resulted in a dataset with the following properties:

• 1590 high-resolution images with defects in context of

30 unique bridges, acquired at different scales and res-

olutions.

• 5354 annotated defect bounding boxes (largely

with overlapping defects) and 2506 generated non-

overlapping background bounding boxes.

• Defect numbers for the following classes: crack -

2507, spallation - 1898, efflorescence - 833, exposed

bars - 1507 and corrosion stain - 1559.

Examples of images and extracted patches from bound-

ing boxes featuring a variety of overlapping and non-

overlapping defects can be seen in figure 1a and 1b respec-

tively. We point out that in contrast to most object and tex-

ture based benchmarks, the majority of our dataset has more

than one class occurring at once. We show a corresponding

histogram for the number of defect classes per individual

bounding box annotation in the supplementary material.

Apart from the multi-target nature making our dataset

more challenging than single-class recognition, the task is

difficult because of large variations in aspect ratio, scale

and resolution of the different defects and their bounding

boxes. This is true especially at a scene level, considering

that cracks can be very fine and elongated, whereas spalled

areas can vary almost arbitrarily. To illustrate these varia-

tions we visualize the distributions of defect bounding box

sizes and the sampled background bounding box sizes in

figure 2. Further details about distributions of image sizes,

bounding box size distributions per category (with overlaps

due to the multi-target nature) and distribution of aspect ra-

tios per defect can be found in the supplementary material.

4. Meta-learning convolutional neural net-

works for multi-target defect classification

We use meta-learning to discover models tailored

to multi-target defect classification on the CODEBRIM

dataset. In order to find a suitable set of hyper-parameters

for the meta-learning search space and training of neu-

ral architectures we start with the T-CNN [1] and VGG-A

[32] baselines and investigate the influence of learning rate,

batch size and patch size. For this we separate the dataset

into train and validation splits and set aside a final test set

for evaluation. We then adapt the MetaQNN [2] and ENAS

[27] architecture meta-learning approaches and contrast the

obtained results with the following set of CNN architectures

proposed in the literature: Alexnet [21], T-CNN [1], VGG-

A and VGG-D [32], wide residual network (WRN) [37]

and densely connected convolutional networks (DenseNet)

[16]. We want to point out that even though bounding box

annotations are present in our dataset, we do not evaluate

any bounding box detection algorithms because our goal

at this stage is the establishment of the already challeng-

ing multi-target classification task. We have also evaluated
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Multi-target accuracy [%] depending on learning rate schedule: max to min

Architecture Batch size
[

10−1, 10−5
] [

5 · 10−2, 5 · 10−4
] [

10−2, 10−5
]

best val bv-test bv-train best val bv-test bv-train best val bv-test bv-train

T-CNN

16 64.62 69.51 80.27 63.67 65.71 83.38 64.30 67.93 93.91

32 64.78 66.19 87.66 63.36 68.72 94.49 62.84 66.35 96.22

64 63.36 70.14 95.21 63.52 67.93 98.10 62.26 66.82 95.85

128 63.67 67.45 98.31 63.36 66.82 98.63 60.53 65.08 94.47

VGG-A

16 60.22 62.08 75.74 63.67 68.24 94.78 64.93 70.45 98.29

32 63.05 67.77 93.88 63.05 66.35 94.27 65.40 69.51 97.01

64 63.36 69.66 98.00 63.37 70.45 90.64 59.90 63.82 97.01

128 63.20 61.29 92.99 63.52 68.07 98.55 58.80 61.29 92.99

Table 1: Grid-search conducted on different batch sizes and different learning rate schedules for the T-CNN and VGG-A

models. The multi-target best validation accuracy (best val) is shown together with each model’s accuracy on the test set at

the point in time of achieving the best validation accuracy (bv-test). The analogous training accuracy (bv-train) is shown to

demonstrate that models do not under-fit. These validation accuracies have been used to determine training hyper-parameters.

transfer-learning from the ImageNet and MINC datasets, al-

beit without improvements and therefore report these exper-

iments in the supplementary material.

4.1. Dataset training, validation and test splits

We have randomly chosen 150 unique defect examples

per class for validation and test sets respectively. To avoid

over-fitting due to very similar context, we make sure that

we always include all annotated bounding boxes from one

image in one part of the dataset split only. An alternative

way to split the dataset is to separate train, validation and

test sets according to unique bridges. However, it is infea-

sible to balance such a split with respect to equal amount of

occurrences per defect due to individual bridges not featur-

ing defect classes uniformly (particularly with class over-

laps) and thus makes an unbiased training and reporting of

average losses or accuracies difficult. Nevertheless, to in-

vestigate the importance of over-fitting global properties,

we investigate and further discuss the challenges of such

splits in the supplementary material.

