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Abstract

Automated design of neural network architectures tai-

lored for a specific task is an extremely promising, albeit

inherently difficult, avenue to explore. While most results

in this domain have been achieved on image classification

and language modelling problems, here we concentrate on

dense per-pixel tasks, in particular, semantic image seg-

mentation using fully convolutional networks. In contrast to

the aforementioned areas, the design choices of a fully con-

volutional network require several changes, ranging from

the sort of operations that need to be used—e.g., dilated

convolutions—to a solving of a more difficult optimisation

problem. In this work, we are particularly interested in

searching for high-performance compact segmentation ar-

chitectures, able to run in real-time using limited resources.

To achieve that, we intentionally over-parameterise the ar-

chitecture during the training time via a set of auxiliary

cells that provide an intermediate supervisory signal and

can be omitted during the evaluation phase. The design of

the auxiliary cell is emitted by a controller, a neural net-

work with the fixed structure trained using reinforcement

learning. More crucially, we demonstrate how to efficiently

search for these architectures within limited time and com-

putational budgets. In particular, we rely on a progres-

sive strategy that terminates non-promising architectures

from being further trained, and on Polyak averaging cou-

pled with knowledge distillation to speed-up the conver-

gence. Quantitatively, in 8 GPU-days our approach dis-

covers a set of architectures performing on-par with state-

of-the-art among compact models on the semantic segmen-

tation, pose estimation and depth prediction tasks. Code

will be made available here: https://github.com/

drsleep/nas-segm-pytorch

1. Introduction

For years, the design of neural network architectures was

thought to be solely a duty of a human expert - it was
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her responsibility to specify which type of architecture to

use, how many layers should there be, how many channels

should convolutional layers have and etc. This is no longer

the case as the automated neural architecture search - a way

of predicting the neural network structure via a non-human

expert (an algorithm) - is fast-growing. Potentially, this may

well mean that instead of manually adapting a single state-

of-the-art architecture for a new task at hand, the algorithm

would discover a set of best-suited and high-performing ar-

chitectures on given data.

Few decades ago, such an algorithm was based on evo-

lutionary programming strategies where best seen so far ar-

chitectures underwent mutations and their most promising

off-springs were bound to continue evolving [2]. Now, we

have reached the stage where a secondary neural network,

oftentimes called controller, replaces a human in the loop,

by iteratively searching among possible architecture candi-

dates and maximising the expected score on the held-out

set [47]. While there is a lack of theoretical work behind this

latter approach, several promising empirical breakthroughs

have already been achieved [3, 48].

At this point, it is important to emphasise the fact that

such accomplishments required an excessive amount of

computational resources—more than 20, 000 GPU-days for

the work of Zoph and Le [47] and 2, 000 for Zoph et al. [48].

Although a few works have reduced those to single digit

numbers on image classification and language processing

tasks [21, 28], we consider more challenging dense per-

pixel tasks that produce an output for each pixel in the input

image and for which no efficient training regimes have been

previously presented. Although here we concentrate only

on semantic image segmentation, our proposed methodol-

ogy can immediately be applied to other per-pixel predic-

tion tasks, such as depth estimation and pose estimation. In

our experiments, we demonstrate the transferability of the

discovered segmentation architecture to the latter problems.

Notably, all of them play an important role in computer vi-

sion and robotic applications and so far have been relying

on manually designed accurate low-latency models for real-

world scenarios.
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The focus of our work is to automatically discover com-

pact high-performing fully convolutional architectures, able

to run in real-time on a low-computational budget, for ex-

ample, on the Jetson platform. To this end, we are explic-

itly looking for structures that not only improve the perfor-

mance on the held-out set, but also facilitate the optimisa-

tion during the training stage. Concretely, we consider the

encoder-decoder type of a fully-convolutional network [23],

where encoder is represented by a pre-trained image classi-

fier, and the decoder structure is emitted by the controller

network. The controller generates the connectivity struc-

ture between encoder and decoder, as well as the sequence

of operations (that form the so-called cell) to be applied on

each connected path. The same cell structure is used to form

an auxiliary classifier, the goal of which is to provide inter-

mediate supervision and to implicitly over-parameterise the

model. Over-parameterisation is believed to be the primary

reason behind the successes of deep learning models, and a

few theoretical works have already addressed it in simpli-

fied cases [8, 37]. Along with empirical results, this is the

primary motivation behind the described approach.

