
Vision-based Navigation with Language-based Assistance

via Imitation Learning with Indirect Intervention

Khanh Nguyen

University of Maryland, College Park

kxnguyen@cs.umd.edu

Debadeepta Dey, Chris Brockett, Bill Dolan

Microsoft Research, Redmond

{dedey,Chris.Brockett,billdol}@microsoft.com

Abstract

We present Vision-based Navigation with Language-

based Assistance (VNLA), a grounded vision-language task

where an agent with visual perception is guided via lan-

guage to find objects in photorealistic indoor environments.

The task emulates a real-world scenario in that (a) the re-

quester may not know how to navigate to the target objects

and thus makes requests by only specifying high-level end-

goals, and (b) the agent is capable of sensing when it is lost

and querying an advisor, who is more qualified at the task,

to obtain language subgoals to make progress. To model

language-based assistance, we develop a general frame-

work termed Imitation Learning with Indirect Intervention

(I3L), and propose a solution that is effective on the VNLA

task. Empirical results show that this approach significantly

improves the success rate of the learning agent over other

baselines in both seen and unseen environments.

Our code and data are publicly available at https:

//github.com/debadeepta/vnla.

1. Introduction

Rich photorealistic simulators are finding increasing use

as research testbeds and precursors to real-world embod-

ied agents such as self-driving cars and drones [53, 22, 33].

Recently, growing interest in grounded visual navigation

from natural language is facilitated by the development

of more realistic and complex simulation environments

[2, 35, 9, 46, 59, 58, 51] in place of simple toy environ-

ments [5, 12, 39, 8, 7]. Several variants of this task have

been proposed. In [2], agents learn to execute natural lan-

guage instructions crowd-sourced from humans. [18] train

agents to navigate to answer questions about objects in the

environment. [21] present a scenario where a guide and a

tourist chat to direct the tourist to a destination.

In this paper, we present Vision-based Navigation with

Language-based Assistance (VNLA), a grounded vision-

language task that models a practical scenario: a mobile

agent, equipped with monocular visual perception, is re-

quested via language to assist humans with finding objects

in indoor environments. A realistic setup of this scenario

must (a) not assume the requester knows how to accom-

plish a task before requesting it, and (b) provide additional

assistance to the agent when it is completely lost and can no

longer make progress on a task. To accomplish (a), instead

of using detailed step-by-step instructions, we request tasks

through high-level instructions that only describe end-goals

(e.g. “Find a pillow in one of the bedrooms”). To fulfill (b),

we introduce into the environment an advisor who is present

at all times to assist the agent upon request with low-level

language subgoals such as “Go forward three steps, turn

left”. In VNLA, therefore, the agent must (a) ground the

object referred with the initial end-goal in raw visual inputs,

(b) sense when it is lost and use an assigned budget for re-

questing help, and (c) execute language subgoals to make

progress.

VNLA motivates a novel imitation learning setting that

we term Imitation Learning with Indirect Intervention

(I3L). In conventional Imitation Learning (IL), a learning

agent learns to mimic a teacher, who is only available at

training time, by querying the teacher’s demonstrations on

situations the agent encounters. I3L extends this framework

in two ways. First, an advisor is present in the environment

to assist the agent not only during training time but also at

test time. Second, the advisor assists the agent not by di-

rectly making decisions on the agent’s behalf, but by modi-

fying the environment to influence its decisions. I3L models

assistance via language subgoals by treating the subgoals

as extra information added to the environment. We devise

an algorithm for the I3L setting that yields significant im-

provements over baselines on the VNLA task on both seen

and unseen environments.

The contributions of this paper are: (a) a new task

VNLA that represents a step closer to real-world applica-

tions of mobile agents accomplishing indoor tasks (b) a

novel IL framework that extends the conventional frame-

work to modeling indirect intervention, and (c) a general

solution to I3L that is shown to be effective on the VNLA

112527



Turn 60 degrees 
right, go forward, 

turn left

(c)

I am lost! 
Help!Find a towel in 

the kitchen
I am lost! 

Help!

Go forward 2 steps, 
turn 60 degrees right Success!

Start location

Goal location

Agent path
(a) (b) (c) (d) (e)

Figure 1: An example run in an unseen environment. (a) A bird-eye view of the environment annotated with the agent’s path.

The agent observes the environment only through a first-person view. (b) A requester (wearing a hat) asks the agent to “find

a towel in the kitchen”. Two towels (pink circle) are in front of the agent but the room is labeled as a “bathroom”. The agent

ignores them without being given the room label. (c) The agent escapes the bathroom but runs into an unfamiliar region.

Sensing that it is lost, the agent signals the advisor (with mustache) for help. The advisor responds with an “easier” low-level

subgoal “turn 60 degrees right, go forward, turn left”. (d) After executing the subgoal, the agent is closer to the kitchen but is

still confused. It thus requests help one more time. After making this request, the agent has exhausted its request budget and

can only rely on its own. (e) Executing the second subgoal helps the agent see the target towel (cyan circle). It successfully

walks to the goal without further assistance. A video demo is at https://youtu.be/Vp6C29qTKQ0.

task. The task is accompanied by a large-scale dataset based

on the photorealistic Matterport3D environment [10, 2].

2. Related Work

Language and robots. Learning to translate natural

language commands to physical actions is well-studied at

the intersection of language and robotics. Proposals in-

clude a variety of grounded parsing models that are trained

from data [41, 42, 36] and models that interact with robots

via natural language queries against a knowledge base [52]

Most relevant to the present work are [44] who ground

natural language to robotic manipulator instructions using

Learning-from-Demonstration (LfD) and [23] who employ

imitation learning of natural language instructions using hu-

mans following directions as demonstration data. In [30],

verbal constraints are used for safe robot navigation in com-

plex real-world environments.

Simulated environments. Simple simulators as Puddle

World Navigation [31] and Rich 3D Blocks World [5, 4]

have facilitated understanding of fundamental representa-

tional and grounding issues by allowing for fast experimen-

tation in easily-managed environments. Game-based and

synthetic environments offer more complex visual contexts

and interaction dynamics [33, 51, 9, 46, 22, 58, 14, 17].

