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Abstract

We propose a novel approach for generating region pro-

posals for performing face detection. Instead of classifying

anchor boxes using features from a pixel in the convolu-

tional feature map, we adopt a pooling-based approach for

generating region proposals. However, pooling hundreds

of thousands of anchors which are evaluated for generating

proposals becomes a computational bottleneck during in-

ference. To this end, an efficient anchor placement strategy

for reducing the number of anchor-boxes is proposed. We

then show that proposals generated by our network (Float-

ing Anchor Region Proposal Network, FA-RPN) are better

than RPN for generating region proposals for face detec-

tion. We discuss several beneficial features of FA-RPN pro-

posals (which can be enabled without re-training) like itera-

tive refinement, placement of fractional anchors and chang-

ing size/shape of anchors. Our face detector based on FA-

RPN obtains 89.4% mAP with a ResNet-50 backbone on the

WIDER dataset.

1. Introduction

Face detection is an important computer vision prob-

lem and has multiple applications in surveillance, track-

ing, consumer-facing devices like iPhones etc. Hence,

various approaches have been proposed towards solving it

[41, 43, 17, 45, 19, 36, 44, 29, 25] and successful solutions

have also been deployed in practice. So, expectations from

face detection algorithms are much higher and error rates

today are quite low. Algorithms need to detect faces which

are as small as 5 pixels to 500 pixels in size. As localization

is essential for detection, evaluating every small region of

the image is important. Face detection datasets can have up

to a thousand faces in a single image, which is not common

in generic object detection.

Detectors like Faster-RCNN [30] employ a region pro-

posal network (RPN) which places anchor boxes of dif-

ferent sizes and aspect ratios uniformly on the image and

classifies them for generating object-like regions. However,

RPN only uses a single pixel in the convolutional feature
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Figure 1: Difference between RPN and FA-RPN in terms of

weight configuration. For simplicity we show 2x2 pooling

for FA-RPN.

map for evaluating the proposal hypotheses, independent

of the size of the object. Therefore, the feature represen-

tation in RPN entirely relies on the contextual information

encoded in the high-dimensional feature representation gen-

erated at the pixel. It does not pool features from the entire

extent of an object while generating the feature representa-

tion, see Fig. 1. Thus, it can miss object regions or gen-

erate proposals which are not well localized. Further, it is

not possible to iterate and refine the positions of the anchor-

boxes as part of the proposal network. If objects of different

scale/aspect-ratios are to be learned or if we want to place

anchors at sub-pixel resolution, filters specific to each of

these conditions need to be added during training. Generat-

ing proposals using a pooling-based algorithm can alleviate

such problems easily.

There are predominantly two pooling-based methods for

the final classification of RoIs in an image - Fast-RCNN

[13] and R-FCN [10]. Fast-RCNN projects the region-

proposals to the convolutional feature map, and pools the

features inside the region of interest (RoI) to a fixed size

grid (typically 7×7) and applies two fully connected layers

which perform classification and regression. Due to com-

putational constraints, this approach is practically infeasi-

ble for proposal generation as one would need to apply it to

hundreds of thousands of regions - which is the number of
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region candidates which are typically evaluated by a region

proposal algorithm.

To reduce the dependence on fully connected layers, R-

FCN performs local convolutions (7×7) inside an RoI for

capturing the spatial extent of each object. Since each of

these local filters can be applied to the previous feature-

map, we just need to pool the response from the appropriate

region corresponding to each local filter. This makes it a

good candidate for a pooling-based proposal approach as it

is possible to apply it to a large number of RoIs efficiently.

However, in high-resolution images, proposal algorithms

like RPN evaluate hundreds of thousands of anchors during

inference. It is computationally infeasible to perform pool-

ing on that many regions. Luckily, many anchors are not

necessary (e.g. large anchors which are very close to each

other). In this paper, we show that careful anchor placement

strategies can reduce the number of proposals significantly

to the point where a pooling-based algorithm becomes fea-

sible for proposal generation. This yields an efficient and

effective objectness detector which does not suffer from the

aforementioned problems present in RPN designs.