Last, but not least, we devise a search strategy that per-

mits to find high-performing architectures within a small

number of days using only few GPUs. Concretely, we pur-

sue two goals here:

i.) To prevent ‘bad’ architectures from being trained for

long; and

ii.) To achieve a solid performance estimate as soon as

possible.

To tackle the first goal, we divide the training process during

the search into two stages. During the first stage, we fix the

encoder’s weights and pre-compute its outputs, while only

training the decoder part. For the second stage, we train the

whole model end-to-end. We validate the performance after

the first stage and terminate the training of non-promising

architectures. For the second goal, we employ Polyak aver-

aging [29] and knowledge distillation [12] to speed-up con-

vergence.

To summarise, our contributions in this work are to

propose an efficient neural architecture search strategy for

dense-per-pixel tasks that (i.) allows to sample compact

high-performing architectures, and (ii.) can be used in real-

time on low-computing platforms, such as JetsonTX2. In

particular, the above points are made possible by:

• Devising a progressive strategy able to eliminate poor

candidates early in the training;

• Developing a training schedule for semantic segmenta-

tion able to provide solid results quickly via the means

of knowledge distillation and Polyak averaging;

• Searching for an over-parameterised auxiliary cell that

provides better training and is obsolete during infer-

ence.

2. Related Work

Traditionally, architecture search methods have been

relying upon evolutionary strategies [2, 39, 40], where

a population of networks (oftentimes together with their

weights) is continuously mutated, and less promising net-

works are being discarded. Modern neuro-evolutionary ap-

proaches [22, 30] rely on the same principles and benefit

from available computational resources, that allow them to

achieve impressive results. Bayesian optimisation methods

estimating the probability density of objective function have

long been used for hyper-parameter search [4, 36]. Scaling

up Bayesian methods for architecture search is an ongoing

work, and few kernel-based approaches have already shown

solid performance [14, 41].

Most recently, neural architecture search (NAS) strate-

gies based on reinforcement learning (RL) have attained

state-of-the-art results on the tasks of image classification

and natural language processing [3, 47, 48]. Relying on

enormous computational resources, these algorithms com-

prise a separate neural network, the so-called ‘controller’,

that emits an architecture design and receives a scalar re-

ward after the emitted architecture is trained on the task

of interest. Notably, thousand of iterations and GPU-days

are needed for convergence. Rather than searching for the

whole network structure from scratch, these methods tend to

look for cells—repeatable motifs that can be stacked multi-

ple times in a feedforward fashion.

Several solutions for making NAS methods more effi-

cient have been recently proposed. In particular, Pham et

al. [28] unroll the computational graph of all possible ar-

chitectures and allow sharing the weights among different

architectures. This dramatically reduces the number of re-

sources needed for convergence. In a similar vein of re-

search, Liu et al. [21] exploit a progressive strategy where

the network complexity is gradually increased, while the

ranking network is trained in parallel to predict the perfor-

mance of a new architecture. A few methods have been

built around continuous relaxation of the search problem.

Particularly Luo et al. [24] use an encoder to embed the ar-

chitecture description into a latent space, and estimator to

predict the performance of an architecture given its embed-

ding. While these methods make the search process more

efficient, they achieve so by sacrificing the expressiveness

of the search space, and hence, may arrive to a sub-optimal

solution.

In semantic segmentation [17, 18, 19], up to now all the

architectures have been manually designed, closely follow-

ing the winner entries of image classification challenges.