Simulators that are more photo-realistic, realistic-physics

enabled simulators are beginning to be utilized to train real-

world embodied agents [53, 10, 13, 59, 21, 40].

End-to-end learning in rich simulators. [18] present

the “Embodied Question Answering” (EmbodiedQA) task

where an agent explores and answers questions about the

environment. [19] propose a hierarchical solution for this

task where each level of the hierarchy is independently

warmed up with imitation learning and further improved

with reinforcement learning. [27] and [58] similarly use

reinforcement learning in simulated 3D environments for

successful execution of written instructions. On the vision-

language navigation task [2], cross-modal matching and

self-learning significantly improve generalizability to un-

seen environments [24, 57].

Imitation learning. Imitation learning [20, 47, 49, 48,

11, 54] provides an effective learning framework when a

teacher for a task is available or can be simulated. There has

been rich work that focuses on relaxing unrealistic assump-

tions on the teacher. [25, 11, 45, 28, 55] study cases where

teachers provide imperfect demonstrations. [60, 34, 32, 37]

construct policies to minimize the number of queries to

the teacher. [16] provide language instructions at every

time step to guide meta-policy learning. To the best of our

knowledge, however, no previous work on imitation learn-

ing has explored the case where the agent actively requests

changes to the environment to facilitate its learning process.

3. Vision-based Navigation with Language-

based Assistance

Setup. Our goal is to train an agent, with vision as the per-

ception modality, that can navigate indoors to find objects

by requesting and executing language instructions from hu-

mans. The agent is able to “see” the environment via a

monocular camera capturing its first-person view as an RGB

image. It is also capable of executing language instructions

and requesting additional help when in need. The camera

image stream and language instructions are the only exter-

nal input signals provided; the agent is not given a map of

the environments or its own location (e.g. via GPS or indoor

localization techniques).

The agent starts at a random location in an indoor envi-

ronment. A requester assigns it an object-finding task by

sending a high-level end-goal, namely to locate an object

in a particular room (e.g., “Find a cup in one of the bath-

rooms.”). The task is always feasible: there is always an ob-

12528



ject instance in the environment that satisfies the end-goal.

The agent is considered to have fulfilled the end-goal if it

stops at a location within d meters along the shortest path

to an instance of the desired object. Here d is the success-

radius, a task-specific hyperparameter. During execution,

the agent may get lost and become unable to progress. We

enable the agent to automatically sense when this happens

and signal an advisor for help.1 The advisor then responds

with language providing a subgoal. The subgoal is a short-

term task that is significantly easier to accomplish than the

end-goal. In this work, we consider subgoals that describe

the next k optimal actions (e.g. “Go forward two steps, look

right.”). We assume that strictly following the subgoal helps

the agent make progress.

By specifying the agent’s task with a high-level end-goal,

our setup does not assume the requester knows how to ac-

complish the task before requesting it. This aspect, along

with the agent-advisor interaction, distinguishes our setup

from instruction-following setups [2, 44, 43, 6, 12, 13], in

which the requester provides the agent with detailed se-

quential steps to execute a task only at the beginning.

Constraint formulation. The agent faces a multi-objective

problem: maximizing success rate while minimizing help

requests to the advisor. Since these objectives are in con-

flict, as requesting help more often only helps increase suc-

cess rate, we instead use a hard-constrained formulation:

maximizing success rate without exceeding a budgeted num-

ber of help requests. The hard constraint indirectly specifies

a trade-off ratio between success rate and help requests. The

problem is reduced to single-objective once the constraint is

specified by users based on their preferences.

4. Imitation Learning with Indirect Interven-

tion

Motivated by the VNLA problem, we introduce Imita-

tion Learning with Indirect Intervention (I3L), which mod-

els (realistic) scenarios where a learning agent is moni-

tored by a more qualified expert (e.g., a human) and re-

ceives help through an imperfect communication channel

(e.g., language).

Advisor. Conventional Imitation Learning (IL) settings

[20, 47, 49, 48, 11, 54, 55] involve interaction between a

learning agent and a teacher: the agent learns by querying

and imitating demonstrations of the teacher. In I3L, in ad-

dition to interacting with a teacher, the agent also receives

guidance from an advisor. Unlike the teacher, who only in-

teracts with the agent at training time, the advisor assists the

agent during both training and test time.

1For simplicity, we assume the advisor has perfect knowledge of the en-

vironment, the agent, and the task. In general, as the advisor’s main task is

to help the agent, perfect knowledge is not necessary. The advisor needs to

only possess advantages over the agent (e.g., human-level common sense

or reasoning ability, greater experience at indoor navigation, etc.).

Intervention. The advisor directs the agent to take a se-

quence of actions through an intervention, which can be di-

rect or indirect. Interventions are direct when the advisor

overwrites the agent’s decisions with its own. By defini-

tion, direct interventions are always executed perfectly, i.e.

the agent always takes actions the advisor wants it to take.

In the case of indirect interventions, the advisor does not

“take over” the agent but instead modifies the environment

to influence its decisions.2 To utilize indirect interventions,

the agent must learn to interpret them, by mapping them

from signals in the environment to sequences of actions in

its action space. This introduces a new type of error into the

learning process: intervention interpretation error, which

measures how much the interpretations of the interventions

diverge from the advisor’s original intents.

Formulation. We assume the environment is a Markov de-

cision process with state transition function T . The agent

maintains two policies: a main policy πmain for making de-

cisions on the main task, and a help-requesting policy πhelp

for deciding when the advisor should intervene. We also as-

sume the existence of teacher policies π∗
main and π∗

help, and

an advisor Φ. Teacher policies are only available during

training, while the advisor is always present. Having a pol-

icy πhelp that decides when to ask for help reduces efforts of

the advisor to monitor the agent. However, it does not pre-

vent the advisor from actively intervening when necessary,

because the advisor is able to control πhelp’s decisions by

modifying the environment appropriately. At a state st, if

πhelp decides that the advisor should intervene, the advisor

outputs an indirect intervention that directs the agent to take

a sequence of actions. In this work, we consider the case

when the intervention instructs the agent to take the next k

actions (at, at+1, · · · , at+k−1) suggested by the teacher

at+i = π∗
main(st+i), (1)

st+i+1 = T (st+i, at+i) 0 ≤ i < k

The state distribution induced by the agent, pagent, depends

on both πmain and πhelp. As in standard imitation learning,

in I3L, the agent’s objective is to minimize expected loss

on the agent-induced state distribution:

π̂main, π̂help = arg min
πmain,πhelp

Es∼pagent
[L (s, πmain, πhelp)] (2)

where L(., ., .) is a loss function.

