
Elastic Boundary Projection for 3D Medical Image Segmentation

Tianwei Ni1, Lingxi Xie2,3(�), Huangjie Zheng4, Elliot K. Fishman5, Alan L. Yuille2

1Peking University 2Johns Hopkins University 3Noah’s Ark Lab, Huawei Inc.
4Shanghai Jiao Tong University 5Johns Hopkins Medical Institute

{twni2016, 198808xc, alan.l.yuille}@gmail.com zhj865265@sjtu.edu.cn efishman@jhmi.edu

Abstract

We focus on an important yet challenging problem: us-

ing a 2D deep network to deal with 3D segmentation for

medical image analysis. Existing approaches either applied

multi-view planar (2D) networks or directly used volumet-

ric (3D) networks for this purpose, but both of them are not

ideal: 2D networks cannot capture 3D contexts effectively,

and 3D networks are both memory-consuming and less

stable arguably due to the lack of pre-trained models.

In this paper, we bridge the gap between 2D and 3D

using a novel approach named Elastic Boundary Projection

(EBP). The key observation is that, although the object is a

3D volume, what we really need in segmentation is to find

its boundary which is a 2D surface. Therefore, we place a

number of pivot points in the 3D space, and for each pivot,

we determine its distance to the object boundary along a

dense set of directions. This creates an elastic shell around

each pivot which is initialized as a perfect sphere. We train

a 2D deep network to determine whether each ending point

falls within the object, and gradually adjust the shell so that

it gradually converges to the actual shape of the boundary

and thus achieves the goal of segmentation. EBP allows

boundary-based segmentation without cutting a 3D volume

into slices or patches, which stands out from conventional

2D and 3D approaches. EBP achieves promising accuracy

in abdominal organ segmentation. Our code will be re-

leased on https://github.com/twni2016/EBP.

1. Introduction

Medical image analysis (MedIA), in particular 3D organ

segmentation, is an important prerequisite of computer-

assisted diagnosis (CAD), which implies a broad range of

applications. Recent years, with the blooming development

of deep learning, convolutional neural networks have been

widely applied to this area [23, 22], which largely boosts

the performance of conventional segmentation approaches

based on handcrafted features [17, 18], and even surpasses

human-level accuracy in many organs and soft tissues.

2D-Net

[23, 31]

3D-Net

[22, 33]

AH-Net

[20]

EBP

(ours)

Pure 2D network? X X

Pure 3D network? X

Working on 3D data? X X X

3D data not cropped? X

3D data not rescaled? X

Can be pre-trained? X X X

Segmentation method R R R B

Table 1. A comparison between EBP and previous approaches

in network dimensionality, data dimensionality, the ways of pre-

processing data, network weights, and segmentation methodology.

Due to space limit, we do not cite all related work here – see

Section 2 for details. R and B in the last row stand for region-

based and boundary-based approaches, respectively.

Existing deep neural networks for medical image seg-

mentation can be categorized into two types, differing from

each other in the dimensionality of the processed object.

The first type cuts the 3D volume into 2D slices, and trains

a 2D network to deal with each slice either individually [31]

or sequentially [6]. The second one instead trains a 3D

network to deal with volumetric data directly [22, 20]. Al-

though the latter was believed to have potentially a stronger

ability to consider 3D contextual information, it suffers

from two weaknesses: (1) the lack of pre-trained models

makes the training process unstable and the parameters

tuned in one organ less transferrable to others, and (2) the

large memory consumption makes it difficult to receive the

entire volume as input, yet fusing patch-wise prediction into

the final volume remains non-trivial yet tricky.

In this paper, we present a novel approach to bridge the

gap between 2D networks and 3D segmentation. Our idea

comes from the observation that an organ is often single-

connected and locally smooth, so, instead of performing

voxel-wise prediction, segmentation can be done by finding

its boundary which is actually a 2D surface. Our approach is

named Elastic Boundary Projection (EBP), which uses the

spherical coordinate system to project the irregular bound-

ary into a rectangle, on which 2D networks can be applied.

EBP starts with a pivot point within or without the target

2109

organ and a elastic shell around it. This shell, parameterized

by the radius along different directions, is initialized as a

perfect sphere (all radii are the same). The goal is to adjust

the shell so that it eventually converges to the boundary

of the target organ, for which we train a 2D network to

predict whether each ending point lies inside or outside

the organ, and correspondingly increase or decrease the

radius at that direction. This is an iterative process, which

terminates when the change of the shell is sufficiently small.

