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Abstract

3D shapes come in varied representations from a set of

points to a set of images, each capturing different aspects of

the shape. We propose a unified code for 3D shapes, dubbed

Shape Unicode, that imbibes shape cues across these rep-

resentations into a single code, and a novel framework to

learn such a code space for any 3D shape dataset. We dis-

cuss this framework as a single go-to training model for

any input representation, and demonstrate the effectiveness

of the learned code space by applying it directly to common

shape analysis tasks – discriminative and generative. In this

work, we use three common representations – voxel grids,

point clouds and multi-view projections – and combine them

into a single code. Note that while we use all three repre-

sentations at training time, the code can be derived from

any single representation during testing. We evaluate this

code space on shape retrieval, segmentation and correspon-

dence, and show that the unified code performs better than

the individual representations themselves. Additionally,

this code space compares quite well to the representation-

specific state-of-the-art in these tasks. We also qualitatively

discuss linear interpolation between points in this space, by

synthesizing from intermediate points.

1. Introduction

With advances in low-cost sensing devices and 3D au-

thoring tools, repositories of naturally acquired and synthe-

sized 3D shapes have steadily grown. This influx of 3D

shape data has brought about advancements in shape anal-

ysis and synthesis, and has led to several efficient ways of

storing and representing shapes, such as polygon meshes,

voxel grids, point clouds, depth maps, projected images,

and implicit functions. Each representation is best suited

to specific tasks, but none for all such tasks.

As shape data structures, different representations are de-

signed to optimize tasks such as efficient rendering, interac-

tive manipulation, level-of-detail retrieval, and functionality

analysis. The advent of deep learning has favoured repre-

sentations amenable to analysis and generation by neural
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Figure 1: Overview of our Shape Unicode architecture. Dif-

ferent base shape representations (bottom) – voxel grids,

point clouds and multi-view images – are processed through

three encoder/decoder pairs that are trained to project all

three representations to the same unified code (middle).

We show that this code is a richly informative input for

a range of unified geometry processing pipelines – trans-

lation, synthesis, segmentation, correspondences, and re-

trieval/classification – and can be computed even if only one

base representation is available at test time.

networks. Further, 3D sensing of real objects added ease-

of-acquisition and completeness-of-information to the mix,

ranging from single images or depth maps of objects, to full

scans from all directions capturing both color and geometry.

Product applications and academic research have cho-

sen shape representations suited for each task and tailored

frameworks around them. When applied to deep networks,

this has produced modules specialized to each represen-

tation, including specialized convolution operations, ar-

chitectures, loss functions, and training procedures (e.g.

meshes [20], point clouds [23], voxels [38], multi-view im-

ages [34], octrees [26, 35]). These pipelines are specific

to the associated representations and technical innovations

developed for one representation rarely carry over to oth-

ers. Thus, the design cost of analysing data in different
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representations is proportional to the number of such repre-

sentations. While translations between representations are

possible, this itself is a hard problem. Further, some rep-

resentations are simply less suited for a given task (e.g. if

they lack specific information important for that task, such

as high-resolution detail), yet may be the most natural form

in which shapes can be acquired.

In this work, we address these two challenges — pipeline

multiplicity and differential performance — by propos-

ing a single, unified, non-category-specific encoding of 3D

shapes that can be generated from any of a variety of base

representations. Unified analysis pipelines can then be

trained on this common code space. We show that such

analyses benefit from the collective strengths of different

representations injected into the code during training: they

outperform pipelines trained on individual representations,

and promote consistent performance regardless of the input

representation. Further, the encoding is invertible, and can

be used for translation and generation.

