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Abstract

Time-lapse videos usually contain visually appealing

content but are often difficult and costly to create. In this

paper, we present an end-to-end solution to synthesize a

time-lapse video from a single outdoor image using deep

neural networks. Our key idea is to train a conditional

generative adversarial network based on existing datasets of

time-lapse videos and image sequences. We propose a multi-

frame joint conditional generation framework to effectively

learn the correlation between the illumination change of

an outdoor scene and the time of the day. We further

present a multi-domain training scheme for robust training

of our generative models from two datasets with different

distributions and missing timestamp labels. Compared

to alternative time-lapse video synthesis algorithms, our

method uses the timestamp as the control variable and does

not require a reference video to guide the synthesis of the

final output. We conduct ablation studies to validate our

algorithm and compare with state-of-the-art techniques both

qualitatively and quantitatively.

1. Introduction

Time-lapse videos are typically created by using a fixed

or slowly moving camera to capture an outdoor scene at a

large frame interval. This unique kind of videos is visually

appealing since it often presents drastic color tone changes

and fast motions, which show the passage of time. But time-

lapse videos usually require a sophisticated hardware setup

and are time-consuming to capture and edit. Therefore, it

is desirable and helpful to design and develop a system to

facilitate the creation of time-lapse videos.

The appearance of an outdoor scene depends on many

complicated factors including weather, season, time of

day, and objects in the scene. As a result, most time-

lapse videos present highly nonlinear changes in both the

temporal and spatial domains, and it is difficult to derive

an explicit model to synthesize realistic time-lapse videos

while taking all the deciding factors into account accurately.

Figure 1: For each single outdoor image (the first column),

we can predict continuous illuminance changes over time in

an end-to-end manner (four columns on the right).

With various emerging social network services, a large

amount of time-lapse video data that is captured at different

locations around the world has become accessible on the

Internet. Therefore, a natural idea for generating time-

lapse videos is to automatically synthesize the animation

output by learning from a large-scale video database. A

data-driven hallucination algorithm [27] was proposed to

synthesize a time-lapse video from an input image via a

color transfer based on a reference video retrieved from

a database. However, this framework needs to store the

entire database of time-lapse videos for retrieval at runtime.

Also, it may not always be possible to find a reference video

that has components semantically similar to the input image

for a visually plausible color transfer. Recent advances

in computer vision and machine learning have shown that

deep neural networks can be used to achieve photorealistic

style transfer [22, 19, 18] and to synthesize high-fidelity

video sequences [16, 34, 2]. Yet most existing deep video

generation techniques require a reference video or a label

map sequence to guide the synthesis of the output video.

In this work, we present an end-to-end data-driven time-

lapse hallucination solution for a single image without the

requirement of any semantic labels or reference videos at

runtime. Given an outdoor image as the input, our method
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can automatically predict how the same scene will look like

at different times of a day and generate a time-lapse video

with continuous and photorealistic illumination changes by

using the timestamp as the control variable. See Figure 1 for

some example results generated by our system.

Conventionally, video generation tasks have been mod-

elled by spatiotemporal methods such as recurrent neural

networks and volumetric convolutions [35, 32, 30, 42].

However, it is challenging to achieve our goal with these

approaches since the raw footage of existing time-lapse

datasets [12, 27] contains a number of unwanted camera

motions, moving objects, or even corrupted frames, which

aggravates the quality of output sequences. In this work, we

cast our task as a conditional image-to-image translation task

using the timestamp as the control variable, which enables

our learning to be robust to such outliers through the structure

preserving property [43, 11]. However, this alone cannot

generate plausible time-lapse videos due to the independent

modeling of different times. To effectively train the contin-

uous change of illumination over time, we propose a multi-

frame joint conditional generation framework (Section 3.1).

For training, we leverage the AMOS dataset [12] and build a

large collection of outdoor images with the corresponding

timestamps of when the photos were taken.

One issue of using the AMOS dataset is that many

footages in the dataset are visually uninteresting, because the

dataset is collected from hundreds of thousands of surveil-

lance cameras capturing outdoor scenes such as highways

and landscapes. To further improve the visual quality of

our synthesis output, we also leverage the time-lapse video

database TLVDB [27], which is a small collection of time-

lapse videos. The videos in the TLVDB dataset present

rich illumination changes but do not have the ground-truth

timestamp for each frame. To jointly learn from both

the TLVDB dataset and the AMOS dataset, we propose a

multi-domain training scheme (Section 3.2) based on image

domain translation [43, 11]. It enables the TLVDB dataset

to be trained with our conditional generation framework in

a semi-supervised manner, which removes the necessity for

timestamps in the TLVDB dataset. Our training scheme

also effectively handles the difference of data distribution

between the two datasets and makes the training process

more stable compared to a naı̈ve implementation.

