
Recurrent Neural Networks with Intra-Frame Iterations for Video Deblurring

Seungjun Nah Sanghyun Son Kyoung Mu Lee

Department of ECE, ASRI, Seoul National University, Seoul, Korea

seungjun.nah@gmail.com, {thstkdgus35, kyoungmu}@snu.ac.kr

Abstract

Recurrent neural networks (RNNs) are widely used for

sequential data processing. Recent state-of-the-art video

deblurring methods bank on convolutional recurrent neural

network architectures to exploit the temporal relationship

between neighboring frames. In this work, we aim to im-

prove the accuracy of recurrent models by adapting the hid-

den states transferred from past frames to the frame being

processed so that the relations between video frames could

be better used. We iteratively update the hidden state via re-

using RNN cell parameters before predicting an output de-

blurred frame. Since we use existing parameters to update

the hidden state, our method improves accuracy without ad-

ditional modules. As the architecture remains the same re-

gardless of iteration number, fewer iteration models can be

considered as a partial computational path of the models

with more iterations. To take advantage of this property, we

employ a stochastic method to optimize our iterative mod-

els better. At training time, we randomly choose the itera-

tion number on the fly and apply a regularization loss that

favors less computation unless there are considerable re-

construction gains. We show that our method exhibits state-

of-the-art video deblurring performance while operating in

real-time speed.

1. Introduction

Videos captured in dynamic environments typically con-

tain blurs where the relative motions occur. Hand-held cam-

eras are more likely to be shaken during shooting, and fast-

moving objects can exist at any time in the scene. Espe-

cially, a long exposure time is required in the low-light en-

vironment or for the widely used mobile cameras. Since the

motions during the exposure time directly cause the blurs in

captured frames, blurs are among the most common degra-

dation artifacts in videos. Those motions of various ob-

jects or a camera give rise to spatially non-uniform blurs

that make the deblurring problem challenging. In real-world

scenarios, the problem becomes more challenging since the

sharp video frames should be recovered without knowing

the information of the spatially varying motions or the lo-

cal blur kernels. Furthermore, abrupt motions often cause

severe blurs with diverse strengths and types.

In video deblurring, it is crucial to analyze the relevant

information between consecutive frames as well as the in-

formation in the target frame. In recent deep neural network

based approaches, several designs of CNNs and RNNs are

adopted to incorporate temporal information. Su et al. [34]

introduced a 2-stage approach to handle misplacement from

large motions between frames and the fuse information be-

tween the frames. A sequence of frames is spatially aligned

to the middle frame by homography or optical flow. Those

frames are then fed into a CNN to get a deblurred middle

frame. On the other hand, Wieschollek et al. [39] and Kim

et al. [18] proposed recurrent network architectures that can

operate on arbitrary length videos. While [39] used infor-

mation from past frames by simply copying features, [18]

presented a Dynamic Temporal Blending module on a fast

RNN. The module blends the hidden state from past frames

and feature from the current frame to transfer the temporal

information through hidden states.

These neural network-based approaches mainly focus on

how to adopt the related information from the neighboring

frames to restore the target frame and show significant im-

provements. However, these methods try to handle tem-

poral relation in a single-step operation, which may not be

optimal. Traditionally, the difficulty of estimating motion

information or blur kernel from multiple frames was miti-

gated by iterative estimation steps [44, 41, 17, 1, 31]. Fur-

thermore, handling the neighbor frames with the alignment

from optical flow [34] or heavy neural network [39] is ex-

pensive in computation. Thus, to resolve these issues, tem-

poral information transfer method both fast and more opti-

mal is required.