Learning to Interpret Indirect Interventions. I3L can

be viewed as an imitation learning problem in a dynamic

environment, where the environment is altered due to indi-

rect interventions. Provided that teacher policies are well-

defined in the altered environments, an I3L problem can be

2The direct/indirect distinction is illustrated more tangibly in a physical

agent such as a self-driving car. Turning off automatic driving mode and

taking control of the steering wheel constitutes a direct intervention, while

issuing a verbal command to stop the car represents an indirect intervention

(the command is treated as new information added to the environment).

12529



πhelp

πhelp

πhelp

BC: advisor always intervenes

IL: advisor intervenes randomly

I3L-BCUI: learned policy decides 
when advisor intervenes, environment 
changed due to interventions

BC & IL: agent makes decisions 
on its own

TRAIN TEST

I3L-BCUI: agent makes decisions 
on its own, learned policy decides 
when advisor intervenes, environment 
changed due to interventions

πhelp

πhelp

πhelp

Agent action Teacher action Agent action 
influenced by 
intervention

Taken 
action

Not taken 
action

Figure 2: Comparison between I3L trained with behavior

cloning under interventions (I3L-BCUI), imitation learning

(IL), and behavior cloning (BC) at training time (left) and

test time (right). Gray dots represent states and arrows rep-

resent actions. Bounding boxes of different colors represent

different environments.

decomposed into a series of IL problems, each of which can

be solved with standard IL algorithms. It turns out, how-

ever, that defining such policies in VNLA is non-trivial.

Even though in VNLA, we use an optimal shortest-path

teacher navigation policy, introducing a subgoal to the envi-

ronment may invalidate this policy. Suppose when an agent

is executing a subgoal, it makes a mistake and deviates from

the trajectory suggested by the subgoal (e.g., first turning

right for a subgoal “turn left, go forward”). Then, contin-

uing to follow the subgoal is no longer optimal. Always

following the teacher is also not a good choice because the

agent may learn to ignore the advisor and not be able to

utilize subgoals effectively at test time.

Our solution, which we term as BCUI (Behavior Cloning

Under Interventions), mixes IL with behavior cloning3. In

this approach, the agent uses the teacher policy as the acting

policy (behavior cloning) when executing an intervention (k

steps since the intervention is issued). Thus, the agent never

deviates from the trajectory suggested by the intervention

and thus never encounters conflicts between the teacher and

the advisor.4 When no intervention is being executed, the

agent uses the learned policy as the acting policy.

Connection to imitation learning and behavior cloning.

Figure 2 illustrates why I3L trained under BCUI (I3L-

BCUI) is a general framework that subsumes both IL and

3Behavior cloning in IL is equivalent to standard supervised learning in

sequence-to-sequence learning, where during training ground-truth tokens

(instead of predicted tokens) are always used to transition to the next steps.
4A known disadvantage of behavior cloning is that it creates a gap be-

tween training and testing conditions, because at test time the agent acts

on the learned policy. Addressing this problem is left for future work.

behavior cloning as special cases. The advisor in I3L-BCUI

intervenes both directly (through behavior cloning) and in-

directly (by modifying the environment) at training time,

but intervenes only indirectly at test time. The teacher in IL

or behavior cloning can be seen as an advisor who is only

available during training and intervenes only directly. IL

and behavior cloning employ simple help-requesting poli-

cies. In behavior cloning, the help-requesting policy is

to always have the teacher intervene, since the agent al-

ways lets the teacher make decisions during training. Most

IL algorithms employ a mixed policy as the acting policy

during training, which is equivalent to using a Bernoulli-

distribution sampler as the help-requesting policy. I3L-

BCUI imposes no restrictions on the help-requesting policy,

which can even be learned from data.

5. Environment and Data

Matterport3D simulator. The Matterport3D dataset [10]

is a large RGB-D dataset for scene understanding in indoor

environments. It contains 10,800 panoramic views inside 90

real building-scale scenes, constructed from 194,400 RGB-

D images. Each scene is a residential building consisting

of multiple rooms and floor levels, and is annotated with

surface construction, camera poses, and semantic segmen-

tation. Using this dataset, [2] implemented a simulator that

emulates an agent walking in indoor environments. The

pose of the agent is specified by its viewpoint and orien-

tation (heading angle and elevation angle). Navigation is

accomplished by traversing edges in a pre-defined environ-

ment graph in which edges connect reachable panoramic

viewpoints that are less than 5m apart.

Visual input. The agent’s pose is not provided as input

to the agent. Given a pose, the simulator generates an RGB

image representing the current first-person view. The image

is fed into a ResNet-152 [26] pretrained on Imagenet [50]

to extract a mean-pooled feature vector, which serves as the

input to the agent. We use the precomputed image feature

vectors publicly released by [2].

Action space. Following [2], we use a state-independent

action space which consists of six actions: left, right,

up, down, forward and stop. The left, right,

up, down actions rotate the camera by 30 degrees. The

forward action is defined as follows5: executing this ac-

tion takes the agent to the next viewpoint on the shortest

path from the current location to the goals if the viewpoint

lies within 30 degrees of the center of the current view, or

if it lies horizontally within 30 degrees of the center and

the agent cannot bring the viewpoint closer to the center by

looking up or down further; otherwise, executing this action

takes the agent to the viewpoint closest to the center of the

5Our definition of the forward action, which is different from the

one defined in [2], ensures the navigation teacher never suggests the agent

actions that cause it to deviate from the shortest path to the goals.

12530



Split Number of data points Number of goals

Train 94,798 139,757

Dev seen 4,874 7,768

Dev unseen 5,005 8,245

Test seen 4,917 7,470

Test unseen 5,001 7,537

Table 1: ASKNAV splits. A data point contains a single

starting viewpoint but multiple goal viewpoints.

current view. We also define a help-requesting action space

comprising two actions: request and do nothing.