A pooling-based proposal method based on R-FCN

which relies on position sensitive filters is particularly well

suited for face detection. While objects deform and posi-

tional correspondence between different parts is often lost -

faces are rigid, structured and parts have positional seman-

tic correspondence (e.g. nose, eyes, lips). Moreover, it is

possible to place anchor boxes of different size and aspect

ratios without adding more filters. We can also place frac-

tional anchor boxes and perform bilinear interpolation while

pooling features for computing objectness. We can further

improve the localization performance of the proposal can-

didates by iteratively pooling again from the generated RoIs

and all these design changes can be made during inference!

Due to these reasons, we refer to our proposal network as

Floating Anchor Region Proposal Network (FA-RPN). We

highlight these advantages in Fig. 1 and Fig. 2. On the

WIDER dataset [42] we show that FA-RPN proposals are

better than RPN proposals. FA-RPN also obtains state-of-

the-art results on WIDER and PascalFaces which demon-

strates its effectiveness for face detection.

2. Related Work

Generating class agnostic region proposals has been in-

vestigated in computer vision for more than a decade. Initial

methods include multi-scale combinatorial grouping [2],

constrained parametric min-cuts [38], selective search [7]

etc. These methods generate region proposals which ob-

tain high recall for objects in a category agnostic fashion.

They were also very successful in the pre-deep learning era

and obtained state-of-the-art performance even with a bag-

of-words model [38]. Using region proposals based on se-

lective search [38], R-CNN [14] was the first deep learning

based detector. Unsupervised region proposals were also

used in later detectors like Fast-RCNN [13] but since the

Faster-RCNN detector [30] generated region proposals us-

ing a convolutional neural network, it has become the de-

facto algorithm for generating region proposals.

To improve RPN, several modifications have been pro-

posed. State-of-the-art detectors can also detect objects in a

single step. Detectors like SSH [25], SSD [22], RetinaNet

[21], MS-CNN [5] generate multi-scale feature maps to

classify and regress anchors placed on these feature-maps.

These single-shot detectors are closely related to the region

proposal network as they have specific filters to detect ob-

jects of different sizes and aspect ratios but also combine

feature-maps from multiple layers of the deep neural net-

work. No further refinement is performed after the initial

offsets generated by the network are applied. Another class

of detectors are iterative, like G-CNN [24], Cascade-RCNN

[6], LocNet [12], FPN [20], RFCN-3000 [34], Faster-

RCNN [30]. These detectors refine a pre-defined set of

anchor-boxes in multiple stages and have more layers to fur-

ther improve classification and localization of regressed an-

chors. One should note that even in these networks, the first

stage comprises of the region proposal network which elim-

inates the major chunk of background regions. FA-RPN is

closer to this line of work but, in contrast, it supports itera-

tive refinement of region proposals during inference.

We briefly review some recent work on face detection.

With the availability of large scale datasets like WIDER

[42] which contain many small faces in high resolution im-

ages, multiple new techniques for face detection have been

proposed [41, 43, 17, 45, 19, 36, 44, 29, 3]. A lot of focus

has been on scale, combining features of different layers

[17, 25, 44, 43, 8, 18] and improving configurations of the

region proposal network [44, 43]. For example, in finding

tiny faces [17], it is proposed to perform detection on an im-

age pyramid and to have different scale filters for objects of

different sizes. SSH [25] and S3FD [43] efficiently utilize

the intermediate layers of the network. PyramidBox [37]

replaces the context module in SSH by deeper and wider

sub-networks to better capture the contextual information

for face detection. Recently, even GANs [15] have been

used to improve the performance on tiny faces [3].

In face detection, the choice of anchors and their place-

ment on the image is very important [44, 43]. For exam-

ple, using extra strided anchors were shown to be benefi-

cial [44]. Geometric constraints of the scene have also been

used to prune region proposals [1]. Some of these changes

require re-training RPN again. In our framework, design

decisions such as evaluating different anchor scales, chang-

ing the stride of anchors, and adding fractional anchors can

simply be made during inference as we share filters for all

object sizes and only pooling is performed for them. More-

over, a pooling-based design also provides precise spatial
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Figure 2: We highlight the major differences between RPN (a) and FA-RPN (b) proposals. RPN performs classification

on a single pixel in the high-dimensional feature-map and uses different weights for classifying anchor-boxes of different

sizes/aspect ratios. FA-RPN proposals, on the other hand, pool features from multiple bins in the image and share weights

across objects of different sizes and aspect ratios.

features.