We set up a baseline model in a light and fast convolu-

tional RNN architecture that exploits the inter-frame infor-

mation. Like [18], we deliver information from past frames

to the current frame in the form of hidden state. To let the

propagated hidden state fit to the target frame, we employ

18102

(a) Input blurry image Bt (b) Our deblurred image Lt, IFI-RNN (C2H3-reg)

(c) i Blurry (d) RDN [39] (e) DBN+OF [34] (f) OVD [18] (g) RNN (h) IFI-RNN

Figure 1: Deblurring results comparison with the state-of-the-art methods. (g) result of our model with dual RNN cells

without iteration. (h) result of our 3-iteration model with stochastic regularization (IFI-RNN (C2H3-reg)).

an iterative hidden state update scheme within a single inter-

frame time-step. We refer to this operation as intra-frame

iterations. As the intra-frame iteration is in the same form

as inter-frame operation, no modification of the architec-

ture or additional parameters are required. Additionally, we

investigate and analyze the schemes of intra-frame recur-

rence by varying the composition of the RNN cells. (i.e.,

single-cell and dual-cell methods) We experimentally show

that the proposed intra-frame recurrence scheme results in

substantial improvements in the restoration accuracy.

We train each model with a predefined intra-frame it-

eration number. On average, more iterations bring perfor-

mance improvements. However, not all frames are best re-

stored from the maximum number of iterations. As this is

the case when more computation induces degradation, we

cast this as an imperfect optimization issue. We adopt a

stochastic strategy [36] to employ regularization effect to

improve iterative models. As the models with different iter-

ation numbers share an architecture, we regard less iteration

models as parts of larger iteration models. During train-

ing, the number of internal iterations is chosen randomly.

However, our regularization loss term favors fewer calcu-

lations. Several works have been reported that training a

model with partial computation paths at random improves

accuracy [33, 38, 13, 9, 36]. We implement the training by

using a gating unit that decides iteration numbers. Note that

our primary goal is to improve performance by regulariz-

ing RNN cells. Therefore, we drop the gating function at

inference and prevent the model from showing a stochastic

or adaptive behavior. The result of our regularized dual-cell

method is displayed in Fig. 1.

Our contributions in this paper is summarized as follows:

• We present a simple yet effective RNN-based video

deblurring method that exploits both the intra-frame

(internal) and inter-frame (external) recurrent schemes.

By updating the hidden state multiple times internally

during a single time-step, our model produces better

results without modifying the architecture.

• We study various types of intra-frame iteration strate-

gies. For recurrent networks with different internal cell

parameters, we investigate the effect of partial recur-

rence to investigate more optimal hidden state update

strategy.

• Finally, we develop a single model that can be trained

to handle various internal recurrence paths (iterations).

Our loss function is composed of a data term that aims

to minimize restoration error and a prior term that fa-

vors shorter computation path. We train our multi-path

network in a stochastic way. Owing to the regulariza-

tion effect of the stochastic training that prevents the

co-adaptation of layers, the flexible intra-frame itera-

tive model provides more improved deblurring results.

• Through extensive empirical tests and evaluations, we

demonstrate the superiority of the proposed model

over the current state-of-the-art methods in both de-

blurring accuracy and computational efficiency.

8103

2. Related Works

In this section, we describe previous works related to our

research.

Video Deblurring

In the early studies of video deblurring, the concept of

lucky imaging was adopted where sharp contents replaced

the blurry ones in pixel [29] and patch [5] level. Later, de-

convolution based methods were widely studied where ker-

nels are estimated from inter-frame relation. Temporal in-

formation was exploited to predict the global motion and to

generate a sharp panorama scene from a blurry video [25].

To handle differently blurred regions, Wulff and Black [41]

studied layered blur model that segments an image into lay-

ers and deconvolved each layer separately to improve the es-

timation of both the blur kernels and the latent image. Kim

et al. [17, 19] proposed a segmentation-free dynamic video

deblurring method where locally varying blur kernels were

approximated from bidirectional optical flows. These meth-

ods formulate the problem as a non-convex energy mini-

mization framework of which variables include the local

blur kernels and the latent images. Thus, many deconvo-

lution algorithms for deblurring [15, 16, 44, 17, 35] resolve

this issue by iteratively optimizing the energy function.