Data Generation. Using annotations provided in the Mat-

terport3D dataset, we construct a dataset for the VNLA

task, called ASKNAV. We use the same environment splits

as [2]: 61 training, 11 development, and 18 test. After fil-

tering out labels that occur less than five times, are diffi-

cult to recognize (e.g., “door frame”), low relevance (e.g.,

“window”) or unknown, we obtain 289 object labels and 26

room labels. We define each data point as a tuple (environ-

ment, start pose, goal viewpoints, end-goal). An end-goal

is constructed as “Find [O] in [R]”, where [O] is replaced

with “a/an [object label]” (if singular) or “[object label]”

(if plural), and [R] is replaced with “the [room label]” (if

there is one room of the requested label) or “one of the

pluralize([room label])” (if there are multiple rooms

of the requested label). Table 1 summarizes the ASKNAV

dataset. The development and test sets are further divided

into an unseen set and a seen set. The seen set comprises

data points that are generated in the training environments

but do not appear in the training set. The unseen set con-

tains data points generated in the development or test envi-

ronments. The detailed data generation process is described

in the Appendix.

6. Implementation

Notation. The agent maintains two policies: a navigation

policy πnav and a help-requesting policy πask. Each policy is

stochastic, outputting a distribution p over its action space.

An action a is chosen by selecting the maximum probabil-

ity action of or sampling from the output distribution. The

agent is supervised by a navigation teacher π∗
nav and a help-

requesting teacher π∗
ask (both are deterministic policies), and

is assisted by an advisor Φ. A dataset D is provided where

the d-th data point consists of a start viewpoint xstart
d , a start

orientation ψstart
d , a set of goal viewpoints {xend

d,i}, an end-

goal ed, and the full map Md of the corresponding environ-

ment. At any time, the teachers and the advisor have access

to the agent’s current pose and information provided by the

current data point.

Algorithm. Algorithm 1 describes the overall procedure for

training a VNLA agent. We train the navigation policy un-

Main 
goal

Encoder

Attention 
memory 

Decoder

anav

Tentative Nav 
Distribution

bt ht-1 t-1 aask
t-1

Feed
forward

Help-requesting 
Distribution

Main 
goal

Encoder

Attention 
memory 

Decoder

anav

Final Nav 
Distribution

ot ht-1 t-1 aask
t

(a) (b)

ot

Figure 3: Two decoding passes of the navigation module.

(a) The first decoding pass computes the tentative naviga-

tion distribution, which is used as a feature for computing

the help-requesting distribution. (b) The second pass com-

putes the final navigation distribution.

der the I3L-BCUI algorithm (Section 4) and train the help-

requesting policy under behavior cloning. At time step t, the

agent first receives a view of the environment from the cur-

rent pose (Line 10). It computes a tentative navigation dis-

tribution pnav
t,1 (Line 11), which is used as an input to com-

pute a help-requesting distribution pask
t (Line 12). Since

the help-requesting policy is trained under behavior cloning,

the agent invokes the help-requesting teacher π∗
ask (not the

learned policy πask) to decide if it should request help (Line

13). If the help-requesting teacher decides that the agent

should request help and the help-requesting budget has not

been exhausted, the advisor Φ is invoked to provide help via

a language subgoal gsub
t (Lines 14-15). The subgoal is then

prepended to the original end-goal gmain
0,d to form a new end-

goal gmain
t (Line 16). If the condition for requesting help

is not met, the end-goal is kept unchanged (Line 19). Af-

ter the help-requesting decision has been made, the agent

computes a final navigation distribution pnav
t,2 by invoking

the learned policy πnav the second time. Note that when

computing this distribution, the last help-requesting action

is no longer aask
t−1 but has become aask

t . The agent selects the

acting navigation policy based on the principle of the I3L-

BCUI algorithm. Specifically, if the agent has requested

help within the last k steps, i.e. it is still executing a sub-

goal, it uses the teacher policy to act (Line 24). Otherwise,

it samples an action from the final navigation distribution

(Line 26). In Lines 28-29, the learned policies are updated

using an online learning algorithm. Finally, the agent tran-

sitions to the next pose according to the taken navigation

action (Line 33).

6.1. Agent

We model the navigation policy πnav and the help-

requesting policy πask as two separate neural network mod-

ules. The navigation module is an encoder-decoder model

[3] with a multiplicative attention mechanism [38] and cov-

erage modeling [56], which encodes an end-goal (a se-

12531



Algorithm 1 VLNA training procedure

1: Initialize πnav, πask randomly.

2: k is the number of next actions a subgoal describes.

3: for d = 1 . . . D do

4: Reset environment to (xstart
d , ψstart

d ).
5: Compute time budget T̂ and help-request budget B̂.

6: Initialize current help-request budget b = B̂.

7: Initialize anav
0 , aask

0 to special action <start>.

8: Initialize gmain
0 = ed, xcurr = xstart

d , ψcurr = ψstart
d .

9: for t = 1 . . . T̂ do

10: Receive an image ot of the current view.

11: pnav
t,1 = πnav(ot,g

main
t−1, a

nav
t−1, a

ask
t−1)

12: pask
t = πask(ot,g

main
t−1,p

nav
t,1, b)

13: aask
t = aask∗

t = π∗

ask(p
nav
t,1, b,x

curr, ψcurr, {xend
d,i},Md)

14: if b > 0 and aask
t == request then

15: gsub
t = Φ(xcurr, ψcurr, {xend

d,i},Md, k)

16: gmain
t = gsub

t ⊙ ed

17: b← b− 1
18: else

19: gmain
t = gmain

t−1

20: end if

21: pnav
t,2 = πnav(ot,g

main
t , anav

t−1, a
ask
t )

22: anav∗
t = π∗

nav(x
curr, ψcurr, {xend

d,i},Md)
23: if requested help within last k steps then

24: anav
t = anav∗

t

25: else

26: anav
t ∼ pnav

t,2

27: end if

28: πask ← UpdatePolicy(πask,p
ask
t , aask∗

t )
29: πnav ← UpdatePolicy(πnav,p

nav
t,2, a

nav∗
t )