Two prominent directions have emerged over the last few

years: the encoder-decoder type [17, 23, 27], where bet-

ter features are learned at the expense of having a spa-

tially coarse output mask; whereas other popular approach

discards several down-sampling layers and relies on di-
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lated convolutions for keeping the receptive field size in-

tact [6, 44, 46]. Chen et al. [7] have also shown that the

combination of those two paradigms lead to even better re-

sults across different benchmarks. In terms of NAS in se-

mantic segmentation, independently of us and in parallel to

our work, a straightforward adaptation of image classifica-

tion NAS methods was proposed by Chen et al. [5]. In it

they randomly search for a single segmentation cell design

and achieve expressive results by using almost 400 GPUs

over the range of 7 days. In contrast to that, our method first

and foremost is able to find compact segmentation models

only in a fraction of that time. Secondly, it differs signifi-

cantly in terms of the search design and search methodol-

ogy.

For the purposes of a clearer presentation of our ideas,

we briefly review knowledge distillation, an approach pro-

posed by Hinton et al. [12] to successfully train a compact

model using the outputs of a single (or an ensemble of) large

network(s) pre-trained on the current task. In it, the logits

of the pre-trained network are being used as an additional

regulariser for the small network. In other words, the lat-

ter has to mimic the outputs of the former. Such a method

was shown to provide a better learning signal for the small

network. As a result of that, it has already found its way

across multiple domains: computer vision [45], reinforce-

ment learning [31], continuous learning [16] – to name a

few.

3. Methodology

We start with the problem formulation, proceed with the

definitions of an auxiliary cell and knowledge distillation

loss, and conclude with the overall search strategy.

We primarily focus on two research questions: (i.) how

to acquire a reliable estimate of the segmentation model

performance as quickly as possible; and (ii.) how to im-

prove the training process of the segmentation architecture

through over-parameterisation, obsolete during inference.

3.1. Problem Formulation

We consider dense prediction task T , for which we have

multiple training tuples {(Xi, yi)}, where both Xi and yi
are 3-dimensional tensors with equal spatial and arbitrary

third dimensions. In this work, Xi is a 3-channel RGB im-

age, while yi is a C-channel one-hot segmentation mask

with C being equal to the number of classes, which corre-

sponds to semantic image segmentation. Furthermore, we

rely on a mapping f : X → y with parameters θ, that is

represented by a fully convolutional neural network. We

assume that the network f can further be decomposed into

two parts: e - representing encoder, and d - for decoder. We

initialise encoder e with weights from a pre-trained classifi-

cation network consisting of multiple down-sampling oper-

ations that reduce the spatial dimensions of the input. The

decoder part, on the other hand, has access to several out-

puts of encoder with varying spatial and channel dimen-

sions. The search goal is to choose which feature maps to

use and what operations to apply on them. We next describe

the decoder search space in full detail.

3.1.1 Search Space

We restrict our attention to the decoder part, as it is currently

infeasible to perform a full segmentation network search

from scratch.

As mentioned above, the decoder has access to multi-

ple layers from the pre-trained encoder with varying di-

mensions. To keep sampled architectures compact and of

approximately equal size, each encoder output undergoes

a single 1×1 convolution with the same number of out-

put channels. We rely on a recurrent neural network, the

controller, to sequentially produce pairs of indices of which

layers to use, and what operations to apply on them. In par-

ticular, this sequence of operations is combined to form a

cell (see example in Fig. 1). The same cell but with dif-

ferent weights is applied to each layer inside the sampled

pair, and the outputs of two cells are summed up. The re-

sultant layer is added to the sampling pool. The number of

times pairs of layers are sampled is controlled by a hyper-

parameter, which we set to 3 in our experiments, allowing

the controller to recover such encoder-decoder architectures

as FCN [23], or RefineNet [17]. All non-sampled summa-

tion outputs are concatenated, before being fed into a single

1×1 convolution to reduce the number of channels followed

by the final classification layer.