Recently, [30, 34] introduced video datasets that con-

tain realistic blurry frames and corresponding sharp ground-

truth frames. As the frames in a video recorded by a high-

speed camera are sharp and slowly changing, the average

of several subsequent frames can mimic a blurry frame cap-

tured at a longer exposure. With the advent of realistic blur

datasets, there have been proposed a few deep learning-

based methods for single image [30] and video [34] de-

blurring. Similarly, Wieschollek et al. [39] synthesized the

training data by downsampling and interpolating 4k-8k res-

olution videos.

Su et al. [34] proposed a CNN-based algorithm called

DBN. It takes a stack of 5 successive frames as an input and

deblurs the middle frame among them. To handle severely

blurred frames, they also aligned their input frames with

the optical flow as a pre-processing. On the other hand,

RDN [39] uses an encoder-decoder architecture model that

can process arbitrary length videos. RDN utilizes temporal

skip connections so that features extracted in the previous

frames can directly propagate to the next frame. In advance,

OVD [18] proposed a recurrent network whose hidden state

carries the temporal information from the past time-steps.

In the recurrent architecture, they added a dynamic tempo-

ral blending module so that the hidden state from the previ-

ous time-step is adapted to the current frame. Furthermore,

Spatio-temporal Transformer Network [20] was applied to

improve DBN and OVD by making use of long-range pixel

correspondences.

In this paper, we aim to improve the deblurring qual-

ity using recurrent neural networks by updating the hidden

states to be more optimal for predicting the output. In the

viewpoint of making better use of hidden states, our work

is closely related to [18, 20]. However, we reuse existing

parameters without introducing any extra module.

Burst Deblurring

Under low-light conditions, a burst of photographs is

likely to be blurred due to hand tremor. In [43, 3] the sparse

prior of blur kernels and spatial gradient of latent images

are investigated to obtain sharp images. On the other hand,

some alignment-free methods were suggested by posing a

joint problem of multiple image registration and deblur-

ring [42, 4, 45].

Then, Delbracio and Sapiro [6, 7] presented a simple

yet efficient burst deblurring method without relying on

kernel estimation and deconvolution. They utilized spec-

tral information in the Fourier domain where information

from less blurred images is more weighted. Wieschollek et

al. [40] further extended [6] by learning a hybrid network

that decides the weights for Fourier burst accumulation and

the deconvolution filter. Furthermore, a recently proposed

permutation-invariant model by Aittala and Durand [2] im-

proved the restoration quality significantly in the presence

of noise, blur, and saturation. We also augment noise in the

training process like [2, 30].

Stochastic Neural Network Training

Most of the neural networks are designed to process

equally for every input. However, training the networks as

it is not always known to be optimal. Therefore, several

randomized training strategies have been proposed to reg-

ularize the optimization process. The most classical types

of stochastic regularization techniques are Dropout [12, 33]

and DropConnect [38]. While Dropout randomly deacti-

vates the outputs of fully-connected layers, DropConnect

disconnects the weights of the layer at training time. They

are known to prevent co-adaptation of features and regular-

ize the network to avoid overfitting.

In ResNets [10, 11], residual blocks contain shortcut

connections where their inputs are directly headed to the

output in parallel with convolution features. Veit et al. [37]

observed that this could be interpreted as an ensemble of ex-

ponentially many shallower networks. In ResNets, surpris-

ingly, removing or permuting several layers do not cause

catastrophic degradation. Furthermore, ResNets trained

with random skips of residual blocks showed ameliorated

classification accuracy [13]. Similarly, FractalNet [24]

showed that drop-path training could also exhibit regular-

ization effect.

Recently, more advanced stochastic training techniques

were proposed, letting the stochastic path to be chosen by

the model itself. Graves [9] proposed an adaptive computa-

8104

tion time (ACT) algorithm where the number of recurrence

steps between the inputs is decided by the network with

an estimated halting score, instead of using a predefined

fixed number of iterations. Figurnov et al. [8] extended the

ACT to spatial locations of ResNets [11] so that every pixel

would have different network depth.