3. Background

We provide a brief overview of the R-FCN detector in

this section. This detector uses RPN to generate region pro-

posals. It classifies the top 2000 ranked proposals using the

R-FCN detector. Classification is performed over all the

foreground classes and the background class. The key com-

ponent in R-FCN is local convolutions. It applies different

filters in different sub-regions of an RoI for inferring the

spatial extent of an object. These sub-regions may corre-

spond to parts of an object. To accelerate this process over

thousands of RoIs, convolution for each part in each object

class is performed in the final layer. So, as an example,

if there are 21 classes, the last feature-map would contain

21 × 49 channels. Then, given an RoI, Position Sensitive

RoIPooling is performed on this feature-map to obtain the

effect of local convolutions [10]. We refer the reader to the

R-FCN [10] paper for further details on PSRoIPooling. Fi-

nally, the response is average pooled and used as the classi-

fication score of the object. In Deformable-RFCN [11], the

regions for each bin where pooling is performed are also

adjusted based on the input feature-map, which is referred

to as deformable PSRoIPooling.

4. FA-RPN - Floating Anchor Region Proposal

Network

In this section, we discuss the training of FA-RPN, which

performs iterative classification and regression of anchors

placed on an image for generating accurate region propos-

als. An overview of our approach is shown in Fig. 3.

4.1. Anchor Placement

In this architecture, classification of anchors is not per-

formed using a single high-dimensional feature vector but

by pooling features inside the RoI. Hence, there are no re-

strictions on how anchors can be placed during training and

inference. As long as the convolutional filters can learn ob-

jectness, we can apply the model on RoIs of different sizes

and aspect ratios, even if the network was not trained ex-

plicitly for those particular scales and aspect-ratios.

FA-RPN places anchors of different scales and aspect

ratios on a grid, as generated in the region proposal net-

work, and clips the anchors which extend beyond the im-

age. While placing anchors, we vary the spatial stride as

we increase the anchor size. Since nearby anchors at larger

scales have a very high overlap, including them is not neces-

sary. We change the stride of anchor-boxes to max(c, s/d),
where s is square-root of the area of an anchor-box, c is a

constant and d is the scaling factor, shown in Fig. 3. In prac-

tice, we set c to 16 and d to 5. This ensures that not too many

overlapping anchor-boxes are placed on the image, while

ensuring significant overlap between adjacent anchors to

cover all objects. Naive placement of anchor boxes of 3

aspect ratios and 5 scales with stride equaling 16 pixels in

an 800 × 1280 image leads to a 2-3× slow-down when per-

forming inference. With the proposed placement method,

we reduce the number of RoIs per image from 400,000 to

100,000 for a 1280 × 1280 image for the above-mentioned

anchor configuration. When we increase the image size, the

computation for convolution also increases proportionally,

so as long as the time required for pooling is not significant

compared to convolution, we will not observe a noticeable

difference in performance.

There is no restriction that the stride of anchors should

be the same as the stride of the convolutional feature-map.

We can even place RoIs between two pixels in the convolu-

tional feature-map without making any architectural change

to the network. This allows us to augment the ground-

truth bounding boxes as positive RoIs during training. This

is unlike RPN, where the maximum overlapping anchor is
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Figure 3: FA-RPN framework. FA-RPN uses multi-scale training. At each training iteration, an image scale is randomly

selected and suitable anchor scales are placed over the image. This set of initial anchors are used to pool objectness scores and

localization information from position sensitive filters (for simplicity only the localization branch is depicted in the figure).

For improving localization, the top scoring initial anchors are further refined with subsequent poolings. The refinement

process for an initial anchor ([A0]) is depicted in the figure. This anchor is first refined to [A1] based on the network

prediction. Another pooling is performed over [A1] to form a new prediction for refining it further to the final anchor [A2].