We show a variety of time-lapse video synthesis results

on diverse input images and compare our method with

alternative approaches (Section 4). We also verify the design

and implementation of our framework via extensive ablation

studies and evaluations. In summary, our contributions are:

• We present the first solution for synthesizing a time-

lapse video with continuous and photorealistic illumi-

nation changes from a single outdoor image without the

requirement of any reference video at runtime.

• We propose a multi-frame joint conditional network to

learn the distributions of color tones at different times

of a day while bypassing the motions and outliers in

the training data.

• We propose a multi-domain training scheme for stable

semi-supervised learning from different datasets to

further improve the visual quality of synthesis output.

2. Related Work

Image and video stylization. Image and video stylization

has been an active research area over the past few years,

especially with the recent advances in deep neural networks

for robust and effective computation of visual features [7, 14,

43, 22, 19, 18]. A typical usage scenario of visual stylization

algorithms is to transfer the style of the input from one

source domain into another target domain while keeping the

content, such as night to day, sketch to photo, label map to

image, or vice versa [15, 38, 11, 4, 34, 2, 1]. In contrast

to these prior methods, our technique aims to change the

illumination of an input image in a continuous manner by

using time of day as the control variable for a conditional

generative model.

Animating still images. Creating animation from a single

image has been a longstanding research problem in computer

vision and computer graphics. Early work on this topic

relies on either user interactions [5] or domain-specific

knowledge [36, 13]. Most related to our approach, a data-

driven hallucination method [27] was proposed to synthesize

a time-lapse video from a single outdoor image by a color

transfer algorithm based on a reference video. On the

contrary, we only need to store a compact model for the

synthesis and do not require any reference video at runtime.

Therefore our method requires much less storage and can be

more robust for input images that are significantly different

from all the available reference videos.

More recently, deep neural networks such as generative

adversarial networks (GANs) and variational autoencoders

(VAEs) have been widely used for video synthesis and future

frame prediction [37, 33, 32, 31, 30]. Due to the limited

capability of neural networks, most of these techniques can

only generate very short or fixed-length sequences with

limited resolution, and/or have been focusing on specific

target phenomenon, such as object transformation [42] and

cloud motions [35]. Our approach is complementary to

these prior methods, and we can animate a variety of high-

resolution outdoor images by continuously changing the

color tone to generate output videos of arbitrary length.

Learning from video dataset. Compared to traditional

image datasets such as ImageNet [6] and COCO [21],

large-scale video datasets (or image sequences from static
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cameras) usually contain rich hidden information among the

coherent frames within each sequence. On the other hand,

these datasets present additional challenges to the learning

algorithms since the amount of data is usually prohibitively

large and less structured. The Archive of Many Outdoor

Scenes (AMOS) dataset [12] contains millions of outdoor

images captured with hundreds of webcams. In their work,

the authors demonstrate the possibility of analyzing the

dataset with automatic annotations, such as semantic labels,

season changes, and weather conditions. It is also possible to

extract illumination, material and geometry information from

time-lapse videos as shown in previous methods [23, 29, 17].

Most recently, Li and Snavely [20] proposed to learn single-

view intrinsic image decomposition from time-lapse videos

in the wild without ground truth data. We draw inspirations

from this line of research and propose to learn a generative

model for the time-lapse video synthesis.

3. Our Method

Problem statement. To synthesize a time-lapse video

from a single input image, we define our task as conditional

image translation based on generative adversarial networks

(GANs) [8, 24] by using the time of day as the conditional

variable. Formally, let I be an input image and t ∈ R be

the target timestamp variable in the range of [0, 1) for a

whole day. Our task can then be described as Ît = G(I, t)
where a generator G hallucinates the color tone of the input

I to predict the output image Ît at the time t. To generate

a time-lapse video, we sample a finite set of timestamps

t ∈ {t0, t1, t2, · · · , tn}, then aggregate generated images to

form a video V = {Î0, Î1, Î2, · · · , În}.