The most relevant study to ours is the work by Veit and

Belonge [36]. They added a gating unit in each block of

the ResNet that could switch-off rather irrelevant layers.

To computationally benefit from the switching, the output

from the gates should be hard binary rather than being soft.

The training of the hard gate is enabled by using the back-

propagation with Gumbel-SoftMax relaxation [14, 28]. In

contrast to the previous methods focusing on acceleration

with a moderate increase in error, they exhibit improved ac-

curacy compared to the original ResNet for image classifi-

cation.

In our experiments, we find that several different num-

bers of intra-frame iterations are beneficial in general.

Hence, we conjecture that training a single generic model

that could operate in the variable number of intra-frame it-

erations is possible, regarding the shared architecture be-

tween our models. We aim to benefit from regularization

effect through training our model in stochastic paths. To let

our model decide the iteration number itself, we implement

a stochastic gate function that determines if additional iter-

ation is to be used or not. To jointly train the gate as well as

the main network, we design a regularization loss term that

favors less computation together with the content (L2) loss.

We adopt the Gumbel-Softmax trick [14, 28] that has been

used in [36] to route the model in a single prediction path

that is discretely decided from the iteration number. Our

regularized models exceed their original models in deblur-

ring performance, both quantitatively and qualitatively.

3. Proposed Method

In this section, we describe how we develop our model.

In section 3.1, we describe our baseline RNN model and

the formulation terminologies. In section 3.2, we explain

the concept of our intra-frame iteration model and analyze

possible iteration strategies. Lastly, we describe more ad-

vanced training methods for our intra-frame iteration RNN

in section 3.3.

3.1. Recurrent Video Deblurring Networks

Let us denote the blurry video, ground-truth sharp video,

and the predicted latent video as B = {Bt}, S = {St},
L = {Lt} with the frame index t ∈ {1 . . . T}, respectively.

We construct our baseline architecture as a recurrent neu-

ral network so that temporal information can propagate over

video frames like [18]. Then, our network operates on the

blurry input video by following recurrence operation.

(Lt,ht) = F (Bt,ht−1) ,

whereF refers to our RNN cell. The cell consists of sev-

eral components,FB,FR,FL,Fh as shown in Fig. 2. First,

FB extracts the feature fBt
from a blurry frame. Then, FR

produces the intermediate feature fBt
that is used for FL

and Fh to estimate the latent frame Lt and hidden state ht,

respectively. ht is the hidden state that is produced at t-th

time-step and will be propagated to t + 1-th time-step. We

initialize h0 with zero.

The RNN cell consists of strided convolutions (FB) fol-

lowed by ResBlocks (FR, Fh) and up-convolutions (FL).

Note that we use ResBlocks without batch normaliza-

tion [30, 26]. Please refer to the supplementary materials

for layer specifications.

We train our baseline model with the L2 loss between

the estimated latent video and the ground-truth sharp video

such as

Lcontent =
1

TCHW

T
∑

t=1

‖Lt − St‖
2

2
,

where C, H , W denote the number of channels (3 for

RGB color videos), height, and the width of the training

samples, respectively.

3.2. Intraframe iteration Models

The most crucial part of RNNs against CNNs is the hid-

den state that brings the performance gain as CNNs have

no temporal connections. Therefore, it is essential to have

good hidden states so that they could better help to predict

more accurate outputs at the current frame as well as at the

next frame. In this regard, we attempt to make better use

of hidden states by intra-frame iteration before passing it to

the next RNN cell.

We implement this idea by utilizing our baseline RNN

cell architecture. First, we compute the initial hidden state

ĥ
0

t at a certain time step t from the blurry input Bt and

the previous hidden state ht−1 using our RNN cell. Then,

we feedback ĥ
0

t to the cell again without changing Bt to

update the hidden state. After updating the hidden state for

N iterations, we finally generate a latent output frame Lt at

that time step with the updated hidden state ĥ
N
t . Note that

the blur feature extractor FB and the latent frame estimator

FL are used only once despite the number of iterations.