Each cell takes a single input with the controller first de-

ciding which operation to use on that input. The controller

then proceeds by sampling with replacement two locations

out of two, i.e., of input and the result of the first operation,

and two corresponding operations. The outputs of each op-

eration are summed up, and all three layers (from each op-

eration and the result of their summation) together with the

initial two can be sampled on the next step. The number of

times the locations are sampled inside the cell is controlled

by another hyper-parameter, which we also set to 3 in our

experiments in order to keep the number of all possible ar-

chitectures to a feasible amount1. All existing non-sampled

summation outputs inside the cell are summed up, and used

as the cell output. In this case, we resort to sum as concate-

nation may lead to variable-sized outputs between different

architectures.

Based on existing research in semantic segmentation, we

consider 11 operations:

1Taking into account symmetrical – thus, identical – architectures, we

estimate the number of unique connections in the decoder part to be 120,

and the number of unique cells ∼10
10, leading to ∼10

12, which is on-par

with concurrent works.
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Figure 1 – Example of the encoder-decoder auxiliary search layout. Controller RNN (bottom) first generates connections between encoder and decoder

(top left), and then samples locations and operations to use inside the cell (top right). All the cells (including auxiliary cell) share the emitted design.

In this example, the controller first samples two indices (block1 and block3), both of which pass through the corresponding cells, before being summed up

to create block4. The controller then samples block2 and block3 that are merged into block5. Since block4 was not sampled, it is concatenated with block5

and fed into 1×1 convolution followed by the final classifier. The output of block4 is also passed through an auxiliary cell for intermediate supervision.

To emit the cell design, the controller starts by sampling the first operation applied on the cell input (op1), followed by sampling of two indices – index0,

corresponding to the cell input, and index1 of the output layer after the first operation. Two operations – op2 and op0 – are applied on each index,

respectively, and their summation serves as the cell output.

• conv 1× 1,

• conv 3× 3,

• separable conv 3× 3,

• separable conv 5× 5,

• global average pooling followed by upsampling and

conv 1× 1,

• conv 3× 3 with dilation rate 3,

• conv 3× 3 with dilation rate 12,

• separable conv 3× 3 with dilation rate 3,

• separable conv 5× 5 with dilation rate 6,

• skip-connection,

• zero-operation that effectively nullifies the path.

An example of the search layout with 2 decoder blocks and

2 cell branches is depicted on Fig. 1.2

2Please refer to Appendix A for more details on the search space and

the sampling procedure.

3.2. Search Strategy

We randomly divide the training set into two disjoint sets

- meta-train and meta-val. The meta-train subset is used to

train the sampled architecture on the given task (i.e., se-

mantic segmentation), whereas meta-val, on the other hand,

is used to evaluate the trained architecture and provide the

controller with a scalar, oftentimes called reward in the

reinforcement learning literature. Given the sampled se-

quence, its logarithmic probabilities and the reward signal,

the controller is optimised via proximal policy optimisation

(PPO) [34]. Hence, there are two training processes present:

inner - optimisation of the sampled architecture on the given

task, and outer - optimisation of the controller. We next con-

centrate on the inner loop.

3.2.1 Progressive Stages

We divide the inner training process into two stages. Dur-

ing the first stage, the encoder weights are fixed and its out-
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puts are pre-computed, while only decoder is being trained.

This leads to a quick adaptation of the decoder weights and

a reasonable estimate of the performance of the sampled ar-

chitecture. We exploit a simple heuristic to decide whether

to continue training the sampled architecture for the second

stage, or not. Concretely, the current reward value is being

compared with the running mean of rewards seen so far, and

if it is higher, we continue training. Otherwise, with prob-

ability 1 − p we terminate the training process. The prob-

ability p is annealed throughout our search (starting from

0.9).

The motivation behind this is straightforward: the results

of the first stage, while noisy, can still provide a reasonable

estimate of the potential of the sampled architecture. At

the very least, they would present a reliable signal that the

sampled architecture is non-promising, while spending only

few seconds on it. Such a simple approach encourages ex-

ploration during early stages of search akin to the ǫ-greedy

strategy often used in the multi-armed bandit problem [42].