Our work is inspired by Hegde et al. [10], who train a

network that processes two representations of a single shape

(voxel grids and multi-view images) in parallel, and com-

bine the final classification predictions with an additional

layer. Each branch picks up cues best captured in the asso-

ciated representation, improving performance of the overall

ensemble. Similarly, Su et al. [32] combine point clouds

and RGB images to better segment facades and shapes. In

contrast to these works, our method does not assume mul-

tiple representations for a shape are available at test time:

thus, it is not an ensemble-based approach. Instead, a shape

can come in any supported representation, and still be pro-

jected accurately to the common code space. The strengths

of other representations are “hallucinated” in the construc-

tion of this code, because of the training process.

We learn such a code space by jointly training encoders

for different representations to converge to the same high-

dimensional code, that is then decoded by a decoder for

each representation. Translation losses on the decoded out-

put, in addition to direct similarity losses on the codes,

ensure that the learned code imbibes salient information

from each representation. We then perform shape classi-

fication, segmentation, and dense correspondences by train-

ing task-specific but representation-independent neural net-

works purely on top of the learned code. Although our

method can be used with any representation, for this pa-

per, we chose three common input representations – voxels,

point clouds and multiview projections.

Our main contribution is a unified encoding of a 3D

shape learned from a variety of base representations, and

we demonstrate that this encoding is:

• more informative than one learned from a single rep-

resentation, yet

• computed from a single representation at test time, and

• useful in a wide range of applications, such as classi-

fication, retrieval, shape generation, segmentation, and

correspondence estimation.

This offers a representation-invariant framework that per-

forms consistently well on different tasks, even if represen-

tations at training and testing time are different.

2. Related Work

We overview common representations used for shape

analysis, as well as recent methods that explore combining

these representations.

Shape Representations for 3D Learning. Unlike im-

ages, 3D shape representations, such as meshes, lack a com-

mon parametrization, which makes it hard to directly extend

2D deep learning methods to 3D. Early approaches con-

vert input shapes to 3D voxel grids which can be used with

natural extensions of 2D convolutional networks. Existing

methods tackle classification [38], segmentation [22], reg-

istration [40], and generation [37]. Since the shape surface

usually occupies a small fraction of the voxels, various ex-

tensions leverage data sparsity by directly processing more

efficient data structures such as octrees [26, 35, 36].

While voxel grids provide a natural parameterization of

the domain for learning convolutional filters, they tradition-

ally struggle to capture finer details. Multi-view shape anal-

ysis techniques demonstrate that many common problems

can be addressed by using 2D renderings or projections of

a 3D model as the input for a neural network. These rep-

resentations enabled new architectures for standard tasks:

shape classification [34, 13], segmentation [12], and corre-

spondences [11]. Surface parameterization techniques can

also be used instead of projections to map shapes to im-

ages [19, 30, 31, 9]. Image-based shape analysis methods

enable capturing finer details in higher resolution images.

However, they are typically memory intensive since many

viewpoints need to be captured for holistic shape under-

standing, and they are not ideal for 3D synthesis and design

tasks since the native 3D shape must be separately recon-

structed from its image collection.

Surface-based models have been proposed to directly an-

alyze point clouds [23, 25], meshes [17], and general Rie-

mannian surfaces [6, 20, 2]. Point-based methods are con-

venient for data preparation, and offer a compact represen-

tation. Hence, they are popular choices for common shape

analysis tasks [5, 4]. However, representing geometric de-

tails or learning convolutional filters to detect finer features

is typically difficult with existing point architectures.

Translation between representations is possible: e.g.

Girdhar et al. [7] chain encoders and decoders to map im-

ages to their corresponding 3D shapes. Su et al. [33] use

3D shape similarity to construct an embedding space and

learn to map images to that space, enabling cross-domain
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retrieval. The limitation of these translation techniques is

that their low-dimensional shape codes are derived from a

single representation, and thus the embedding does not take

into account the additional information that might be avail-

able in alternative representations.