We provide two different types of iteration: the single

cell and the dual cell method. In the single cell method,

we use the same parameters to estimate both the initial hid-

den state and the updated hidden state. On the other hand,

in a dual cell method, we use two RNN cells and use each

of them for a different purpose. Only the second cell is

used to update the hidden states and predict latent frames.

Although the dual cell method requires more parameters

8105

(a) Recurrent cell architecture

(b) ResBlock [30, 26]

(c) RNN at t-th frame

Figure 2: The baseline architecture of IFI-RNN (Ours)

(a) Training with fixed iterations (b) Stochastic training (single cell) (c) Stochastic training (dual cell)

Figure 3: Training methods of IFI-RNN using different hidden state update schemes.

than the single cell approach, it can bring significant per-

formance gain as different sets of parameters can dedicate

to different roles. From now on, we denote the single and

dual cell models with prefix C1 and C2, respectively. Also,

we put a suffix H with the hidden state iterations. For ex-

ample, C2H2 denotes the dual cell model which updates its

hidden state two times.

We describe the two intra-frame hidden state updating

methods in Algorithm 1. In an architectural viewpoint, our

methods virtually increase the depth of RNN cell, enlarg-

ing the receptive field and its capacity. In other words, our

hidden states can be better optimized by a virtually deeper

model.

3.3. Regularization by Stochastic Training

The performance gains from iteration, however, become

marginal for higher iteration models. For example, the

C1H4 model (single cell four iterations) does not perform

better than C1H3 model in Fig. 5. We also observe that for

each image, the best performing model is not always the

one with more iterations. Fig. 4 shows the number of im-

ages that are best restored by the single-cell method with

different iterations. Although many images prefer more it-

erations for better restoration, a nontrivial amount of images

favor lesser iterations. Since we use the same RNN cell for

each iteration, it is natural to conjecture that we can train

a model that can deblur each input frame with different it-

Algorithm 1 Deblurring with intra-frame hidden state up-

date

1: procedure SINGLE CELL METHOD(Bt,ht−1)

2: fBt
= FB (Bt)

3: ĥ
0

t ← ht−1

4: for i = 1 . . . N do

5: f i
R = FR

(

fBt
, ĥi−1

t

)

6: ĥ
i
t = Fh (fR)

7: ht ← ĥ
N
t

8: Lt = FL

(

fN
R

)

9: return Lt,ht

1: procedure DUAL CELL METHOD(Bt,ht−1)

2: fBt,1 = FB,1 (Bt)

3: fBt,2 = FB,2 (Bt)

4: ĥ
0

t = Fh,1 (FR,1 (fBt
,ht−1))

5: for i = 1 . . . N do

6: f i
R,2 = FR,2

(

fBt,2, ĥ
i−1

t

)

7: ĥ
i
t = Fh,2

(

f i
R,2

)

8: ht ← ĥ
N
t

9: Lt = FL

(

fN
R,2

)

10: return Lt,ht

8106

erations in a stochastic way. Therefore, we attempt to take

advantage of the regularization effect from using stochastic

computational path for training.

First, we add a gating unit g(·) ∈ {0, 1} that looks into

the hidden state and decides if the model will compute one

more iteration or not. We calculate the score for iteration

by global average pooling [27] followed by two fully con-

nected layers activated by ReLU [23]. Then discrete binary

sampling is done with the Gumbel-SoftMax trick [14, 28].

At the training time, when the gate is on, we update the

hidden state once more. Otherwise, we stop the iteration

and return the deblurred frame. Second, we employ a reg-

ularization term, that favors fewer iterations when the loss

is already small enough. We set a target average iteration

ratio, τ = 0.75. Compared to the models with a fixed itera-

tion number, this loss prefers stopping the iteration with the

probability of 1− τ . We define the term as L2 loss between

the average gate activation over a mini-batch with iterations

and τ .