3.2.2 Fast Training via Knowledge Distillation and

Weights’ Averaging

Semantic segmentation models are notable for requiring

many iterations to converge. Partially, this is addressed by

initialising the encoder part from a pre-trained classification

network. Unfortunately, no such thing exists for decoder.

Fortunately, though, we can explore several alternatives

that provide faster convergence. Besides tailoring our op-

timisation hyper-parameters, we rely on two more tricks:

firstly, we keep track of the running average of the parame-

ters during each stage and apply them before the final val-

idation [29]. Secondly, we append an additional l2−loss

term between the logits of the current architecture and a

pre-trained teacher network. We can either pre-compute the

teacher’s outputs beforehand, or acquire them on-the-fly in

case the teacher’s computations are negligible.

The combination of both of these approaches allows us

to receive a very reliable estimate of the performance of the

semantic segmentation model as quickly as possible without

a significant overhead.

3.2.3 Intermediate Supervision via Auxiliary Cells

We further look for ways of easing optimisation during fast

search, as well as during a longer training of semantic seg-

mentation models. Thus, still aligning with the goal of hav-

ing a compact but accurate model, we explicitly aim to find

ways of performing steps that are beneficial during training

and obsolete during evaluation.

One approach that we consider here is to append an aux-

iliary cell after each summation between pairs of main cells

- the auxiliary cell is identical to the main cell and can either

be conditioned to output ground truth directly, or to mimic

the teacher’s network predictions (or the combination of the

above two). At the same time, it does not influence the out-

put of the main classifier either during the training or testing

and merely provides better gradients for the rest of the net-

work. In the end, the reward per the sampled architecture

will still be decided by the output of the main classifier. For

simplicity, we only apply the segmentation loss on all aux-

iliary outputs.

The notion of intermediate supervision is not novel in

neural networks, but to the best of our knowledge, prior

works have merely been relying on a simple auxiliary clas-

sifier, and we are the first to tie up the design of decoder with

the design of the auxiliary cell. We demonstrate the quanti-

tative benefits of doing so in our ablation studies (Sect. 4.2).

Furthermore, our motivation behind searching for cells

that may also serve as intermediate supervisors stems from

ever-growing empirical (and theoretical under certain as-

sumptions) evidence that deep networks benefit from over-

parameterisation during training [8, 37]. While auxiliary

cells provide an implicit notion of over-parameterisation,

we could have explicitly increased the number of channels

and then resorted to pruning. Nonetheless, pruning meth-

ods tend to result in unstructured networks often carrying

no tangible benefits in terms of the runtime speed, whereas

our solution simply permits omitting unused layers during

inference.

4. Experiments

We conduct extensive experiments on PASCAL VOC

which is an established semantic segmentation benchmark

that comprises 20 semantic classes (and background) and

provides 1464 training images [9]. For the search process,

we extend those to more than 10000 by exploiting annota-

tions from BSD [11]. As commonly done, during search,

we keep 10% of those images for validation of the sampled

architectures that provides the controller with the reward

signal. For the first stage, we pre-compute the encoder out-

puts on 4000 images and store them for faster processing.

The controller is a two-layer recurrent LSTM [13] neural

network with 100 hidden units. All the units are randomly

initialised from a uniform distribution. We use PPO [34] for

optimisation with the learning rate of 0.0001.

The encoder part of our network is MobileNet-v2 [32],

pretrained on MS COCO [20] for semantic segmenta-

tion using the Light-Weight RefineNet decoder [26]. We

omit the last layers and consider four outputs from lay-

ers 2, 3, 6, 8 as inputs to decoder; 1×1 convolutional lay-

ers used for adaptation of the encoder outputs have 48 out-

put channels during search and 64 during training. De-

coder weights are randomly initialised using the Xavier

scheme [10]. To perform knowledge distillation, we use

Light-Weight RefineNet-152 [26], and apply ℓ2−loss with

the coefficient of 0.3 which was set using the grid search.
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Figure 2 – Distribution of rewards per each training stage for reinforce-

ment learning (RL) and random search (RS) strategies. Higher peaks

correspond to higher density.