30: if anav
t == stop then

31: break

32: end if

33: xcurr, ψcurr ← T (xcurr, ψcurr, anav
t )

34: end for

35: end for

quence of words) and decodes a sequence of actions. Both

the encoder and decoder are LSTM-based recurrent neural

networks [29]. During time step t, if the end-goal is up-

dated, the encoder generates an attention memory Mt =
{

menc
1 , · · · ,menc

|gmain
t

|

}

by recurrently computing

menc
i = LSTMenc

(

menc
i−1,g

main
t,i

)

, 1 ≤ i ≤ |gmain
t | (3)

where LSTMenc is the encoding LSTM, gmain
t,i is the embed-

ding of the i-th word of the end-goal. Otherwise, Mt =
Mt−1. The decoder runs two forward passes to compute

the tentative and the final navigation distributions (Figure

3). The i-th decoding pass proceeds as:

hdec
t,i = LSTMdec

(

hdec
t−1,2,

[

ot;a
nav
t−1; ā

ask
t

])

(4)

hatt
t,i = ATTEND

(

hdec
t,i ,Mt

)

(5)

pnav
t,i = SOFTMAX

(

Wnav
s hatt

t,i

)

(6)

where i ∈ {1, 2}, Wnav
s is learned parameters, ATTEND(., .)

is the multiplicative attention function, ot is the visual fea-

ture vector of the current view, anav
t−1 is the embedding of the

last navigation action, and

āask
t =

{

aask
t−1 if i = 1,

aask
t if i = 2

(7)

is the embedding of the last help-requesting action.

The help-requesting module is a multi-layer feed-

forward neural network with RELU activation functions

and a softmax final layer. Its input features are:

• The visual ot and the embedding of the current help-

request budget bt.

• The tentative navigation distribution, pnav
t,1 .

• The tentative navigation decoder states, hdec
t,1 and hatt

t,1.

These features are concatenated and fed into the network to

compute the help-requesting distribution

hask
t = FEED-FORWARDl

([

ot;bt;p
nav
t,1 ;h

dec
t,1 ;h

att
t,1

])

(8)

pask
t = SOFTMAX

(

Wask
s hask

t

)

(9)

where Wask
s is a learned parameter and FEED-FORWARDl is

a feed-forward network with l hidden layers. During train-

ing, we do not backpropagate errors of the help-requesting

module through its input features. Preliminary experiments

showed that doing so resulted in lower performance.

6.2. Teachers

Navigation teacher. The navigation teacher always

chooses actions to traverse along the shortest path from

the current viewpoint to the goal viewpoints. This path is

optimal with respect to minimizing the walking distance

to the goals, but is not necessarily optimal in the number

of navigation actions. Given an agent’s pose, the naviga-

tion teacher first adjusts the orientation using the camera-

adjusting actions (left, right, up, down) until select-

ing the forward action advances the agent to the next

viewpoint on the shortest path to the goals. The teacher

issues the stop action when one of the goal viewpoints is

reached.

Help-requesting teacher. Even with perfect information

about the environment and the agent, computing an opti-

mal help-requesting teacher policy is expensive because this

policy depends on (a) the agent’s internal state, which lies in

a high-dimensional space and (b) the current learned navi-

gation policy, which changes constantly during training. We

design a heuristic-driven teacher, which decides to request

help when:

(a) The agent deviates from the shortest path by more than

δ meters. The distance from the agent to a path is de-

fined as the distance from its current viewpoint to the

nearest viewpoint on the path.

12532



(b) The agent is “confused”, defined as when the differ-

ence between the entropy of the uniform distribution

and the entropy of the agent’s tentative navigation dis-

tribution pnav
t,1 is smaller than a threshold ǫ.

(c) The agent has remained at the same viewpoint for the

last µ steps.

(d) The help-request budget is greater than or equal to the

number of remaining steps.

(e) The agent is at a goal viewpoint but the highest-

probability action of the tentative navigation distribu-

tion is forward.

Although this heuristic-based teacher may not be optimal,

our empirical results show that not only is it effective but

it is also easy to imitate. Moreover, imitating a clairvoy-

ant teacher is more sample-efficient (theoretically proven

[48, 55]) and results in safer, more robust policies compared

to maximizing a reward function with reinforcement learn-

ing (empirically shown [15]). The latter approach imposes

weaker constraints on the regularity of the solution and may

produce exploitative but unintuitive policies [1].

6.3. Advisor

Upon receiving a request from the agent, the advisor

queries the navigation teacher for k consecutive steps to

obtain a sequence of k actions (Equation 1). Next, ac-

tions {left, right, up, down, forward, stop} are

mapped to phrases {“turn left”, “turn right”, “look up”,

“look down”, “go forward”, “stop”}, respectively. Then,

repeated actions are aggregated to make the language more

challenging to interpret. For example, to describe a turn-

right action that is repeated X times, the advisor says “turn

Y degrees right” where Y = X×30 is the total degrees the

agent needs to turn after repeating the turn-right action X

times. Similarly, Z repeated forward actions are phrased

as “go forward Z steps”. The up, down, stop actions are

not aggregated because they are rarely or never repeated. Fi-

nally, action phrases are joined by commas to form the final

subgoal (e.g., “turn 60 degrees left, go forward 2 steps”).

6.4. Help­request Budget

Let T̂ be the time budget and B be the help-request bud-

get. Suppose the advisor describes the next k optimal ac-

tions in response to each request. We define a hyperparam-

eter τ ∈ [0, 1], which is the ratio between the total number

of steps where the agent receives assistance and the time

budget, i.e. τ ≡ B·k
T̂

. Given τ , T̂ and k, we approximate B

by an integral random variable B̂

B̂ = ⌊B⌋+ r (10)

r ∼ BERNOULLI ({B})

B =
T̂ · τ

k

where {B} = B−⌊B⌋ is the fractional part of B. The ran-

dom variable r guarantees that Er

[

B̂·k
T̂

]

= τ for a fixed T̂

and any positive value of k, ensuring fairness when compar-

ing agents interacting with advisors of different ks. Due to

the randomness introduced by r, we evaluate an agent with

multiple samples of B̂. Detail on how we determine T̂ for

each data point is provided in the appendix.