Hybrid representations. Several methods leverage the

complementary nature of various representations. For ex-

ample, Atzmon et al. [1] map point functions to volumet-

ric functions to enable learning convolutional filters, and

then project the learned signal back to points. The converse

is also possible: one can subdivide large point clouds us-

ing a coarse voxel grid, and then use point-based analysis

within each voxel to learn per-voxel features used in a voxel

CNN [21]. Volumetric CNNs can take advantage of higher-

resolution filters akin to multi-view networks by learning

anisotropic probing kernels that sample more coarsely along

particular dimensions [24]. Features obtained from im-

ages can be used as input to point-based architectures [39].

One can treat color information jointly with point coordi-

nates by representing them as sparse samples in a high-

dimensional space, a datastructure efficiently analyzed with

sparse bilateral convolutional layers [32]. These approaches

require deriving novel network layers, and are usually suited

only for some tasks. A more general meta-technique sim-

ply aggregates features derived from multiple representa-

tions [10, 29] or at multiple scales [41, 18].

All such methods require all representations to be avail-

able during testing. Instead, we show that one can map any

individual representation available at test time to a rich, in-

formative code on which discriminative or generative mod-

els can be trained, with consistent performance regardless

of input representation. Existing hybrid techniques also fo-

cus on one task, such as image-based shape generation or

classification. We demonstrate that our shape code trained

with cross-representation reconstruction loss extends well

to a variety of tasks, such as correspondence estimation and

segmentation, in addition to classification and generation.

3. Method

Our Shape Unicode model is based on an autoencoder

architecture, where encoders and decoders are defined for

all possible representations (see Figure 1). At a high level,

our method is designed around two central principles:

• Each representation’s code should incorporate infor-

mation from all input representations.

• At test time, we should be able to obtain this shape

code from any input representation, in the absence of

the other representations.

To achieve these goals, we add an additional loss function

that favors the codes for the same shape obtained from dif-

ferent representations to be the same. During training, we

feed the output of each encoder through each of the three

possible decoders, forcing any decoder to reconstruct the

shape even if it was encoded from a different representation.

These two losses ensure that our principles are satisfied, and

that the code is as-informative-as-possible for reconstruc-

tion. We train a single network for all shape categories, and

thus to favor their separability in the code space, we also

build a small layer that maps codes to classes and add a

classification loss.

We test our approach with three commonly-used in-

put shape representations: voxel binary-occupancy grids,

point clouds, and multi-view images from four views (their

branches are colored red, green, and blue, respectively in

Figure 1). We represent a voxel grid as 323 occupancy val-

ues, a point cloud as 1024 XYZ points sampled from the

object surface, and use four grayscale 128x128 images for

our multi-view representation.

In the remainder of this section we provide details for our

encoders and decoders (Sec. 3.1), loss functions (Sec. 3.2),

and training procedure (Sec. 3.3).

3.1. Unicode Architecture

Our design for individual encoders and decoders is moti-

vated by the variational auto-encoder (VAE) approach [16].

That is, for each representation, the respective encoder pre-

dicts the mean and standard deviation of a Gaussian distri-

bution describing a small neighborhood of codes that map to

the input shape. We use the re-parameterization trick [16] to

sample a 1024-dimensional code vector from the Gaussian,

and the decoder has to reconstruct the same target from the

sample. This approach forces the decoder to be more robust

to small code perturbations, and usually converges and gen-

eralizes better. Note, however, that we do not impose the

overall distributional constraint of VAEs, since we found it

over-constrained our optimization and led to cluster overlap

(and hence poorer class discrimination) in the embedding

space.

At training time we translate between all pairs of in-

put/output representations. Each code derived from each

representation is fed into each decoder providing nine

encoder-decoder pairs (a cross product of three encoders

and three decoders). Each code is expected to both recon-

struct the shape in its source representation and to translate

to an instance of the shape in each output representation,

encouraging the code to capture information across all rep-

resentations.

See the supplementary materials for a detailed descrip-

tion of the architecture of the encoder and decoder networks

for each of the representations.

3.2. Unicode Loss Functions

Here we detail the training losses we use to guide our

joint Unicode network. Let R denote the set of possible
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representations: R = {Voxel,PointCloud,MultiView}.