Lreg =
1

T

T
∑

t=1

N
∑

i=1

(

E
[

git
]

− τ
)2

,

where E [·] is an average operation, git = g
(

ĥ
i
t

)

at it-

eration i at time-step t, and N is the maximum iteration

threshold we set during training. Thus, our final loss term

becomes

Ltotal = Lcontent + λLreg,

with λ as the weight for the regularization term. Note

that our primary purpose of the stochastic training is to im-

prove the results by regularizing the co-adaptation of pa-

rameters, rather than making our model to show stochastic

behavior. So, we remove the gating unit after training so

that the system provides the results of a specified number of

iterations.

The performances of regularized models are shown as

dotted lines in Fig. 5. We add ’-reg’ suffix to our IFI-

RNN models to refer models trained with regularization like

C2H3-reg.

4. Experimental Results

4.1. Datasets

We have tested our algorithm (denoted as IFI-RNN) on

the GOPRO dataset [30]. The GOPRO dataset contains

2103 training samples from 22 sequences and 1111 eval-

uation samples from 11 sequences. We generated blur and

sharp image pairs from 240 fps videos. Those high-speed

video frames are averaged in a gamma-transformed domain

to mimic images taken in longer exposure time with nonlin-

ear camera response function (CRF). To suppress the noise

1 2 3 4
Iterations

0

200

400

600

800

1000

Im

ag
es

of best restored images
of images restored by C1H4

Figure 4: Blue bars show the number of images that are

best restored by the single-cell method according to the it-

erations. Orange bar represents the total number of images

restored by C1H4 model. We used downsampled GOPRO

test images [30]. Refer to section 4.1 for details.

15 20 25 30 35 40
time per frame (ms)

28.6

28.8

29.0

29.2

29.4

29.6

29.8

30.0
PS

NR
 (d

B)

H1

H2 H3
H4

H1 H2 H3 H4

C1
C2

Regularized
Regularized

Figure 5: PSNR and the running time of our methods,

evaluated on downsampled GOPRO test set at resolution

960× 540. Refer to section 4.1 for details.

and video compression artifacts, we downsampled the orig-

inal video resolution from 1280× 720 to 960× 540 before

averaging.

We also use a similar dataset from Su et al. [34]. This

dataset also consists of paired samples synthesized from

240 fps videos. It provides 61 sequences containing 5708

training pairs and 10 sequences including 1000 evaluation

pairs. However, we do not evaluate with the method pro-

posed by Köhler et al. [22] as [34]. Instead, we evalu-

ate PSNR and SSIM as is without post-processing such as

alignment. In addition to the original captured frames, they

interpolate intermediate sharp frames from optical flow es-

timation to generate smooth blur frames. The original and

8107

interpolated frames are averaged altogether to synthesize

blurs under linear CRF assumption.

To compare our method with previous methods, we use

the test video sequences from the above two datasets except

for the first four frames and the last frame in each video, as

[18] does not provide the results for them. Also, we show

the deblurring results of real videos to demonstrate the gen-

eralization capability of our method.

4.2. Implementation details

We train our models on the GOPRO dataset [30] with

ADAM optimizer [21] where β1 = 0.9 and β2 = 0.999.

We train each model for 500 epochs in total. Beginning

from the initial learning rate of 10−4, we anneal the learn-

ing rate by half after every 200 epochs. We set the regu-

larization loss weight λ = 10. During training, we sample

12-frame 256× 256 RGB patch sequences from the dataset

to construct a mini-batch of size 4. Random augmentations

are applied to those samples with geometric transforms in-

cluding vertical and horizontal flips as well as 90o rotation.

Also, we add zero-mean Gaussian noise to blurry inputs,

where its standard deviation is sampled from another Gaus-

sian distribution N
(

0, 22
)

to blurry inputs NVIDIA GTX

1080 Ti GPUs were used for all of our experiments. We

implemented our models with PyTorch 0.4.1 [32] built with

CUDA 9.2 and cuDNN 7.1. Our source code will be re-

leased publicly.