Note that our goal is to model continuous and nonlinear

change of color tone over the time without considering

dynamic motions such as moving objects. At test time, we

synthesize output video in an end-to-end manner without the

requirement of any reference video, scene classification, or

semantic segmentation. In addition, our approach enables

generating any number of frames at inference time by using

real-valued t as the control variable.

Datasets. To learn an end-to-end model for the time-lapse

video synthesis from a single input image, we leverage

the AMOS dataset [12] and the time-lapse video database

(TLVDB) [27]. The AMOS dataset is a large-scale dataset

of outdoor image sequences captured from over 35, 000
webcams around the world. A typical sequence in the AMOS

dataset has tens of frames for every 24 hours with timestamp

labels of the time when they were captured. The TLVDB

dataset contains 463 real time-lapse videos and most of them

are about landmark scenes. Each of the videos in the TLVDB

dataset has at least hundreds of frames without timestamp

labels and the numbers of frames are different. Figure 2

Figure 2: Sample sequences from the AMOS (top three

rows) and the TLVDB (bottom two rows) datasets.

shows several sample frames from the two datasets.

However, it is not easy to directly train a generative model

using these two datasets since they contain many outliers,

or even corrupted data. For instance, the images in some

sequences are not aligned due to camera movement and

contain abrupt scene changes, text overlays, fade in/out

effects, etc. We only prune some obviously corrupted frames

and sequences manually, as removing all the noisy data

requires extensive human labor with heuristics.

3.1. Multi­Frame Joint Conditional Generation

We denote the AMOS dataset as A. Each data (Ii, ti) in

A is a pair of an image Ii and its corresponding timestamp

ti. As a naı̈ve approach, it is possible to adopt a conditional

image-to-image translation framework using the timestamp

t as the conditional variable. Specifically, from the AMOS

dataset A, we may train a generator G to synthesize an image

Ît = G(I, t) for a target timestamp t, while a discriminator

D is trained to distinguish whether a pair of an image and a

timestamp is real or fake.

However, we found that training such a naı̈ve model

using each frame in A independently tends to generate

implausible color tone in the output sequence. This is

because the illumination at certain time t is correlated with

the illumination at different times of the same day. In

addition, the illumination changes over multiple days can be

different due to additional factors such as locations, season,

and weather. To this end, we propose to train multiple frames

from each sequence with a shared latent variable z. We use

this latent variable z as the temporal context of each sequence

to learn the joint distribution of color tones at different times

of the day.

Generator. Our generator G leverages a typical encoder-

decoder architecture based on our proposed multi-frame joint

generation scheme, as depicted in Figure 3(left). Let SA be a

1411



CONFIDENTIALResearch Projects

ENC

t₀ 

DEC

Random variable z

Residual
Blocks

ENC

t₁ 

DEC

ENC

tn 

DEC

... ...... ...

ENC

t₀ 

ENC

t₁ 

ENC

tn 

... ......

A
gg

re
ga

tio
n 

(m
ax

-p
oo

lin
g)

Generator Discriminator

Residual
Blocks

Residual
Blocks

Unconditional loss
Conditional loss

Figure 3: Illustration of our multi-frame joint conditional

GAN method. For our discriminator, the encoded images

are concatenated with the timestamps (dashed rectangles)

before being aggregated to compute the conditional loss,

while each image is directly used as an input to compute the

unconditional loss (solid rectangles).

set of frames sampled from the same sequence in the AMOS

dataset A:

SA = {(I0, t0), (I1, t1), (I2, t2), · · · , (In, tn)}. (1)

An input image Ii is encoded by the encoder EG . The

shared latent variable z is sampled from the standard normal

distribution N (0, 1) to represent the temporal context of the

sequence from which SA is sampled. Then several residual

blocks [9] take the encoded image EG(Ii) together with

the latent variable z and the timestamp ti as the input and

generate output features with a new color tone. Finally,

the decoder DG in G decodes the feature from the residual

blocks into an image Îti as the reconstructed output of Ii:

Îti = G(Ii, ti, z)

= DG(EG(Ii), ti, z),
(2)

where we omit the residual blocks for simplicity. The entire

reconstructed output of SA consists of all the generated

frames:

ŜA = {Ît0 , Ît1 , Ît2 , · · · , Îtn}. (3)

During the training, we use different input images from

the same sequence as depicted in Figure 3, which enables G
to ignore moving factors. At the inference time, we use the

same input image multiple times to get an output sequence.