Reconstruction Loss The reconstruction loss encourages

each decoder output to match the input for each representa-

tion:

Lreconstruct =
∑

x∈R

∑

y∈R

wx→yDisty(Dy(Ex(Sx)), Sy), (1)

where for each pair of input (x) and target (y) representa-

tions, the shape S is encoded from its input representation

Ex(Sx) and then decoded into target representation via Dy .

We then compare the decoded shape to the ground truth

shape Sy in the target representation. The distance func-

tions Disty are used to compare reconstructed and true tar-

get shape, and thus have to be defined differently for each

representation. We use per-voxel cross-entropy for voxels,

Chamfer distance for point clouds [5], and mean squared

difference for multi-view images. The terms where x 6= y

are also referred to as translation losses.

Embedding Loss The embedding loss encourages the

embeddings generated by each encoder to be similar. The

output of each encoder Ex is a mean and standard deviation,

which we constrain via L1 loss:

Lembedding =
∑

x∈R

∑

y∈(R\x)

| Ex − Ey |1 (2)

Classification Loss To further aid discriminative tasks

with the learned code, we encourage the embedding space

to be structured such that different classes of shapes map to

different, well-separated clusters. This is accomplished by

adding a shared single fully connected layer that uses the

code derived from any of the representations as input. Note

that we use only a single set of weights for this layer, which

is shared across all representations. Lclassification is the re-

sulting cross-entropy classification loss summed across the

output of each encoder.

Total Loss For a single input shape, the total loss is sim-

ply a weighted sum of the above losses:

Ltotal = Lreconstruct + Lembedding + Lclassification (3)

This loss is then averaged over the mini-batch of shapes.

3.3. Unicode Training

Adaptive Loss Weighting For each pair of representa-

tions used to compute Lreconstruction, we prescribe a weight

parameter wx→y to scale the loss term. This is done be-

cause different representation losses (chamfer distance, bi-

nary cross-entropy, and MSE) produce values that are a few

orders of magnitude apart. At the start of each epoch (i.e.,

a complete run over the whole dataset) we compute these

Multi-view Point Cloud Voxel Grid

Joint

Solo

Figure 2: Top: t-SNE plots of each input representation’s

projection to the Shape Unicode space (for consistency, we

ran t-SNE on the union of embeddings, and visualized each

embedding using the same axes). Our joint code space,

driven by pairwise code differences, maps inputs from mul-

tiple representations to similar points. Points from the same

class have the same color. Bottom: Codes trained with three

independent autoencoders lack similar consistency.

weights and keep them fixed for the epoch. Specifically, we

pick a random mini-batch and compute weights wx→y s.t.

wx→y × Lx→y = Lmax, where Lmax is the maximum loss

value among those 9 terms for that mini-batch. The cho-

sen mini-batch for adaptive weighting is selected at random

before training begins, and is unchanged thereafter.

Training Parameters Our joint code space is 1024-

dimensional. We feed all 3 representations for each shape in

a batch. We use a mini-batch of 16 shapes, with Adam opti-

mizer [15] and a learning rate of 0.001 during both our joint

training and subsequent task-level training , with the excep-

tion of the dense correspondence task which uses a learning

rate of 0.0001. More architecture and training details are

illustrated in the supplementary material.

4. Results

In this section, we present different evaluations of our

unified encoding of shape representations. First, we de-

scribe the training datasets used for all our experiments.

Then, we qualitatively study the embeddings produced by

the three representation encoders, and show that a single

code is successfully invertible to any of the source rep-

resentations. We also show that the codes form a rea-

sonably compact space that allows interpolation between

shapes, with synthesis of plausible, novel intermediates,

regardless of input representation. Finally, we present

quantitative comparisons against several ablations of our

method, using classification accuracy as the evaluation met-
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ric. We also compare against alternative architectures that

use multi-representation ensembles [10] and code concate-

nation. In the next section, we present further evaluations

of our method in the context of applications to standard

shape analysis tasks (segmentation, correspondences, and

retrieval), and show that the jointly trained encoding leads

to measurable improvements in all these tasks.