4.3. Comparisons on GOPRO [30] dataset

We evaluate our method and other methods on the down-

sampled GORPO dataset. We report the evaluation results

of all the comparing methods in terms of PSNR, SSIM

and the running time in Table 1. From these results, it is

clear that the proposed intra-frame iteration scheme and the

stochastic training method improve the performance of our

model significantly compared with the other state-of-the-art

methods. Furthermore, surprisingly, our method is much

faster than the others, despite having internal iterative oper-

ations. For visual comparison, please refer to Fig. 1.

4.4. Comparisons on [34] Dataset and Real Videos

We also compared the performances on the dataset in

[34]. In this case, we fine-tuned our GOPRO models with

the training subset of [34]. In Table 2, our model also im-

proves performance with iterations and regularization for

both C1 and C2 models. Furthermore, IFI-RNN C2 models

show state-of-the-art performance. In Fig. 6, our IFI-RNN

recovers the text and legs more clearly. Also, our results on

real videos also clarify blurred textures in Fig. 7.

5. Conclusion

In this paper, we proposed a method to ameliorate the re-

current network for video deblurring. By iteratively updat-

Method PSNR / SSIM Speed (fps)

DBN+OF [34] 27.08 / 0.8429 1.72†

RDN [39] 25.19 / 0.7794 7.37

OVD [18] 26.82 / 0.8245 9.24

IFI-RNN (C1H1) 28.79 / 0.8647 61.2

IFI-RNN (C1H2) 29.03 / 0.8712 46.4

IFI-RNN (C1H3) 29.07 / 0.8730 36.5

IFI-RNN (C1H4) 29.06 / 0.8730 30.8

IFI-RNN (C1H4-reg) 29.16 / 0.8760 30.8

IFI-RNN (C2H1) 29.72 / 0.8884 42.0

IFI-RNN (C2H2) 29.72 / 0.8885 33.6

IFI-RNN (C2H3) 29.80 / 0.8900 28.8

IFI-RNN (C2H4) 29.82 / 0.8913 24.2

IFI-RNN (C2H3-reg) 29.97 / 0.8947 28.8

IFI-RNN (C2H4-reg) 29.93 / 0.8943 24.2

Table 1: Deblurring accuracy comparison on the downsam-

pled GOPRO dataset [30]. For our method IFI-RNN, C1

and C2 refer to single-cell and dual-cell method, respec-

tively. †Note that the above speed does not include the opti-

cal flow estimation time for [34]. All the running times are

averaged from 10 runs on the test set.

Method PSNR / SSIM

DBN+OF [34] 30.14 / 0.8913

RDN [39] 26.98 / 0.8076

OVD [18] 29.97 / 0.8696

IFI-RNN (C1H1) 30.07 / 0.8823

IFI-RNN (C1H4-reg) 30.10 / 0.8849

IFI-RNN (C2H1) 30.74 / 0.8974

IFI-RNN (C2H3-reg) 30.80 / 0.8991

IFI-RNN (C2H4-reg) 30.73 / 0.8976

Table 2: Deblurring accuracy comparison on the dataset

from [34].

ing the hidden state to the target frame, our method removes

blurs in the video frames more effectively. Furthermore, we

train our model with a regularization term that could en-

hance prediction accuracy through stochastic computation

paths. Our method does not require additional parameters

while being fast and accurate compared to other state-of-

the-art methods.

Acknowledgement

This work was partially supported by LG Electronics

and the National Research Foundation of Korea (NRF)

grant funded by the Korea Government(MSIT) (No. NRF-

2017R1A2B2011862)

8108

(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [39] (e) OVD [18] (f) DBN+OF [34] (g) IFI-RNN(C2H3-reg)

Figure 6: Deblurring results on [34] dataset.

(a) Blur (b) Deblurred (Ours, IFI-RNN(C2H4-reg))

(c) Blur (d) RDN [39] (e) OVD [18] (f) DBN+OF [34] (g) IFI-RNN(C2H3-reg)

Figure 7: Deblurring results of real video.

8109