Discriminator. Our discriminator D is divided into two

parts, i.e., an unconditional discriminator Du for each

individual output image Î and a conditional discriminator

Dc for the set of the reconstructed images from an input

frame set SA. The unconditional discriminator Du is used

to differentiate if each individual image is real or fake. The

conditional discriminator Dc distinguishes if a generated

frame set ŜA is a real time-lapse sequence. In other words,

Dc checks not only whether each individual frame Îti

matches the corresponding ti, but also whether ŜA presents

realistic color tone changes over time.

We train both Du and Dc based on the same image

encoder ED, as shown in Figure 3(right). For the conditional

discriminator Dc, the encoded image and the corresponding

timestamp are concatenated for each frame and all the frames

from the same sequence are aggregated to compute the

discriminator score. Since the input of the conditional

discriminator Dc is an unordered set of {(Îti , ti)} rather

than an ordered sequence, the discriminator score should be

permutation-invariant [39]. Therefore, we use max-pooling

to aggregate encoded features of multiple frames.

Adversarial losses. The adversarial losses of our multi-

frame joint conditional generation algorithm consist of an

unconditional loss and a conditional loss. The unconditional

adversarial loss lu can be formally described as:

lu = EI∼A[logDu(I)]

+ E(I,t)∼A,z∼N [1− logDu(G(I, t, z))],
(4)

where N is the standard normal distribution. Our conditional

adversarial loss lc is defined as below:

lc = ESA∼A[logDc(SA)]

+ E
S̃A∼A[1− logDc(S̃A)]

+ ESA∼A,z∼N [1− logDc(G(SA, z))].

(5)

To effectively train the correlation between the input image

Ii and its corresponding timestamp ti, we introduce an

additional term as shown in the second row of Eq. (5) for

a set of negative pairs S̃A, which we collect by randomly

sampling mismatched pairs from SA:

S̃A = {(Ii, tj) | i 6= j}. (6)

3.2. Multi­Domain Training

Our multi-frame joint conditional generation method

effectively captures diverse illumination variation over time.

However, the model trained based on the AMOS dataset

alone tends to generate uninteresting outputs such as clipped

and less saturated colors especially in the sky region, since

most footages of the AMOS dataset were captured by

surveillance cameras. To further improve the visual quality

of synthesis output, we propose to additionally leverage the

TLVDB dataset [27] and denote it as B. Most videos in

B are about landmark scenes captured using professional

cameras and thus present much more interesting color tone

distributions and changes over time.
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Figure 4: Illustration of our multi-domain training scheme.

However, the footages in the TLVDB dataset are videos

without any ground-truth timestamp label for each frame.

Therefore, it is infeasible to directly learn from this dataset

using our conditional generation method described in

Section 3.1. Furthermore, we have found that simply

merging the AMOS dataset and the TVLDB dataset to train

the unconditional image discriminator in Eq. (4) does not

improve the results, due to the domain discrepancy of the

two datasets. To handle the issues of missing timestamps and

inconsistent data distributions, we propose a multi-domain

training method.

Our key idea is to synthesize time-lapse sequences using

the TLVDB dataset B and to learn continuous illumination

changes over time from the AMOS dataset A. Figure 4

shows the overview of our multi-domain training algorithm.

Basically, we train a generator GB together with a discrimina-

tor DB based on B to synthesize time-lapse sequences. The

synthesis results are then translated into the domain of A
by using another generator GA as a proxy to get conditional

training signals from the discriminator DA trained on A.

With the training signal from DA, GB can be trained to

synthesize images with the timestamp t being taken into

account. To this end, we adopt our multi-frame conditional

generation network (Section 3.1 and Figure 3) for GB and

DA, while using vanilla DCGAN [25] and U-Net [26] for

DB and GA, respectively.

Loss functions. For our multi-domain training scheme,

the unconditional loss in Eq. (4) is reformulated as:

lu = lu,A + lu,B, (7)

where

lu,A = EI∼A[logDA(I)]

+ EI∼B,t∼A,z∼N [1− logDA(GA(GB(I, t, z)))],
(8)

and

lu,B = EI∼B[logDB(I)]

+ EI∼B,t∼A,z∼N [1− logDB(GB(I, t, z))].
(9)