Datasets. We use the ShapeNet dataset [3], using 35763

shapes for training, 5133 for validation, and 10265 for test-

ing, following the split used in prior work [34]. The shapes

are categorized into 55 classes that we use in our classi-

fication loss (the code is not category-specific). Original

models are stored as polygon meshes, and we use standard

tools to derive all three representations – voxel grids, point

clouds, and multi-view images – from each mesh.

Embedding similarity. Having a joint code space where

multiple representations map to the same code allows us

to have a unified training pipeline for all applications that

the code may be used for. Given a common output repre-

sentation, our application-specific models trained over this

code space are thus shared across representations. In addi-

tion, any test-time representation can now account for the

missing representations by hallucinating their code. This

eliminates the need to spend time searching for a perfect

representation for a task. It also makes it possible to train

when ground truth comes in a mix of representations (e.g.,

if training data is compiled from multiple sources), or if rep-

resentation at test time differs from training data.

Figure 2 shows a t-SNE plot of the embedding space as

computed on the ShapeNet Test dataset of 10265 shapes,

for each of the three input representations. Each 2D point

in the plot is colored according to one of 55 class indicators.

We observe that the class-level clusters are well-formed and

separated from other classes, while the embeddings remain

similar for all three representations (top row, joint). In

contrast, codes trained individually per input representation

(i.e. training each encoder/decoder pair individually) do not

have this consistency (bottom row, solo).

Translation and Reconstruction. By training our model

in a reconstruction/translation setting, we ensure that each

representation’s code preserves geometric cues from all rep-

resentations. In addition to making the code space rich

in information, our trained model can be directly used

for inter-representation translations. While some transla-

tions are simple, such as 3D to 2D representations or fine

to coarse representations, our model also provides non-

trivial Voxel→Point Cloud, Multi-View→Point Cloud and

Multi-View→Voxel translations. Figure 3 shows some sam-

ple reconstruction and translation results (see supplemen-

tary materials for additional examples). One trend we ob-

served is that translations to voxels are of a marginally lower

Source
Target

MV

VOX

PC

MV VOX PC

Figure 3: Shape reconstruction and translations between all

three representations, for three test shapes.

MV

VOX

PC

Figure 4: Shape Generation: We linearly interpolate be-

tween a source shape’s code (Leftmost) and a target shape’s

code (Rightmost), and decode the intermediate novel codes

to chosen representations. Decodings to the other two rep-

resentations are shown in supplementary material.

quality than translations to other representations; a precur-

sor to the fact that voxels benefit most from joint training,

as shown in later discussions.

Interpolation and Generation. Even though our model

is only halfway to a variational auto-encoder – it does not

impose a global distribution constraint – the various losses

induce it to learn a fairly compact distribution, yet with

well-separated classes. As a result, we can attempt some

shape interpolation tasks in this space, by linearly interpo-

lating between the codes of source and target shapes, and

decoding the intermediate codes to any desired representa-

tion. This is quite successful: we show three examples in

Figure 4, for three different representations. In the supple-

mentary material, we show that each intermediate code in

the figure can also successfully generate the two remain-

ing representations. We observe that these novel codes

smoothly effect both geometric and topological changes

such as generating chair arms.
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Ablations. We show that different ablations of our joint

training model result in reduced performance. As a canon-

ical task for these ablations, we choose classification of the

10265 test shapes into the 55 ShapeNet classes. After train-

ing the encoders/decoders, we freeze them and train a sim-

ple classifier on top of them (3 fully-connected layers of size

512, 256 and 55, + softmax). The classifier shares weights

across all input representations since it operates on a unified

code space, except for the first two ablations below, where

the codes are not expected to be similar across representa-

tions and sharing weights would be an unfair disadvantage.