Finally, a Faster-RCNN head is used to perform the final classification and regression.

assigned as positive when no anchor matches the overlap

threshold criterion. We show qualitative examples of anchor

placement for different scales and aspect ratios in FA-RPN

in Fig. 3.

4.2. Sampling

Since there are hundreds of thousands of anchors which

can be placed on an image, we sample anchors during train-

ing. We observe that using focal loss [21] reduced recall for

RPN (hyper-parameter tuning could be a reason), so we did

not use it for FA-RPN. We use the commonly used tech-

nique of sampling RoIs for handing class imbalance. In

FA-RPN, an anchor-box is marked as positive if its over-

lap with a ground-truth box is greater than 0.5. An anchor

is marked as negative if its overlap is less than 0.4. A max-

imum of 128 positive and negative anchors are sampled in

a batch. Since the probability of a random anchor being an

easy sample is high, we also sample 32 anchor-boxes which

have an overlap of at least 0.1 with the ground-truth boxes

as hard negatives. Just for training FA-RPN proposals, all

other RoIs can be ignored. However, for training an end-to-

end detector, we also need to score other RoIs in the image.

When training an end-to-end detector, we select a maximum

of 50,000 RoIs in an image (prioritizing those which have

at-least 0.1 overlap with ground-truth boxes first).

4.3. Iterative Refinement

The initial set of placed anchors are expected to cover

the ground-truth objects present in the image. However,

these anchors may not always have an overlap greater than

0.5 with all objects and hence would be given low scores

by the classifier. This problem is amplified for small ob-

ject instances as mentioned in several methods [43, 17]. In

this case, no anchor-boxes may have a high score for some

ground-truth boxes. Therefore, the ground-truth boxes may

not be covered in the top 500 to 1000 proposals generated

in the image. In FA-RPN, rather than selecting the top 1000

proposals, we generate 20,000 proposals during inference

and then perform pooling again on these 20,000 proposals

from the same feature-map (we can also have another con-

volutional layer which refines the first stage region propos-

als). The hypothesis is that after refinement, the anchors

would be better localized and hence the scores which we

obtain after pooling features inside an RoI would be more

reliable. Therefore, after refinement, the ordering of the

top 1000 proposals would be different because scores are

pooled from refined anchor-boxes rather than the anchor-

boxes which were placed uniformly on a grid. Since we

only need to perform pooling for this operation, it is effi-

cient and can be easily implemented when the number of
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RoIs is close to 100,000. Note that our method is entirely

pooling-based and does not have any fully connected lay-

ers like cascade-RCNN [6] or G-CNN [24]. Therefore, it is

much more efficient for iterative refinement.

4.4. Complexity and Speed

FA-RPN is efficient. Namely, on 800 × 1280 size im-

ages, it takes 50 milliseconds to perform forward propaga-

tion for our network on a P6000 GPU. We also discuss how

much time it takes to use R-FCN for end-to-end detection.

For general object detection, when the number of classes

is increased, to say 100, the contribution from the pooling

layer also increases. This is because the complexity of pool-

ing is linear in the number of classes. So, if we increase the

number of classes to 100, this operation would become 100

times slower and at that stage, pooling will account for a sig-

nificant portion of the time in forward-propagation. For in-

stance, without our anchor placement strategy, it takes 100

seconds to perform inference for 100 classes in a single im-

age on a V100 GPU. However, as for face detection, we

only need to perform pooling for 2 classes and use a differ-

ent anchor placement scheme, we do not face this problem

and objectness can be efficiently computed even with tens

of thousands of anchor boxes.

4.5. Scale Normalized Training

The positional correspondence of R-FCN is lost when

RoI bins become too small. The idea of local convolution

or having filters specific to different parts of an object is

relevant when each bin corresponds to a unique region in

the convolutional feature-map. The position-sensitive fil-

ters implicitly assume that features in the previous layer

have a resolution which is similar to that after PSRoIPool-

ing. Otherwise, if the RoI is too small, then all the position

sensitive filters will pool from more or less the same posi-

tion, nullifying the hypothesis that these filters are position

sensitive. Therefore, we perform scale normalized train-

ing [33], which performs selective gradient propagation for

RoIs which are close to a resolution of 224 × 224 and ex-

cludes those RoIs which can be observed at a better reso-

lution during training. In this setting, the position-sensitive

nature of filters is preserved to some extent, which helps in

improving the performance of FA-RPN.