Algorithm 1 Our training algorithm

Set the learning rate η

Initialize network parameters θGA
, θDA

, θGB
, θDB

for the number of iterations do

Sample SA, S̃A ∼ A, SB ∼ B
(1) Update the discriminators DA and DB

Sample z ∼ N
Generate GB(SB, z), GA(GB(SB, z))
θDA

= θDA
+ η∇θDA

(lu,A + lc)
θDB

= θDB
+ η∇θDB

lu,B
(2) Update the generator GA

Sample z ∼ N
Generate GB(SB, z), GA(GB(SB, z))
θGA

= θGA
+ η∇θGA

(lu,A + lr)
(3) Update the generator GB

Sample z ∼ N
Generate GB(SB, z), GA(GB(SB, z))
θGB

= θGB
+ η∇θGB

(lu,B + lc)
end for

The conditional loss in Eq. (5) can be rewritten as:

lc = ESA∼A[logDA(SA)]

+ E
S̃A∼A[1− logDA(S̃A)]

+ ESB∼B,z∼N [1− logDA(GA(GB(SB, z)))],

(10)

where we omit the exact definition of SB for simplicity. We

also add a reconstruction loss lr for GA based on L1 norm

to enforce the network to learn the mapping from a sample

in one domain to a similar one in another domain:

lr =
∥

∥

∥
GA(GB(I, t, z))− GB(I, t, z)

∥

∥

∥

1
. (11)

Training algorithm. Our network is trained by solving

the following minimax optimization problem:

G∗
A,D

∗
A,G

∗
B,D

∗
B = min

GA,GB

max
DA,DB

lu + lc + λ lr, (12)

where λ is the weight of the reconstruction loss lr defined

in Eq. (11). Note that lc is only used for updating GB and we

do not update GA with the gradient from lc, since the purpose

of using GA is to translate the domain without considering

the timestamp condition. In addition, we update GA and GB

alternately as they are dependent on each other. Our training

procedure is described in Algorithm 1 step by step.

3.3. Guided Upsampling

Since our training data is very limited and contains lots

of noise, it is difficult to train the network to directly output

full-resolution results while completely preserving the local

structure in the input image. Therefore, we first train our

1413



Figure 5: We apply guided upsampling in a post-processing

step to get full-resolution output. From left to right: the

output predicted by our network, the original input, and the

upsampling result.

generative network and predict output Î at a lower resolution.

Then we apply an automatic guided upsampling approach,

following the local color transfer method in [10], as a post-

processing step to obtain the full-resolution result.

Basically, we model the per-pixel linear transformation

between the final result Ī and the input image I at a pixel

location p as a scaling factor s(p) with a bias b(p):

Ī(p) = T(p)(I(p)) = s(p)× I(p) + b(p). (13)

The key idea of guided upsampling is to use the raw network

output Î as the guidance to compute the transformation T =
{s, b}, while using color information between neighboring

pixels in the input image I as regularization. Specifically, we

formulate the task as the following least-squares problem:

E = Ed + µ Es,

Ed =
∑

p

∥

∥Ī(p)− Î(p)
∥

∥

2
,

Es =
∑

p

∑

q∈N(p)

w
(

I(p), I(q)
)∥

∥T(p)−T(q)
∥

∥

2
,

(14)

where N(p) is the one-ring neighborhood of p and

w
(

I(p), I(q)
)

measures the inverse color distance between

two neighboring pixels p and q in the original image I. The

data term Ed in Eq. (14) preserves the color from Î and the

smoothness term Es enforces local smoothness of the linear

transformation T between neighboring pixels of similar

colors. A global constant weight µ is used to balance the two

energy terms. We compute the least-squares optimization

for each color channel independently and then upsample T

bilinearly to the full resolution before apply to the original

image. See Figure 5 for two example results.

4. Experiments

4.1. Experimental Setup

Dataset. We use both the AMOS [12] and the TLVDB [27]

datasets to train our network. For the AMOS dataset, we

only select sequences with geolocation information and

adjust all timestamp labels to local time accordingly. In

addition, we remove some obviously corrupted data such

as zero-byte images, grayscale images, etc. All in all, we

collected 40, 537 sequences containing 1, 310, 375 images

from 1, 633 cameras. We split the collected AMOS dataset

into a training set and a test set, which contain sequences

from 1, 533 and 100 cameras, respectively. For the TLVDB

dataset, we use 463 videos that have 1, 065, 427 images

without preprocessing. We randomly select 30 videos as the

test set and use the remaining videos for training.