The ablations we perform are:

Solo Training∗: The encoder/decoder pair for each input

representation is trained independently, without any

cross-representational losses.

Without Embedding Loss∗: Joint training without the L1

loss forcing codes generated by different encoders for

the same shape to be identical.

Without Translation Loss: Joint training without transla-

tion losses (reconstruction losses when encoder and

decoder are for different representations).

Without Classification Loss: Joint training without the

classification loss.

(* 3 independent classifiers)

The results are in Table 1, for each input representation

(multi-view, point cloud, or voxel grid) of ShapeNet test

shapes. It can be observed that joint training with all the

losses produces the most informative code under this met-

ric, outperforming independently trained autoencoders even

when the latter have dedicated classifiers. A key takeaway

from this table is that Shape Unicode disproportionately

improves classification of shapes input as voxel grids, by

1.72%. The performance for multi-view and point cloud in-

put, which were already quite high with solo training, does

not change much. However, the underperforming represen-

tation gets a free boost by being forced to mimic codes from

the high-performing representations. It is important to note,

that only one representation is given to the network at test

time, so a better code is derived from a weak representation

with our method. We will see this pattern recur in our shape

retrieval experiments.

Code Fusion Alternatives. We further test existing

strategies for using ensembles of multiple representations.

These techniques assume all of the latter are available at test

time, while our method needs only one representation for

testing. Weighted fusion [10] combines predictions based

on several representations by taking a weighted average of

the classification probabilities, with learned weights. Code

concatenation [21, 38, 29] concatenates the codes output

by each representation’s model and layers a predictor on

Multi-View Point Cloud Voxels

Shape Unicode 83.38 84.23 82.48

Solo Training∗ 83.53 84.07 80.76

W/o Embedding∗ 81.61 81.77 81.11

W/o Translation 81.72 82.36 79.01

W/o Classification 81.91 82.28 81.67

Table 1: ShapeNet classification accuracy, for our method

vs ablations with different loss terms turned off. Solo train-

ing means all joint, cross-representational losses are turned

off and the individual autoencoders are trained indepen-

dently. The simple classifier, trained after freezing the

codes, shares weights across all three input representations

except in the first two ablations (marked with ∗), where we

train three independent classifiers so as not to unfairly dis-

advantage them.

Multi- Point Voxels

View Cloud

Shape Unicode 83.38 84.23 82.48

Weighted Fusion 81.54

Code Concatenation 81.53

Table 2: Comparison with code fusion alternatives, on

ShapeNet classification. Since fusion combines all 3 rep-

resentations into a single prediction, only one value is com-

puted for these rows.

top of the combined code. We re-used our encoder/decoder

architectures in the above ensemble strategies, so that base

architectural differences were not a factor. The ShapeNet

classification results are shown in Table 2. Our model out-

performs both code fusion strategies by a significant mar-

gin, while still employing a single shared classification net-

work and without needing all representations during pre-

diction. We found that adaptive loss weighting plays an im-

portant role when combining multiple representations, since

the losses are highly asymmetric in magnitude.

5. Applications

In this section, we present unified pipelines built on

top of Shape Unicode for three fundamental shape analysis

tasks: segmentation and labeling, dense correspondences,

and retrieval. For each task, we build a framework to ingest

codes generated from any representation, and process them

identically. Note that the encoders producing the code are

frozen for these tasks and not further tuned: the pipelines

operate on a single, standard code. Our goal is to show that:

1. Even with relatively simple encoder/decoder architec-

tures and coarse input representations (just 323 vox-

els, 1024 points, 4 views), our pipelines compare
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1st segment 2nd segment L
th segment3rd segment

Figure 5: Shape segmentation architecture. Representation-

agnostic, per-label decoders map an input unicode to point

clouds for shape parts.

quite well with the state of the art and are entirely

representation-agnostic.