5. Datasets

We perform experiments on three benchmark datasets,

WIDER [42], AFW [46], and Pascal Faces [40]. The

WIDER dataset contains 32,203 images with 393,703 an-

notated faces, 158,989 of which are in the train set, 39,496

in the validation set, and the rest are in the test set. The val-

idation and test set are divided into “easy”, “medium”, and

“hard” subsets cumulatively (i.e. the “hard” set contains all

faces and “medium” contains “easy” and “medium”). This

is the most challenging public face dataset mainly due to the

significant variation in the scale of faces and occlusion. We

train all models on the train set of the WIDER dataset and

evaluate on the validation set. We mention in our experi-

ments when initialization of our pre-trained model is from

ImageNet or COCO. Ablation studies are also performed

on the validation set (i.e. “hard” subset which contains the

whole dataset). Pascal Faces and AFW have 1335 and 473

faces respectively. We use Pascal Faces and AFW only

as test sets for evaluating the generalization of our trained

models. When performing experiments on these datasets,

we apply the model trained on the WIDER train set out of

the box.

6. Experiments

We train a ResNet-50 [16] based Faster-RCNN detector

with deformable convolutions [11] and SNIP [33]. FA-RPN

proposals are generated on the concatenated Conv4 and

Conv5 features. On WIDER we train on the following im-

age resolutions (1800, 2800), (1024, 1440) and (512, 800).
The SNIP ranges we use for WIDER are as follows, [0, 200)

for (1800, 2800), [32, 300) for (1024, 1440) and [80, ∞)

for (512, 800) as the size of the shorter side of the image

is around 1024. We train for 8 epochs with a stepdown at

5.33 epochs. In all experiments, we use a learning rate and

weight decay of 0.0005 and train on 8 GPUs. We use the

same learning rate and training schedule even when train-

ing on 4 GPUs. In all our experiments, we use online hard

example mining (OHEM) [32] to train the 2 fully connected

layers in our detector. Hard example mining is performed

on 900 proposals with a batch size of 512. RoIs which

have an overlap greater than 0.5 with ground-truth bound-

ing boxes are marked as positive and anything less than that

is labeled as negative. We use Soft-NMS [4] with σ = 0.35
when performing inference. Since Pascal Faces and AFW

contain low-resolution images and also do not contain faces

as small as the WIDER dataset, we do not perform infer-

ence on the 1800 × 2800 resolution. All other parameters

remain the same as the experiments on the WIDER dataset.

On the WIDER dataset, we remove anchors for differ-

ent aspect ratios (i.e. we only have one anchor per scale

with an aspect ratio of 1) and add a 16 × 16 size anchor

for improving the recall for small faces. Note that extreme

size anchors are removed during training with SNIP us-

ing the same rules which are used for training the detector.

With these settings, we outperform state-of-the-art results

on the WIDER dataset demonstrating the effectiveness of

FA-RPN. However, the objective of this paper is not to show

that FA-RPN is necessary to obtain state-of-the-art perfor-

mance. FA-RPN is an elegant and efficient alternative to

RPN and can be combined with multi-stage face detection

methods to improve performance.
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Method AP

Baseline 87.2

Baseline + SNIP 88.1

Baseline + SNIP + COCO pre-training 89.1

Baseline + SNIP + COCO pre-training + Iteration 89.4

Table 1: Ablation analysis with different core-components

of our face detector on the hard-set of the WIDER dataset

(hard-set contains all images in the dataset).
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Figure 4: Ablation analysis: improving precision at in-

ference time. FA-RPN-32-32 represents a model which is

trained by increasing the stride between anchors to 32 and

uses the same stride at inference time. (a) FA-RPN-32-Iter

is the same model when an additional anchor refinement

step is performed at inference. (b) FA-RPN-32-Dense on

the other hand, improves precision by reducing the anchor

stride at inference time to our original FA-RPN stride.