Implementation details. We implement our method using

PyTorch. We train our model with 60, 000 iterations using

Adam optimizer with the momentum set to 0.5. The batch

size is set to be 4 and the learning rate is 0.0002. We

use 16 frames for each example in a batch to train our

multi-frame joint conditional GAN and set λ to be 0.5
based on visual quality. For data augmentation, we first

resize images to 136 × 136 and then apply random affine

transformation including rotation, scale, and shear followed

by random horizontal flipping. Finally, the images are

randomly cropped to patches of resolution 128×128. For the

encoder of GB, we adopt a pre-trained VGG-16 network [28]

while all other components are trained from scratch.1

Baselines. We compare our method with two existing

color transfer methods of Li et al. [19] and Shih et al. [27]

using the source code with the default parameters provided

by the authors. As both methods need reference videos to

guide the output synthesis, we additionally implement the

reference video retrieval method proposed in [27], which

is to compare the global feature of an input image with

reference video frames to find the most similar video. We

use the output of a fully-connected layer in a ResNet-50

model [9] as the global feature. The model is pre-trained

for a scene classification task [40]. We additionally use a

pre-trained scene parsing network [41] to produce semantic

segmentation masks used in Li et al.’s method [19].

4.2. Experimental Results

Quantitative results. Since both baseline methods require

a reference video as input while ours does not, it is difficult

to conduct a completely fair comparison side-by-side. To

evaluate our method quantitatively, we performed a human

evaluation following the experiment in [27].

1Please refer to the supplementary materials for more details.
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Day −−−−−−−−−−−−−−−−−−−−−−−−−→ Sunset

Night −−−−−−−−−−−−−−−−−−−−−−−−−→ Day

Figure 6: Our prediction results of the input images at

different times of the day. The input images are shown

on the left in each row.

Specifically, we select 24 images from 30 test images in

the TLVDB test set and generated 24 time-lapse sequences

using the two baseline approaches [19, 27] and our method.

Then, we randomly select two or three images from each

output sequence. Eventually, we collect 71 images for each

method. We additionally selected the same number of frames

from the original videos of the test images to consider real

images as another baseline. We conducted a user study on

Amazon Mechanical Turk by asking 10 users if each image

was real or fake. We restricted the users to those who had

high approval rates greater than 98% to control quality.

As the result, 60.6% of our results were perceived as real

images by the users. In contrast, the corresponding numbers

for real images, Li et al.’s method [19], and Shih et al.’s

method [27] are 67.5%, 34.1%, and 44.9%, respectively.

Our percentage is also higher than the reported value in [27],

which is 55.2%. We attribute the lower performance of two

baseline methods to the failure of color transfer when the

retrieved reference video does not perfectly match the input

image. In contrast, our results were mostly preferred by the

users without using any reference video.

Figure 7: Comparisons with existing methods. The same

input image is shown on the left. From top to bottom, we

show frames from a retrieved reference video, the results

from [19], [27], and our method, respectively.

Qualitative results. Figure 6 shows our results based

on a variety of outdoor images from the MIT-Adobe

5K dataset [3]. Our method can robustly handle input

images with different semantic compositions and effectively

synthesize illumination changes over time. Figure 7 shows

qualitative comparisons between our results and those from

the two baseline methods [27, 19]. The input image is

repeatedly shown in the first column in Figure 7. The first

row shows a set of frames from a retrieved reference video.

Starting from the second row, we show the results generated

by [19], [27], and our method, respectively. In many cases,

both baseline methods produce unrealistic images, which

is mainly because the scene in the reference video does

not perfectly match the input image. For both baseline

methods, the color tone changes are driven by the retrieved

reference video and may present noticeable visual artifacts

if the reference video has semantic composition significantly

different from the input image. In contrast, our method can

effectively generate plausible color tone changes over time

without a reference video. Also the color tone changes in

our results are more visually pleasing due to the use of both

AMOS and TLVDB datasets.

Computation time. At inference time, we only need GB

to synthesize time-lapse videos. The inference of GB takes

about 0.02 seconds with a GPU and 0.8 seconds with a CPU.

The guided upsampling step takes about 0.1 seconds on a

CPU for an original input image of resolution 512× 512. In

contrast, Shih et al.’s method [27] takes 58 seconds for a 700-

pixels width image on CPU, and Li et al.’s method [19] takes

6.3 seconds for 768 × 384 resolution on GPU. Therefore,
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Figure 8: Ablation study of our algorithm. The same input is

shown on the left. From top to bottom, we show results from

(A) a vanilla cGAN, (B) our multi-frame joint conditional

GAN only, and (C) our full algorithm, respectively.

our method is much faster than existing methods and is more

suitable for deployment on mobile devices.