The knowledge distillation outputs are pre-computed for the

first stage and omitted during the second one in the interests

of time. Polyak averaging is applied with the decay rates of

0.9 and 0.99, correspondingly. Batch normalisation statis-

tics are updated during both stages.

All our search experiments are being conducted on two

1080Ti GPU cards, with the search process being termi-

nated after 4 days. All runtime measurements are carried

out on a single 1080Ti card, or on JetsonTX2, if mentioned

otherwise. In particular, we perform the forward pass 100
times and report the mean result together with standard de-

viation.

4.1. Search Results

For the inner training of the sampled architectures, we

devise a fast and stable training strategy: we exploit the

Adam learning rule [15] for the decoder part of the net-

work, and SGD with momentum - for encoder. In partic-

ular, we use learning rates of 3e-3 and 1e-3, respectively.

We pre-train each sampled architecture for 5 epochs on the
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R
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a
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Figure 3 – Distribution of rewards during each training stage of the

search process across setups with Polyak averaging (Polyak), intermedi-

ate supervision through auxiliary cells (AUX) and knowledge distillation

(KD).

first stage, and for 1 on the second (in case the stopping cri-

terion is not triggered). As the reward signal, we consider

the geometric mean of three quantities: namely,

i.) mean intersection-over-union (IoU), or Jaccard

Index [9], primarily used across semantic segmentation

benchmarks;

ii.) frequency-weighted IoU, that scales each class IoU

by the number of pixels present in that class, and

iii.) mean-pixel accuracy, that averages the number of

correct pixels per each class. When computing, we do not

include background class as it tends to skew the results due

to a large number of pixels belonging to background. As

mentioned above, we keep the running mean of rewards af-

ter the first stage to decide whether to continue training a

sampled architecture.

We visualise the reward progress during both stages on

Figure 2. As evident from it, the quality of the emitted ar-

chitectures grows with time - it is even possible that more

iterations would lead to better results, although we do not

explore that to save the time spent. On the other hand, while

random search has the potential of occasionally sampling

decent architectures, it finds only a fraction of them in com-

parison to the RL-based controller.

Moreover, we evaluate the impact of the inclusion of

Polyak averaging, auxiliary cells and knowledge distillation

on each training stage. To this end, we randomly sample

and train 140 architectures. We visualise the distributions

of rewards on Fig. 3. All the tested settings significantly

outperform baseline on both stages, and the highest rewards

on the second stage are attained when using all of the com-

ponents above.

4.2. Effect of Intermediate Supervision via Auxil-
iary Cells

After the search process is finished, we select 10 archi-

tectures discovered by the RL controller with highest re-

wards and proceed by carrying out additional ablation stud-

ies aimed to estimate the benefit of the proposed auxiliary

scheme in case the architectures are allowed to train for

longer.

In particular, we train each architecture for 20 epochs on

BSD together with PASCAL VOC and 30 epochs on PAS-

CAL VOC only. For simplicity, we omit Polyak averaging

and knowledge distillation. Three distinct setups are being

tested: concretely, we estimate whether intermediate super-

vision helps at all, and whether auxiliary cell is superior to

a plain auxiliar classifier

The results of these ablation studies are given in Fig. 4.

Auxiliary supervised architectures achieve significantly

higher mean IoU, and, in particular, architectures with aux-

iliary cells attain best results in 8 out of 10 cases, reaching 3
absolute best values across all the setups and architectures.
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(none), and the type of supervision (cell or clf ). Each tick on the x-axis

corresponds to a different architecture.