7. Experimental Setup

Baselines. We compare our learned help-requesting policy

(LEARNED) with the following baseline policies:

• NONE: never requests help.

• FIRST: requests help continuously from the beginning,

up to B̂.

• RANDOM: uniformly randomly chooses B̂ steps to re-

quest help.

• TEACHER: follows the help-requesting teacher (π∗
ask).

In each experiment, the same help-requesting policy is used

during training and evaluation.

Evaluation metrics. Our primary metrics are success rate,

room-finding success rate, and navigation error. Success

rate is the fraction of the test set on which the agent suc-

cessfully fulfills the task. Room-finding success rate is the

fraction of the test set on which the agent’s final location

is in the right room type. Navigation error measures the

length of the shortest path from the agent’s end viewpoint

to the goal viewpoints. We evaluate each agent with five dif-

ferent random seeds and report means with 95% confidence

intervals.

Hyperparameters. See the Appendix for details.

8. Results

Main results. Our main results are presented in Table 2.

Overall, empowering the agent with the ability to ask for

help and assisting it via subgoals greatly boost its perfor-

mance. Requesting help is more useful in unseen environ-

ments, improvements over NONE of all other policies being

higher on TEST UNSEEN than on TEST SEEN. Even a sim-

ple policy like FIRST yields success rate improvements of

12% and 14% over NONE on TEST SEEN and TEST UN-

SEEN respectively. The LEARNED policy outperforms all

agent-agnostic polices (NONE, FIRST, RANDOM), achiev-

ing 9-10% improvement in success rate over RANDOM and

24-28% over NONE. An example run of the LEARNED

agent is shown in Figure 1. The insignificant performance

gaps between LEARNED and TEACHER indicates that the

latter is not only effective but also easy to imitate6. RAN-

DOM is largely more successful than FIRST, hinting that it

6There is a tradeoff between performance and learnability of the help-

requesting teacher. By varying hyperparameters, we can obtain a teacher

that achieves higher success rate but is harder to imitate.

12533



Success Room-finding Mean

πask rate (%) ↑ success navigation

rate (%) ↑ error (m) ↓

Test seen

NONE 28.39 ± 0.00 48.97 ± 0.00 6.29 ± 0.00

FIRST 40.33 ± 0.35 59.64 ± 0.22 4.36 ± 0.03

RANDOM 42.98 ± 0.44 54.61 ± 0.28 4.53 ± 0.03

LEARNED 52.09 ± 0.13 64.84 ± 0.23 3.48 ± 0.01

TEACHER 52.26 ± 0.16 65.42 ± 0.25 3.42 ± 0.01

Test unseen

NONE 6.36 ± 0.00 14.34 ± 0.00 11.30 ± 0.00

FIRST 20.00 ± 0.10 30.23 ± 0.40 7.56 ± 0.02

RANDOM 25.05 ± 0.31 33.72 ± 0.37 7.09 ± 0.05

LEARNED 34.50 ± 0.23 44.50 ± 0.36 5.66 ± 0.02

TEACHER 34.95 ± 0.33 44.85 ± 0.39 5.61 ± 0.02

Table 2: Performance of help-requesting policies on

ASKNAV test sets.

Advisor Subgoals Train iterations Test seen Test unseen

Direct ✗ 70k 51.07 ± 0.17 32.19 ± 0.28

Direct ✓ 100k 52.09 ± 0.13 34.56 ± 0.21

Indirect ✓ 100k 52.09 ± 0.13 34.50 ± 0.23

Table 3: Success rates (%) on ASKNAV test sets of agents

interacting with different advisors. We compare agents that

achieve comparable success rates on the DEV SEEN split.

may be ineffective to request help early too often. Nev-

ertheless, FIRST is better than RANDOM at finding rooms

on TEST SEEN. This may be because on TEST SEEN, al-

though the complete tasks are previously unseen, the room-

finding subtasks might have been assigned to the agent dur-

ing training. For example, the agent might have never been

requested to “find an armchair in the living room” during

training, but it might have been taught to go to the living

room to find other objects. When the agent is asked to find

objects in a room it has visited, once the agent recognizes

a familiar action history, it can reach the room by mem-

ory without much additional assistance. As the first few

actions are crucial, requesting help early is closer to an op-

timal strategy than randomly requesting in this case.

Effects of subgoals. Subgoals not only serve to direct the

agent, but also act as extra, informative input features. We

hypothesize that the agent still benefits from receiving sub-

goals even when it interacts with an advisor who intervenes

directly (in which case subgoals seem unneeded). To test

this hypothesis, we train agents interacting with a direct ad-

visor, who overwrites the agents’ decisions by its decisions

during interventions. We consider two variants of this advi-

sor: one responds with a subgoal in response to each help

request and the other does not. Table 3 compares these with

πask Training set Test seen Test unseen

RANDOM NOROOM 43.69 ± 0.37 33.41 ± 0.39

LEARNED NOROOM 53.71 ± 0.19 44.77 ± 0.27

LEARNED ASKNAV 53.85 ± 0.45 41.63 ± 0.24

Table 4: Success rates (%) on NOROOM test sets.

our standard indirect advisor, who at test time sends sub-

goals but does not overwrite the agent’s decisions. Since

success rates on TEST SEEN tend to take a long time to con-

verge, we compare the success rates on TEST UNSEEN of

agents that have comparable success rates on DEV SEEN

(the success rates differ by no more than 0.5%). The two

agents interpreting subgoals face a harder learning problem,

and thus require more iterations to attain success rates on

DEV SEEN comparable to that of the agent not interpreting

subgoals. Receiving subgoals boosts sucess rate by more

than 2% on TEST UNSEEN regardless of whether interven-

tion is direct or indirect.