4.2. Training procedure

The challenging multi-class multi-target nature of our

dataset makes the following measures necessary:

1. Multi-class multi-target. For a precise estimate of a

model’s performance in a multi-target scenario, a clas-

sification is considered as correct if, and only if, all

the targets are predicted correctly. To adapt all neural

networks for this scenario we use a Sigmoid function

for every class in conjunction with the binary cross

entropy loss function. When we calculate classifica-

tion accuracies we binarize the Sigmoid output with a

threshold of 0.5. Note that this could be treated as a

hyper-parameter to potentially obtain better results.

2. Variations in scale and resolution. We address the

variation in scale and resolution of bounding boxes

by following the common literature approach based on

previous datasets such as ImageNet [29] and the mod-

els presented in [21, 32, 37, 16]. Here, the smaller side

of the extracted patch is rescaled to a pre-determined

patch size and random quadratic crops of patch size are

taken to extract fixed size images during training.

3. Train set imbalance. We balance the training dataset

by virtually replicating the under-represented class ex-

amples such that the overall defect number per class is

on the same scale to make sure defect classes are sam-

pled equally during training. Note that test and valida-

tion sets are balanced by design.

The reason for adopting step two is to allow for a direct

comparison with CNNs proposed in prior literature without

making modifications to their architectures. We do not use

individual class accuracies as a performance metric as it is

difficult to compare models that don’t capture overlaps ad-

equately. Nevertheless we provide an example table with

multi-target versus per-class accuracy of later shown CNN

literature baselines in the supplementary material.

4.2.1 Common hyper-parameters

We conduct an initial grid-search to find a suitable com-

mon set of hyper-parameters for CNNs (meta-learned or

not) trained with stochastic gradient descent based on the

T-CNN [1] and VGG-A [32] architectures. For this we

use learning rate schedules with warm restarts (SGDWR)

according to the work of [25]. The grid search features

three cycles with ranges inspired by previous work [25,

27]:
[

10−1, 10−5
]

,
[

5 · 10−2, 5 · 10−4
]

and
[

10−2, 10−5
]

,
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a warm restart cycle length of 10 epochs that is doubled af-

ter every restart, and four different batch sizes: 128, 64, 32

and 16. All networks are trained for four warm restart cy-

cles and thus 150 overall epochs after which we have no-

ticed convergence. Other hyper-parameters are a momen-

tum value of 0.9, a batch-normalization [17] value of 10−4

to accelerate training and a dropout rate [33] of 0.5 in the

penultimate classification layer. Weights are initialized ac-

cording to the Kaiming-normal distribution [13].

We determine a suitable set of hyper-parameters using

cross-validation, that is according to the best validation ac-

curacy during the entire training. We then report the test

accuracy based on this model. We show the multi-target ac-

curacy’s dependency on learning rate and batch size for the

two CNN architectures in table 1. We notice that the gen-

eral trend is in favor of lower batch sizes and a learning rate

schedule in the range of
[

10−2, 10−5
]

. While the evalu-

ated best validation model’s test accuracy generally follows

a similar trend, the best test accuracies aren’t always cor-

related with a higher validation accuracy, showing a light

distribution mismatch between the splits. We further note

that the absolute best test accuracy doesn’t necessarily co-

incide with the point of training at which the model achieves

the best validation accuracy. In general, the models seem to

have a marginally higher accuracy for the test split. The

table also shows that validation and test sets are reasonably

different from the train set, on which all investigated models

achieve an over-fit.

After determining a suitable set of hyper-parameters,

a batch size of 16 and a learning rate cycle between
[

10−2, 10−5
]

, we have proceeded with the selection of

patch sizes determined through an additional experiment

based on best multi-target validation accuracy. We again

emphasize that we do not pick hyper-parameters based on

test accuracy, even if a model with lower validation accu-

racy has a better test score.

4.2.2 Selection of patch size

Whereas most CNN architectures proposed in the literature

are designed for patch sizes of 224× 224, we also evaluate

a range of different patch sizes by modifying the number

of parameters in the T-CNN model’s first fully-connected

layer according to the last convolution’s spatial output reso-

lution (we do not modify the outgoing feature amounts). In

figure 3 we show the multi-target best validation and corre-

sponding test accuracies for different patch and batch sizes.

The perceivable trend is that models trained on patch sizes

smaller than 224 yield less accuracy, whereas the validation

accuracy seems to plateau or feature an upwards trend for

larger patch sizes. The corresponding test accuracies mirror

this trend. We leave the evaluation of even larger patch sizes

for future work. For the remainder of this work, we continue
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Figure 3: T-CNN multi-target validation accuracy (top

panel) and best validation model’s multi-target test accuracy

(bottom panel) in dependence on patch size.

to use a patch size of 224. Although larger patch sizes seem

promising they prevent a direct comparison and contrasting

of meta-learning approaches with neural network models

proposed in the literature without making modifications to

their architectures.