2. The jointly trained code is enriched by multiple

representations during training, enabling the unified

pipelines to outperform comparable architectures sep-

arately developed for each individual representation.

3. The use of our common code equalizes performance

across input representations for all tasks.

5.1. Shape Segmentation

We perform shape segmentation on ShapeNet, and com-

pare our accuracy to state-of-the-art methods. The ground

truth is labeled point clouds. Prior methods have found

ways to compare voxel, mesh or multi-view solutions to

these points (e.g. through surface projections). However,

with Shape Unicode we can directly map any unsegmented

input representation to a segmented point cloud, using a sin-

gle segmenting decoder that ingests the common code.

Since our shape code describes the entire shape, we

need to derive per-point labels from it. We pass the pre-

trained shape code (regardless of which encoder produced

it) through L part decoders with identical architecture,

where L is the number of ground truth part labels in the

shape class (Figure 5). Each part decoder is a series of fully

connected layers mapping the code to 3025 points describ-

ing the part. We train the decoders with a Chamfer distance

loss [5] w.r.t. the ground truth segments. Since these have

varying cardinalities, we map the outputs to the query points

with nearest neighbor lookup. As in prior methods, we train

independently for each shape category in this experiment.

Average Segmentation Accuracy

WUNet [22] 90.24

ShapePFCN [12] 89.00

Joint 86.73 87.26 86.79

Solo 85.73 85.05 –

Input → Point Cloud Voxels Multi-View

Table 3: Overall ShapeNet segmentation accuracy.

Unicode Query {x,y,z} × 341

Q descriptor P descriptor N descriptor

Triplet loss

Unicode Unicode+ve {x,y,z} × 341 -ve {x,y,z} × 341

Descriptor
Network

Descriptor
Network

Descriptor
Network

Shared weights Shared weights

Figure 6: Shape correspondence training setup. Two cor-

responding points and one mismatched point, whose coor-

dinates are concatanated with the unicodes of their parent

shapes, are independently mapped to descriptors by a net-

work, followed by a triplet loss.

We report segmentation accuracy in Table 3. Our re-

sults (“Joint” row) compare quite well with the state of

the art, and are consistent enough to be completely in-

put representation-agnostic. While we undoubtedly exploit

consistent alignment of shapes, we did not spend much

time optimizing the decoders or using specialized layers

like CRF. As an ablation, we show results generated from

“solo” codes trained on individual representations. For

point clouds, we use the same setup. For voxel grids, we do

not assume we can freely translate it to a different represen-

tation. Instead, we use part decoders that each output a 323

voxel grid for the part. The labeled voxel centroids are com-

pared to the GT point cloud. For multi-view, we cannot triv-

ially compute per-point accuracy since the 2D→3D projec-

tion is hard: hence we omit it. Our unicode approach makes

it possible to accommodate input representations like multi-

view in a single, consistent, training and testing framework.

The jointly trained codes yield a 1-2% improvement over

solo codes in case where both exist. Per-class accuracies

are provided in supplementary material.

5.2. Dense Shape Correspondence

In this experiment, we use the shape code for estimat-

ing dense point correspondences. Again, since our code

does not provide precise per-point information, we need a

new network for correspondence evaluation. This network

ingests the x, y, z coordinates of a point on the shape (re-

peated several times to fix dimensional imbalance), along

with the unicode, and outputs a 16-D point descriptor (Fig-

ure 6). This point descriptor can later be used to compare

points across shapes and form correspondences between

them. We learn the point descriptors using triplets of two

corresponding and one non-corresponding points [28], se-

lected using Semi-Hard Negative Mining. We do this for

voxels and point clouds inputs, since the ground truth is in

the form of point sets. For point cloud inputs, the x, y, z

are simply point coordinates, while for voxels they are the

indices of the grid cell that contains the point. We train this

model using approximate correspondences obtained with

non-rigid alignment on ShapeNet [11].
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Figure 7: Dense correspondence: Euclidean distance from

ground-truth point (x-axis) vs Accuracy (y-axis) with Shape

Unicode, solo code and LMVCNN on the BHCP dataset

[14]. Note that LMVCNN is rotation-invariant, and does

not leverage the fact that the dataset is aligned. It is thus

provided only as a reference.