Does the agent learn to identify objects? The agent might

have only learned to find the requested rooms and have

“luckily” stood close to the target objects because there are

only few viewpoints in a room. To verify if the agent has

learned to identify objects after being trained with room

type information, we setup a transfer learning experiment

where an agent trained to fulfill end-goals with room types

is evaluated with end-goals without room types. Following

a procedure similar the one used to generate the ASKNAV in

Section 5, we generate a NOROOM dataset, which contains

end-goals without room type information. Each end-goal

in the dataset has the form “Find [O]”, where [O] is an ob-

ject type. Finding any instance of the requested object in

any room satisfies the end-goal. The number of goals in

the training split of this dataset is comparable to that of the

ASKNAV dataset (around 140k). More detail is provided

in the Appendix. The results in Table 4 indicate that our

agent, equipped with a learned help-requesting policy and

trained with room types, learns to recognize objects, as it

can find objects without room types significantly better than

an agent equipped with a random help-requesting policy

and trained specifically to find objects without room types

(+10% on TEST SEEN and +8% on TEST UNSEEN in suc-

cess rate). Unsurprisingly, directly training to find objects

without room types yields best results in this setup because

training and test input distributions are not mismatched.

9. Future Work

We are exploring ways to provide more natural, fully-

linguistic question and answer interactions between advisor

and agent, and better theoretical understanding of the I3L

setting and resulting algorithms. We will also be investigat-

ing how to transfer from simulators to real-world robots.

12534



References

[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-

tiano, John Schulman, and Dan Mané. Concrete problems

in ai safety. arXiv preprint arXiv:1606.06565, 2016. 7

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, volume 2, 2018.

1, 2, 3, 4, 5

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. In Proceedings of the International Conference on

Learning Representations, 2015. 5

[4] Yonatan Bisk, Kevin J Shih, Yejin Choi, and Daniel Marcu.

Learning interpretable spatial operations in a rich 3d blocks

world. In Association for the Advancement of Artificial In-

telligence, 2018. 2

[5] Yonatan Bisk, Deniz Yuret, and Daniel Marcu. Natural lan-

guage communication with robots. In Proceedings of the

2016 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language

Technologies, pages 751–761, 2016. 1, 2

[6] Valts Blukis, Dipendra Misra, Ross A Knepper, and Yoav

Artzi. Mapping navigation instructions to continuous control

actions with position-visitation prediction. In Conference on

Robot Learning, pages 505–518, 2018. 3

[7] SRK Branavan, David Silver, and Regina Barzilay. Learn-

ing to win by reading manuals in a monte-carlo frame-

work. Journal of Artificial Intelligence Research, 43:661–

704, 2012. 1

[8] Satchuthananthavale RK Branavan, Harr Chen, Luke S

Zettlemoyer, and Regina Barzilay. Reinforcement learning

for mapping instructions to actions. In Proceedings of the

Joint Conference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 1-Volume 1, pages 82–90.

Association for Computational Linguistics, 2009. 1

[9] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian

Golemo, Luca Celotti, Florian Strub, Jean Rouat, Hugo

Larochelle, and Aaron Courville. Home: A household mul-

timodal environment. In Proceedings of Advances in Neural

Information Processing Systems, 2017. 1, 2

[10] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-

D data in indoor environments. International Conference on

3D Vision (3DV), 2017. 2, 4

[11] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal,

Hal Daume III, and John Langford. Learning to search bet-

ter than your teacher. In Proceedings of the International

Conference of Machine Learning, 2015. 2, 3

[12] David L Chen and Raymond J Mooney. Learning to interpret

natural language navigation instructions from observations.

In Association for the Advancement of Artificial Intelligence,

volume 2, pages 1–2, 2011. 1, 3

[13] Howard Chen, Alane Shur, Dipendra Misra, Noah Snavely,

Ian Artzi, Yoav, Stephen Gould, and Anton van den Hengel.

Touchdown: Natural language navigation and spatial rea-

soning in visual street environments. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019. 2, 3

[14] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem

Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu

Nguyen, and Yoshua Bengio. BabyAI: First steps towards

grounded language learning with a human in the loop. In

Proceedings of the International Conference on Learning

Representations, 2019. 2

[15] Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora,

Ashish Kapoor, Gireeja Ranade, Sebastian Scherer, and De-

badeepta Dey. Data-driven planning via imitation learn-

ing. The International Journal of Robotics Research, page

0278364918781001, 2018. 7

[16] John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick

Altieri, John DeNero, Pieter Abbeel, and Sergey Levine.

Guiding policies with language via meta-learning. In Pro-

ceedings of the International Conference on Learning Rep-

resentations, 2019. 2

[17] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Ky-

bartas, Tavian Barnes, Emery Fine, James Moore, Matthew

Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay,

and Adam Trischler. Textworld: A learning environment for

text-based games. CoRR, abs/1806.11532, 2018. 2

[18] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,

Devi Parikh, and Dhruv Batra. Embodied question answer-

ing. Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2018. 1, 2

[19] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,

and Dhruv Batra. Neural modular control for embodied

question answering. Proceedings of the Conference on Robot

Learning, 2018. 2

[20] Hal Daumé, John Langford, and Daniel Marcu. Search-

based structured prediction. Machine learning, 75(3):297–

325, 2009. 2, 3

[21] Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Ja-

son Weston, and Douwe Kiela. Talk the walk: Navigating

new york city through grounded dialogue. arXiv preprint

arXiv:1807.03367, 2018. 1, 2

[22] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. CARLA: An open urban driving

simulator. In Proceedings of the 1st Annual Conference on

Robot Learning, pages 1–16, 2017. 1, 2

[23] Felix Duvallet, Thomas Kollar, and Anthony Stentz. Im-

itation learning for natural language direction following

through unknown environments. In Robotics and Automa-

tion (ICRA), 2013 IEEE International Conference on, pages

1047–1053. IEEE, 2013. 2

[24] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,

Jacob Andreas, Louis-Philippe Morency, Taylor Berg-

Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.

Speaker-follower models for vision-and-language naviga-

tion. In Neural Information Processing Systems (NeurIPS),

2018. 2

12535



[25] Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Dar-

rell, et al. Reinforcement learning from imperfect demon-

strations. Proceedings of the 35th International Conference

on Machine Learning, 2018. 2

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4

[27] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin

Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wo-

jciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin,

et al. Grounded language learning in a simulated 3d world.

arXiv preprint arXiv:1706.06551, 2017. 2

[28] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot,

Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew

Sendonaris, Gabriel Dulac-Arnold, et al. Deep q-learning

from demonstrations. Association for the Advancement of

Artificial Intelligence, 2018. 2

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 6

[30] Zhe Hu, Jia Pan, Tingxiang Fan, Ruigang Yang, and Dinesh

Manocha. Safe navigation with human instructions in com-

plex scenes. IEEE Robotics and Automation Letters, 2019.