4.2.3 Meta-learning specific parameters

We design the reward for both MetaQNN and ENAS to fit

our multi-target scenario by setting it to the multi-target val-

idation accuracy. We re-iterate that using a per-class accu-

racy as a metric and particularly to design an RL reward,

could lead to controllers being biased towards naively rais-

ing the reward by generating models that predict (the eas-

iest) subsets of classes correctly without considering the

multi-target overlap properly. We try to set the method spe-

cific hyper-parameters of the two meta-learning methods as

similar as possible to allow for a direct comparison. We

therefore train all child CNN models using the SGDWR

schedules and SGD hyper-parameters specified earlier.

MetaQNN: We employ an ǫ-greedy schedule for the Q-

learning approach. We train an overall amount of 200 ar-

chitectures and start with a full exploration phase of 100 ar-

chitectures for ǫ = 1.0. We continue with 10 architectures

for ǫ values of 0.9 to 0.3 in steps of 0.1 and finish with 15

architectures for ǫ values of 0.2 and 0.1. Our search space
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is designed to allow neural architectures with at least 3 and

a maximum of 10 convolutional layers. We include choices

for quadratic filters in the sizes of 3, 5, 7, 9, 11 with possible

number of features per layer of 32, 64, 128, 256. We use a

Q-learning rate of 0.1, a discount-factor of 1.0 and an initial

Q-value of 0.15. The latter is motivated by a 15% valida-

tion accuracy early-stopping criterion at the end of the first

SGDWR cycle. In analogy to [2], if an architecture doesn’t

pass this threshold, it is discarded and a new one is sampled

and trained.

Apart from the different reward design, we also make

several extensions to the MetaQNN [2]: We cover down-

sampling with an option for convolution stride s = 2 for fil-

ter sizes larger than 5. Convolutional layers are further fol-

lowed by an adaptive pooling stage using spatial-pyramidal

pooling (SPP) [12] of allowed scales 3, 4, 5 and the possi-

bility to pick a hidden fully-connected layer with size 32, 64

or 128 before adding the final classification stage. All lay-

ers are followed by batch-normalization and a ReLU non-

linearity to accelerate training. We also include the pos-

sibility to add ResNet-like skip connections between two

padded 3×3 convolutions that do not change spatial dimen-

sionality. If the number of convolutional output features is

the same the skip connection is a simple addition, whereas

an extra parallel convolution (that isn’t counted as an addi-

tional layer) is added if the amount of output features needs

to change. We make these extensions to provide a fairer

comparison to the architecture search of ENAS, that by de-

sign contains batch-normalization, adaptive pooling and the

possibility of adding skip-connections.

ENAS: In contrast to MetaQNN where the number of lay-

ers of each architecture is flexible, network depth in ENAS

is pre-determined by the specification of number of nodes

in the directed acyclic graph (DAG). Each node defines a

possible set of feature operations that the RNN controller

samples at each step together with connection patterns. In

the process of the search, the same DAG is used to generate

architectures with candidates sharing weights through shar-

ing of feature operations. We choose to let the search evolve

through alternate training of the CNNs’ shared weights on

the CODEBRIM train set and the RNN controller’s weights

on the validation set, where the controller samples one ar-

chitecture per mini-batch. We design the DAG such that

each architecture has 7 convolutional layers and 1 classi-

fication layer that is followed by a Sigmoid function. We

choose this depth to have a direct comparison to the average

depth of MetaQNN architectures. The allowed feature op-

erations are convolutions with square filters of size 3 and 5,

corresponding depth-wise separable convolutions [6], max-

pooling and average-pooling with kernel size 3 × 3. Each

layer is followed by batch-normalization and a ReLU non-

linearity. Because ENAS uses shared weights in the search,
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Figure 4: Evolution of the moving average reward defined

as the multi-target validation accuracy of architectures pro-

posed through meta-learning. The top panel additionally

shows individual architecture accuracies for the MetaQNN

in color. ENAS in the bottom panel has shared model

weights during training and thus requires a final end-to-end

re-training step for final validation accuracies of individual

architectures.

a final re-training step of proposed architectures is neces-

sary. We use a feature amount of 64 during the search for

all layers and use a DenseNet growth-pattern [16] of k = 2

in the final training consistent with the work of Pham et al.

[27]. The total number of search epochs is 310 (5 SGDWR

cycles) after which we have experienced convergence of the

controller. The RNN controller consists of an LSTM [15]

with two hidden-layers of 64 features that is trained with a

learning rate of 10−3 using ADAM [19].