We test on the BHCP benchmark [14], which contains

100 shapes each of Airplanes, Bikes, Chairs and Helicopters

with manually annotated keypoints. We train the network to

extract point descriptors independently for each category.

Note that our training data excludes helicopters, hence we

use the model trained on airplanes in this case [11]. Since

our unicode model was trained on the aligned+normalized

ShapeNet dataset and isn’t rotation-invariant, we align and

normalize the BHCP shapes similarly to ShapeNet shapes.

To evaluate our results, we use standard criteria, report-

ing the fraction of points falling within the ground truth cor-

respondence at each distance threshold (Figure 7). Note that

our method performs consistently well with either represen-

tation as input, when the code is trained jointly (red), while

results degrade for codes trained on only one representation

(green). The comparable method of LMVCNN [11] per-

forms even worse, but this is an unfair comparison, provided

only for reference, since LMVCNN is rotation-invariant

while Shape Unicode is not. Also note that our model, like

MVCNN, generalizes to the unseen helicopter class.

5.3. Shape Retrieval

We perform shape retrieval using our joint code and eval-

uate it against methods presented as part of the SHREC’17

retrieval challenge [27]. We use our 3-layer classification

network described in Section 4. Retrieval is then performed

for a query shape by selecting other shapes of the same pre-

dicted class as the query shape. This selection is then sorted

by confidence of class prediction indicated by the output

class score. We evaluate using F1-score as implemented in

benchmark software [27] and present the results in Table

4. We compute both micro and macro averaged versions

of this metric, with the former accounting for class popula-

tion sizes and the latter without any weighting. The results

Micro F1 Macro F1

RotationNet 0.80 0.59

GIFT 0.77 0.58

ReVGG 0.77 0.52

MVCNN 0.76 0.58

PC Joint 0.73 0.50

PC Solo 0.73 0.49

MV Joint 0.72 0.48

MV Solo 0.72 0.48

DLAN 0.71 0.51

Vox Joint 0.71 0.48

MV FusionNet 0.69 0.48

Vox Solo 0.68 0.46

CMCNN 0.48 0.17

ZFDR 0.28 0.20

VoxelNet 0.25 0.26

Table 4: Shape retrieval comparison against methods in

SHREC’17 [27]

in Table 4 are sorted by Micro F1, with ties resolved by

Macro F1. Our approach (Joint) achieves comparable re-

sults to other methods, with any input representation. As

in other cases, training each representation independently

(Solo) noticeably damages performance on voxel grids.

6. Conclusion

We have presented a framework for generating a joint

latent space for 3D shapes that can be encoded from any

input representation, and either decoded to another repre-

sentation or used directly for tasks such as shape classifica-

tion, retrieval, correspondence estimation, or segmentation.

We demonstrate that a code derived from multiple represen-

tations is more informative and leads to better quantitative

results even if only one representation is available at test

time. Future techniques can build on our framework to cre-

ate representation-invariant methods. This would reduce the

time spend searching for a perfect representation for a task,

would facilitate training when ground truth comes in a mix

of representations (which often happens when it’s borrowed

from multiple sources), and also help when the representa-

tion at test time is different from the training data.

Although we have only explored voxel, point cloud, and

multi-view renderings in this work, it is natural to use ad-

ditional representations such as atlases [8], patch-based oc-

trees [36], or surfaces [17] to further increase the represen-

tative power and generalizability of the latent code. Our

core architecture is also developed for encoding the entire

shape. While we provide a way to decode this into more

detailed per-point signals, it would be interesting to create

tools for deriving a universal code for on-surface features

that could better capture fine-scale geometric detail.
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