4.3. Discussion

Ablation studies. We conduct ablation studies to verify

important components of our proposed method. In Figure 8,

we show some qualitative results to compare with our own

baselines: (A) a vanilla cGAN, (B) our multi-frame joint

conditional GAN without the multi-domain training, and (C)

our full algorithm with both the multi-frame joint conditional

GAN and the multi-domain training. Method (A) only

changes the overall brightness without considering color

tone changes, especially at a transition time such as the

sunrise and the sunset. This issue is because there can

be various illumination changes at a specific time due to

locations, season, and weather changes, which confuses the

generator. Thus, the generator is likely to change brightness

only as the easiest way to fool the discriminator. Method

(B) effectively captures illumination changes over time by

considering the context of the entire sequence. In many

cases, however, it produces clipped pixels and less saturated

color tone, because the AMOS dataset consists of footages

captured by surveillance cameras which are visually less

interesting. Our full algorithm (C) overcomes this limitation

by jointly learning from both the AMOS dataset and the

TLVDB dataset.

Evaluation of multi-domain training. Figure 9 shows

some examples after translating the output of GB into the

domain of AMOS dataset A using GA for the conditional

training. Directly training GB using DA fails due to the

domain discrepancy of the two datasets such as different

color tones and scene compositions. As shown in the figure,

GA can effectively change the output of GB to fool DA and

get conditional training signals from it.

Figure 9: The effect of using GA. The input image is shown

on the left. Two image pairs of before (the 2nd and 4th

columns) and after GA (the 3rd and 5th columns) are shown

to verify the multi-domain training.

5. Conclusions

In this paper, we presented a novel framework for the

time-lapse video synthesis from a single outdoor image.

Given an input image, our conditional generative adversarial

network can predict the illumination changes over time by

using the timestamp as the control variable. Compared to

other methods, we do not require semantic segmentation or a

reference video to guide the generation of the output video.

Figure 10: Failure cases.

Our method still has some

limitations. As shown in Fig-

ure 10, our method fails to

hallucinate daytime images

from a nighttime input where

most parts of the input are

very dark. In some cases,

our method fails to generate

artificial lighting in regions

such as building windows. In

addition, our method only

changes the color tones of a given input image without

introducing any motions such as moving objects. It would be

interesting to combine our approach with frame prediction

or motion synthesis techniques [35] to generate time-

lapse videos with both interesting motions and illumination

changes. We also plan to extend our approach to support

additional semantic controls such as sunrise and sunset times

in the prediction results [15]. Finally, we would like to

investigate using our synthesis framework with an implicit

control variable for general video synthesis tasks.
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Durand. Learning photographic global tonal adjustment with

a database of input/output image pairs. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

97–104, 2011.

[4] Qifeng Chen and Vladlen Koltun. Photographic image

synthesis with cascaded refinement networks. In IEEE

International Conference on Computer Vision (ICCV), pages

1520–1529, 2017.

[5] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian

Curless, David H. Salesin, and Richard Szeliski. Animating

pictures with stochastic motion textures. ACM Trans. Graph.,

24(3):853–860, 2005.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 248–255, 2009.

[7] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2414–2423, 2016.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

Neural Information Processing Systems, pages 2672–2680,

2014.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[10] Mingming He, Jing Liao, Lu Yuan, and Pedro V Sander.

Neural color transfer between images. arXiv preprint

arXiv:1710.00756, 2017.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.

Image-to-image translation with conditional adversarial net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5967–5976, 2017.

[12] Nathan Jacobs, Nathaniel Roman, and Robert Pless. Consis-

tent temporal variations in many outdoor scenes. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–6, 2007.

[13] Wei-Cih Jhou and Wen-Huang Cheng. Animating still

landscape photographs through cloud motion creation. IEEE

Transactions on Multimedia, 18(1):4–13, 2016.

[14] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In The

European Conference on Computer Vision (ECCV), pages

694–711, 2016.

[15] Levent Karacan, Zeynep Akata, Aykut Erdem, and Erkut

Erdem. Learning to generate images of outdoor scenes

from attributes and semantic layouts. arXiv preprint

arXiv:1612.00215, 2016.

[16] Hyeongwoo Kim, Pablo Carrido, Ayush Tewari, Weipeng

Xu, Justus Thies, Matthias Niessner, Patrick Pérez, Christian
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