6.1. Effect of Multiple Iterations in FA­RPN

We evaluate FA-RPN on WIDER when we perform mul-

tiple iterations during inference. Since FA-RPN operates on

RoIs rather than classifying single-pixel feature-maps like

RPN, we can further refine the RoIs which are generated

after applying the regression offsets. As the initial set of

anchor boxes are coarse, the RoIs generated after the first

step are not very well localized. Performing another level

of pooling on the generated RoIs helps to improve recall for

our proposals. As can be seen in Table 1 and Fig. 4a, this re-

finement step helps to improve precision and recall. We also

generate anchors with different strides - 16 and 32 pixels -

and show how the final detection performance improves as

we iteratively refine proposals.

6.2. Modifying Anchors and Strides during Infer­
ence

In this section, we show the flexibility of FA-RPN for

generating region proposals. We train our network with a

stride of 32 pixels and during inference, we generate an-

chors at a stride of 16 pixels on the WIDER dataset. The

result is shown in the right-hand side plot in Fig. 4. We no-

tice that the dense anchors improve performance by 3.8%.

On the left side of the plot, we show the effect of iterative

refinement of FA-RPN proposals. This further provides a

boost of 1.4% on top of the denser anchors. This shows that

our network is robust to changes in the anchor configura-

tion, and can detect faces even on anchor sizes which were

not provided during training. To achieve this with RPN, one

would need to re-train it again, while in FA-RPN it is a sim-

ple inference time hyper-parameter which can be tuned on

a validation set even after the training phase.

6.3. Effect of Scale and COCO pre­training on Face
Detection

Variation of scale is among the main challenges in detec-

tion datasets. Datasets like WIDER consist of many small

faces which can be hard to detect for a CNN at the origi-

nal image scale. Therefore, upsampling images is crucial to

obtaining good performance. However, as shown in [33],

when we upsample images, large objects become hard to

classify and when we downsample images to detect large

objects, small objects become harder to classify. Therefore,

standard multi-scale training is not effective when using ex-

treme resolutions. In Table 1 we show the effect of perform-

ing SNIP based multi-scale training in our FA-RPN based

Faster-RCNN detector. When performing inference on the

same resolutions, we observe an improvement in detection

performance on the WIDER dataset by 1%. Note that this

improvement is on top of multi-scale inference. We also ini-

tialized our ResNet-50 model which was pre-trained on the

COCO detection dataset. We show that even pre-training on

object detection helps in improving the performance of face

detectors by a significant amount, Table 1.

6.4. Comparison on the WIDER Dataset

We compare our method with MSCNN [5], HR [17],

SSH [25], S3FD [43], MSO [44], and PyramidBox [37]

which are the published state-of-the-art methods on the

WIDER dataset. Our simple detector outperforms other

methods on the “hard” set, which includes all the annota-

tions in the WIDER dataset while achieving an average pre-

cision of 89.4%. We also perform well in the “easy” and

“medium” subsets. The precision-recall plots for each of

these cases are shown in Fig. 5. Note that we did not use

feature-pyramids or lower layer features from Conv2 and

Conv3 [25, 43, 17] , enhancing predictions with context

[17] or with deeper networks like ResNext-152 [39]/ Xcep-

tion [9] for obtaining these results. We also compare FA-

RPN (baseline version in Table 1) with RPN quantitatively

and qualitatively in Fig. 6 and Fig. 7 respectively. These

results demonstrate that FA-RPN is competitive with exist-

ing proposal techniques as it can lead to a state-of-the-art

face detector. We also do not use recently proposed tech-
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Figure 5: We compare with recently published methods on the WIDER dataset. The plots are for “easy”, “medium” and

“hard” respectively from left to right. As can be seen, FA-RPN outperforms published baselines on this dataset. Note that,

“hard” set contains the whole dataset while “easy” and “medium” are subsets.
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Figure 6: Comparison with RPN on the WIDER dataset.