4.3. Relation between search rewards and training
performance

We further measure the correlation effect between re-

wards acquired during the search and mean IoU attained by

same architectures trained for longer. To this end, we ran-

domly sample 30 architectures out of those explored by the

controller: for fair comparison, we sample 10 architectures

with poor search performance (with rewards being less than

0.4), 10 with medium rewards (between 0.4 and 0.6), and

10 with high rewards (> 0.6). We train each architecture on

BSD+VOC and VOC as in Sect. 4.2, rank each according

to its rewards, and mean IoU, and measure the Spearman’s

rank correlation coefficient. As visible in Fig. 5, there is a

strong correlation between rewards after each stage, as well

as between the final reward and mean IoU. This signals that

our search process is able to reliably differentiate between

poor-performing and well-performing architectures.
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Figure 5 – Correlation between rewards acquired during search

stages (a) and mean IoU after full training (b) of 30 architectures on

BSD+VOC/VOC.

4.4. Full Training Results

Finally, we choose 3 best performing architectures from

Sect. 4.2 and train each on the full training set, augmented

with annotations from MS COCO [20]. The training setup

is analogous to the aforementioned one with the first stage

being trained for 30 epochs (on COCO+BSD+VOC), the

second stage - for 50 (BSD+VOC), and the last one - for 100
(VOC only). After each stage, the learning rates are halved.

Additionally, halfway through the last stage we freeze the

batch norm statistics and divide the learning rate in half.

We exploit intermediate supervision via auxiliary cells with

coefficients of 0.3, 0.25, 0.2, 0.15 across the stages.
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Figure 6 – Automatically discovered decoder architecture (arch0). We

visualise the connectivity structure between encoder and decoder (top),

and the cell design (bottom).
⊕

represents an element-wise summation

operation applied to each branch scaled to the highest spatial resolution

among them (via bilinear interpolation), while ‘gap’ stands for global

average pooling.

Quantitative results are given in Table 1.3 The archi-

tectures discovered by our method achieve competitive per-

formance in comparison to state-of-the-art compact models

and even do so with a significantly lower number of float-

ing point operations for same output resolution. At the same

time, the found architectures can be run in real-time both on

a generic GPU card and JetsonTX2.4 Qualitatively (Fig. 7),

our model is able to better recognise similar and easily con-

fused classes (e.g. horse – dog in row 3, and cat – dog in row

5), better segment foreground from background and avoid

spurious predictions (rows 1,2,4,5).

We visualise5 the structure of the highest performing ar-

chitecture (arch0) on Fig. 6. With multiple branches en-

coding information of different scales, it resembles sev-

eral prominent blocks in semantic segmentation, notably

the ASPP module [7]. Importantly, the cell found by our

method differs in the way the receptive field size is con-

trolled. Whereas ASPP solely relies on various dilation

rates, here convolutions with different kernel sizes arranged

in a cascaded manner allow more flexibility. Furthermore,

this design is more computationally efficient and has higher

expressiveness as intermediate features are easily re-used.

4.5. Transferability to other Dense Output Tasks

4.5.1 Pose Estimation

We further apply the found architectures on the task of pose

estimation. In particular, the MPII [1] and MS COCO Key-

3Per-class measures are provided in Appendix B.
4Please refer to Appendix C on notes regarding the Jetson’s runtime.
5Other architectures are visualised in Appendix A.
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Model Val mIoU,%, MAdds,B Params,M Output Res Runtime,ms (JetsonTX2/1080Ti)

DeepLab-v3-ASPP [32] 75.7 5.8 4.5 32×32 69.67±0.53 8.09±0.53

DeepLab-v3 [32] 75.9 8.73 2.1 64×64 122.07±0.58 11.35±0.43

RefineNet-LW [26] 76.2 9.3 3.3 128×128 144.85 ± 0.49 12.00±0.26

Ours (arch0) 78.0 4.47 2.6 128×128 109.36±0.39 14.86±0.31

Ours (arch1) 77.1 2.95 2.8 64×64 67.57±0.54 11.04±0.23

Ours (arch2) 77.3 3.47 2.9 64×64 64.60±0.33 8.86±0.26

Table 1 – Results on validation set of PASCAL VOC after full training on COCO+BSD+VOC. All networks share the same backbone - MobileNet-v2.