4.3. Results and discussion

We demonstrate the effectiveness of neural architecture

search with MetaQNN and ENAS for multi-target concrete

defect classification on the CODEBRIM dataset. We show

respective moving average rewards based on a window size

of 20 architectures in figure 4. Individual architecture ac-

curacies for MetaQNN are shown in color for each step

in the top panel. We observe that after the initial explo-

ration phase, the Q-learner starts to exploit and architec-
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Architecture Multi-target accuracy [%] Params [M] Layers

best val bv-test

Alexnet 63.05 66.98 57.02 8

T-CNN 64.30 67.93 58.60 8

VGG-A 64.93 70.45 128.79 11

VGG-D 64.00 70.61 134.28 16

WRN-28-4 52.51 57.19 5.84 28

Densenet-121 65.56 70.77 11.50 121

ENAS-1 65.47 70.78 3.41 8

ENAS-2 64.53 68.91 2.71 8

ENAS-3 64.38 68.75 1.70 8

MetaQNN-1 66.02 68.56 4.53 6

MetaQNN-2 65.20 67.45 1.22 8

MetaQNN-3 64.93 72.19 2.88 7

Table 2: Comparison of popular CNNs from the literature

with the top three architectures of MetaQNN and ENAS

in terms of best multi-target validation accuracy (best val),

best validation model’s test accuracies (bv-test), overall

amount of parameters (Params) in million and amount of

trainable layers. For WRN we use a width factor of 4 and a

growth rate of k = 32 for DenseNet.

tures improve in multi-target validation accuracy. In the

bottom panel of the figure we show corresponding rewards

for the shared-weight ENAS DAG. We observe that both

methods learn to suggest architectures with improved accu-

racy over time. We remind the reader that in contrast to the

MetaQNN, a final re-training step of the top architectures is

needed for ENAS to obtain the task’s final accuracy values.

The multi-target validation and test accuracies, again re-

ported at the point in time of best validation, the number of

overall architecture parameters and layers for the top three

MetaQNN and ENAS architectures can be found in table 2.

We also evaluate and provide these values for popular CNN

baselines: Alexnet [21], VGG [32], Texture-CNN [1], wide

residual networks (WRN) [37] and densely connected net-

works (DenseNet) [16]. We see that the Texture-CNN vari-

ant of Alexnet slightly outperforms the latter. The connec-

tivity pattern of the DenseNet architecture also boosts the

performance in contrast to the VGG models. Lastly, we note

that we were only able to achieve heavy over-fitting with

WRN configurations (even with other hyper-parameters and

other configurations such as WRN-28-10 or WRN-40).

The accuracies obtained by all of our meta-learned archi-

tectures, independently of the underlying algorithm, outper-

form most baseline CNNs and feature at least similar perfor-

mance in comparison to DenseNet. Moreover, they feature

much fewer parameters with fewer overall layers and are

thus more efficient than their computationally heavy coun-

terparts. Our best meta-learned models have validation ac-

curacies as high as 66%, while the test accuracies go up to

72% with total amount of parameters less than 5 million.

In contrast to literature CNN baselines these architectures

are thus more tailored to our specific task and its multi-

target nature. Interestingly, previously obtained improve-

ments from one literature CNN baseline to another on Ima-

geNet, such as Alexnet 81.8% to VGG-D 92.8% top-5 ac-

curacies, do not show similar improvements when evaluated

on our task. This underlines the need for diverse datasets in

evaluation of architectural advances and demonstrates how

architectures that were hand-designed, even with incredi-

ble care and effort, for one dataset such as ImageNet may

nonetheless be inferior to meta-learned neural networks.

Between the two search strategies we do not ob-

serve a significant difference in performances. We be-

lieve this is due to previously mentioned modifications to

MetaQNN, mainly the addition of skip-connections and

batch-normalization that make proposed architectures more

similar to those of ENAS. We point the reader to the sup-

plementary material for exact definitions of meta-learned

architectures. There, we also include a set of image patches

that are commonly classified as correct for all targets, im-

ages where only part of the overlapping defect classes is

predicted and completely misclassified examples.

5. Conclusion

We introduce a novel multi-class multi-target dataset

called CODEBRIM for the task of concrete defect recog-

nition. In contrast to previous work that focuses largely

on cracks, we classify five commonly occurring and struc-

turally relevant defects through deep learning. Instead of

limiting our evaluation to common CNN models from the

literature, we adapt and compare two recent meta-learning

approaches to identify suitable task-specific neural archi-

tectures. Through extension of the MetaQNN, we observe

that the two meta-learning techniques yield comparable

architectures. We show that these architectures feature

fewer parameters, fewer layers and are more accurate

than their human designed counterparts on our presented

multi-target classification task. Our best meta-learned

models achieve multi-target test accuracies as high as

72%. Our work creates prospects for future work such as

multi-class multi-target concrete defect detection, semantic

segmentation and system applications like UAV based

real-time inspection of concrete structures.
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