Figure 7: Qualitative comparison between RPN and FA-

RPN (Baseline). Gold rectangles are those detected by both,

greens are detected by FA-RPN but missed by RPN.

niques like stochastic face lifting [44], having different fil-

ters for different size objects [17] or maxout background

loss [43]. Our performance can be further improved if the

above mentioned architectural changes are made to our net-

work or better training methods which also fine-tune batch-

normalization statistics are used [27, 35].

6.5. Pascal Faces and AFW Datasets

To show the generalization of our trained detector, we

also apply it out-of-the-box to the Pascal Faces [40] and

AFW [46] datasets without fine-tuning. The performance

of FA-RPN is compared with SSH [25], Face-Magnet [31],

HyperFace [29], HeadHunter [23], and DPM [28] detec-
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Figure 8: Comparison with other methods on (a) Pascal

Faces, and (b) AFW datasets.

tors which reported results on these datasets. The results

are shown in Fig. 8. Compared to WIDER, the resolution

of PASCAL images is lower and they do not contain many

small images, so it is sufficient to apply FA-RPN to the two

lower resolutions in the pyramid. This also leads to faster

inference. As can be seen, FA-RPN out-of-the-box gener-

alizes well to these datasets. FA-RPN achieves state-of-the-

art result on the PascalFaces and reduces the error rate to

0.68% on this dataset.

6.6. Efficiency

Our FA-RPN based detector is efficient and takes less

than 0.05 seconds on a 1080Ti GPU to perform inference

on an image of size 800 × 1280. With advances in GPUs

over the last few years, performing inference even at very

high resolutions is efficient. Our detector takes less than

0.4 seconds to process an image of size 1800 × 2800 on a

1080Ti GPU. With improved GPU architectures and the use

of lower precision like 16 or 8 bits, the speed can be further

improved by two to four times (depending on the precision

used in inference). As a comparison, the original imple-
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Figure 9: Qualitative results on the validation set of the WIDER dataset. Green rectangles show the detection and brightness

encodes the detection confidence.

mentation of SSH 1 takes 0.45s on a Titax X GPU (ours

takes 0.41s on the same machine) to process a 1800× 2800
pixels image. It should be noted that in high resolutions, the

runtime is dominated by convolutional layers and the small

difference may be because e.g. SSH uses a custom archi-

tecture with feature pyramids, we use a standard ResNet50

backbone, SSH is in Caffe, ours is in MxNet,etc. SSH has a

better runtime at low-resolutions (e.g. on the 512x600 reso-

lution, SSH takes 0.05 and FA-RPN takes 0.07 seconds).

However, the runtime of current state-of-the-art methods

largely depends on the high-resolution scale. The multi-

scale inference used in FA-RPN can be further accelerated

with AutoFocus [26].

6.7. Qualitative Results

Figure 9 shows qualitative results on the WIDER valida-

tion subset. We picked 20 diverse images to highlight the re-

sults generated by FA-RPN. Detections are shown by green

rectangles and the brightness encodes the confidence. As

can be seen, our face detector works very well in crowded

scenes and can find hundreds of small faces in a wide va-

riety of images. This shows that FA-RPN has a high recall

and can detect faces accurately. It generalizes well in both

indoor and outdoor scenes and under different lighting con-

ditions. Our performance across a wide range of scales is

also good without using diverse features from different lay-

1http://www.github.com/mahyarnajibi/SSH

ers of the network. It is also robust to changes in pose,

occlusion, blur, and even works on old photographs!

7. Conclusion

We introduced FA-RPN, a novel method for generat-

ing pooling-based proposals for face detection. We pro-

posed techniques for anchor placement and label assign-

ment which were essential in the design of such pooling-

based proposal algorithm. FA-RPN has several benefits like

efficient iterative refinement, flexibility in selecting scale

and anchor stride during inference, sub-pixel anchor place-

ment etc. Using FA-RPN, we obtained state-of-the-art re-

sults on the challenging WIDER dataset, showing the effec-

tiveness of FA-RPN for this task. FA-RPN also achieved

state-of-the-art results out-of-the-box on datasets like Pas-

calFaces showing its generalizability.
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