2

[31] Michael Janner, Karthik Narasimhan, and Regina Barzi-

lay. Representation learning for grounded spatial reasoning.

Transactions of the Association of Computational Linguis-

tics, 6:49–61, 2018. 2

[32] Kshitij Judah, Alan P Fern, Thomas G Dietterich, et al. Ac-

tive lmitation learning: formal and practical reductions to

iid learning. The Journal of Machine Learning Research,

15(1):3925–3963, 2014. 2

[33] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub

Toczek, and Wojciech Jaśkowski. Vizdoom: A doom-based

ai research platform for visual reinforcement learning. In

Computational Intelligence and Games (CIG), 2016 IEEE

Conference on, pages 1–8. IEEE, 2016. 1, 2

[34] Beomjoon Kim and Joelle Pineau. Maximum mean discrep-

ancy imitation learning. In Robotics: Science and systems,

2013. 2

[35] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,

Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d

environment for visual ai. arXiv preprint arXiv:1712.05474,

2017. 1

[36] Jayant Krishnamurthy and Tom M Mitchell. Weakly su-

pervised training of semantic parsers. In Proceedings of

the 2012 Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Lan-

guage Learning, pages 754–765. Association for Computa-

tional Linguistics, 2012. 2

[37] Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jef-

frey Mahler, Florian T Pokorny, Anca D Dragan, and Ken

Goldberg. Shiv: Reducing supervisor burden in dagger using

support vectors for efficient learning from demonstrations in

high dimensional state spaces. In Robotics and Automation

(ICRA), 2016 IEEE International Conference on, pages 462–

469. IEEE, 2016. 2

[38] Minh-Thang Luong, Hieu Pham, and Christopher D Man-

ning. Effective approaches to attention-based neural machine

translation. In Proceedings of Emperical Methods in Natural

Language Processing, 2015. 5

[39] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers.

Walk the talk: Connecting language, knowledge, and action

in route instructions. In Association for the Advancement of

Artificial Intelligence, 2006. 1

[40] Manolis Savva*, Abhishek Kadian*, Oleksandr

Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,

Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi

Parikh, and Dhruv Batra. Habitat: A platform for embodied

ai research. arXiv preprint arXiv:, 2019. 2

[41] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer,

Liefeng Bo, and Dieter Fox. A joint model of language and

perception for grounded attribute learning. In Proceedings

of the International Conference of Machine Learning, 2012.

2

[42] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Di-

eter Fox. Learning to parse natural language commands to a

robot control system. In Experimental Robotics, pages 403–

415. Springer, 2013. 2

[43] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind

Niklasson, Max Shatkhin, and Yoav Artzi. Mapping instruc-

tions to actions in 3d environments with visual goal predic-

tion. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 2667–2678.

Association for Computational Linguistics, 2018. 3

[44] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh

Saxena. Tell me dave: Contextsensitive grounding of natu-

ral language to mobile manipulation instructions. In in RSS,

2014. 2, 3

[45] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Woj-

ciech Zaremba, and Pieter Abbeel. Overcoming exploration

in reinforcement learning with demonstrations. In 2018

IEEE International Conference on Robotics and Automation

(ICRA), pages 6292–6299. IEEE, 2018. 2

[46] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu

Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:

Simulating household activities via programs. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018. 1, 2

[47] Stéphane Ross and Drew Bagnell. Efficient reductions for

imitation learning. In Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics,

pages 661–668, 2010. 2, 3

[48] Stephane Ross and J Andrew Bagnell. Reinforcement and

imitation learning via interactive no-regret learning. arXiv

preprint arXiv:1406.5979, 2014. 2, 3, 7

[49] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A re-

duction of imitation learning and structured prediction to no-

regret online learning. In Proceedings of the fourteenth inter-

national conference on artificial intelligence and statistics,

pages 627–635, 2011. 2, 3

[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

12536



scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 4

[51] Manolis Savva, Angel X Chang, Alexey Dosovitskiy,

Thomas Funkhouser, and Vladlen Koltun. Minos: Multi-

modal indoor simulator for navigation in complex environ-

ments. arXiv preprint arXiv:1712.03931, 2017. 1, 2

[52] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami,

Dipendra K Misra, and Hema S Koppula. Robobrain:

Large-scale knowledge engine for robots. arXiv preprint

arXiv:1412.0691, 2014. 2

[53] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish

Kapoor. Airsim: High-fidelity visual and physical simula-

tion for autonomous vehicles. In Field and service robotics,

pages 621–635. Springer, 2018. 1, 2

[54] Amr Sharaf and Hal Daumé III. Structured prediction via

learning to search under bandit feedback. In Proceedings

of the 2nd Workshop on Structured Prediction for Natural

Language Processing, pages 17–26, 2017. 2, 3

[55] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron

Boots, and J Andrew Bagnell. Deeply aggrevated: Differ-

entiable imitation learning for sequential prediction. In Pro-

ceedings of the International Conference of Machine Learn-

ing, 2017. 2, 3, 7

[56] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and

Hang Li. Modeling coverage for neural machine transla-

tion. In Proceedings of the Association for Computational

Linguistics, 2016. 5

[57] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,

Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and

Lei Zhang. Reinforced cross-modal matching and self-

supervised imitation learning for vision-language navigation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019. 2

[58] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d en-

vironment. In Workshop Track of the International Confer-

ence on Learning Representation, 2018. 1, 2

[59] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jiten-

dra Malik, and Silvio Savarese. Gibson env: real-world per-

ception for embodied agents. In Computer Vision and Pat-

tern Recognition (CVPR), 2018 IEEE Conference on. IEEE,

2018. 1, 2

[60] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation

learning for end-to-end simulated driving. In Association for

the Advancement of Artificial Intelligence, pages 2891–2897,

2017. 2

12537