FLOPs and runtime are being measured on 512× 512 inputs. For DeepLab-v3 we use official models provided by the authors.

Image GT Ours (arch0) RF-LW [26] DL-v3 [32]

Figure 7 – Inference results of our model (arch0) on validation set

of PASCAL VOC, together with Light-Weight-RefineNet (RF-LW) and

DeepLab-v3 (DL-v3). All the models rely on MobileNet-v2 as the en-

coder.

point [20] datasets are used as our benchmark. MPII in-

cludes 25K images containing 40K people with 16 anno-

tated body joints. The evaluation measure is PCKh [33]

with thresholds of 0.5 and 0.1. The COCO dataset com-

prises 200K images of 250K people with 17 body joints.

Based on object keypoint similarity (OKS)6, we report av-

erage precision (AP) and average recall (AR) over 10 dif-

ferent OKS thresholds.

Our quantitative results are in Table 2.7 We follow the

training protocol of Xiao et al. [43] and do not tune our

architectures. As can be seen from the results, the discov-

ered architectures achieve competitive performance even in

comparison to a more powerful ResNet-50-based model.

MPII COCO

Model Mean@0.5 Mean@0.1 AP AR Params,M

DeepLab-v3+ [7] 86.6 31.7 0.668 0.700 5.8

ResNet-50 [43] 88.5 33.9 0.704 0.763 34.0

Ours (arch0) 86.5 31.4 0.658 0.691 2.6

Ours (arch1) 87.0 32.0 0.659 0.694 2.8

Ours (arch2) 87.1 31.8 0.659 0.693 2.9

Table 2 – Comparisons on MPII validation and COCO val2017. Flip test

is used. For COCO, the same detector as in [43] is used for all models.

DeepLab-v3+ is our re-implementation based on the official code.

6http://cocodataset.org/#keypoints-eval
7Additional qualitative and quantitative results are in Appendix B.

4.5.2 Depth Estimation

Finally, we train the architectures on NYUDv2 [35] for

depth prediction. Following previous work [25], we only

use 25K training images with depth annotations from the

Kinect sensor, and report validation results on 654 images

in Table 3. Among other compact real-time networks, we

achieve significantly better results across all the metrics

without any additional tricks. Note also that the work in

[25] trained the depth model jointly with semantic segmen-

tation, thus using extra information.

Ours

arch0 arch1 arch2 RF-LW [25] CReaM [38]

RMSE (lin) 0.523 0.526 0.525 0.565 0.687

RMSE (log) 0.184 0.183 0.189 0.205 0.251

abs rel 0.136 0.131 0.140 0.149 0.190

sqr rel 0.089 0.086 0.093 0.105 −
δ < 1.25 0.830 0.832 0.820 0.790 0.704

δ < 1.252 0.967 0.968 0.966 0.955 0.917

δ < 1.253 0.992 0.992 0.992 0.990 0.977

Parameters, M 2.6 2.8 2.9 3.0 1.5

Table 3 – Quantitative results on the validation set of NYUDv2. For

RMSE, abs rel and sqr rel lower values are better, whereas for accuracy

(δ) higher values are better.

5. Discussion and Conclusions

There is little doubt that manual design of neural archi-

tectures is a tedious and difficult task to handle. It is even

more complicated to come up with a design of compact and

high-performing architecture on challenging dense predic-

tion problems, such as semantic segmentation. In this work,

we showcased a simple and reliable approach of search-

ing for fully convolutional architectures within a reasonable

amount of time and computational resources. Our method is

based around over-parameterisation of small networks that

allows them to converge to better solutions. We achieved

competitive performance to manually designed state-of-the-

art compact architectures on PASCAL VOC, while search-

ing only for 4 days on 2 GPU cards. Moreover, best found

architectures also attained excellent results on other dense

per-pixel tasks — pose estimation and depth prediction.

Our future goals include exploration of alternative ways

of over-parameterisation and search space description.
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