In practice, we place a number of pivots in the 3D space, and

summarize all the converged shells for outlier removal and

3D reconstruction.

Table 1 shows a comparison between EBP and previous

2D and 3D approaches. EBP enjoys three-fold advantages.

First, EBP allows using a 2D network to perform volumet-

ric segmentation, which absorbs both training stability and

contextual information. Second, with small memory usage,

EBP processes a 3D object entirely without cutting it into

slices or patches, and thus prevents the trouble in fusing

predictions. Third, EBP can sample abundant training cases

by placing a number of pivots, which is especially useful in

the scenarios of limited data annotations. We evaluate EBP

in segmenting several organs in abdominal CT scans, and

demonstrate its promising performance.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews related work, and Section 3 describes

the proposed EBP algorithm. After experiments are shown

in Section 4, we draw our conclusions in Section 5.

2. Related Work

Computer aided diagnosis (CAD) is a research area

which aims at helping human doctors in clinics. Currently,

a lot of CAD approaches start from medical image analysis

to obtain accurate descriptions of the scanned organs, soft

tissues, etc.. One of the most popular topics in this area is

object segmentation, i.e., determining which voxels belong

to the target in 3D data, such as abdominal CT scans studied

in this paper. Recently, the success of deep convolutional

neural networks for image classification [15, 28, 11, 13]

has been transferred to object segmentation in both natural

images [27, 7] and medical images [23, 22].

One of the most significant differences between natural

and medical images lies in data dimensionality: natural

images are planar (2D) while medical data such as CT and

MRI scans are volumetric (3D). To deal with it, researchers

proposed two major pipelines. The first one cut each 3D

volume into 2D slices, and trained 2D networks to process

each of them individually [23]. Such methods often suffer

from missing 3D contextual information, for which various

techniques were adopted, such as using 2.5D data (stacking

a few 2D images as different input channels) [24, 25],

training deep networks from different viewpoints and fus-

ing multi-view information at the final stage [32, 30, 31],

and applying a recurrent network to process sequential

data [6, 4]. The second one instead trained a 3D network to

deal with volumetric data [8, 22]. These approaches, while

being able to see more information, often require much

larger memory consumption, and so most existing methods

worked on small patches [10, 33], which left a final stage

to fuse the output of all patches. In addition, unlike 2D

networks that can borrow pre-trained models from natural

image datasets [9], 3D networks were often trained from

scratch, which often led to unstable convergence proper-

ties [29]. One possible solution is to decompose each 3D

convolution into a 2D-followed-by-1D convolution [20].

A discussion on 2D vs. 3D models for medical image

segmentation is available in [16].

Prior to the deep learning era, planar image segmentation

algorithms were often designed to detect the boundary of a

2D object [12, 1, 3, 26, 19]. Although these approaches

have been significantly outperformed by deep neural net-

works in the area of medical image analysis [17, 18], we

borrow the idea of finding the 2D boundary instead of the

3D volume and design our approach.

3. Elastic Boundary Projection

3.1. Problem, Existing Methods and Drawbacks

The problem we are interested in is to segment an organ

from abdominal CT scans. Let an input image be U, a

3D volume with Hx × Hy × Hz voxels, and each voxel

U(x, y, z) indicates the intensity at the specified position

measured by the Haunsfield unit (HU). The label V shares

the same dimension with U, and V (x, y, z) indicates the

class annotation of U(x, y, z). Without loss of generality,

we assume that V (x, y, z) ∈ {0, 1} where 1 indicates the

target organ and 0 the background. Suppose our model

predicts a volume W, and V = {(x, y, z) | V (x, y, z) = 1}
and W = {(x, y, z) | W (x, y, z) = 1} are the foreground

voxels in ground-truth and prediction, respectively, we can

compute segmentation accuracy using the Dice-Sørensen

coefficient (DSC): DSC(V,W) = 2×|V∩W|
|V|+|W| , which has a

range of [0, 1] with 1 implying a perfect prediction.

Let us denote the goal as W = f(U;θ). Thus, there are

two typical ways of designing f(·;θ). The first one trains

a 3D model to deal with volumetric data directly [8, 22],

while the second one works by cutting the 3D volume into

slices and using 2D networks for segmentation [24, 31].

Both 2D and 3D approaches have their advantages and

disadvantages. We appreciate the ability of 3D networks

to take volumetric cues into consideration (radiologists also

exploit 3D information to make decisions), however, 3D

networks are sometimes less stable, arguably because we

need to train all weights from scratch, while the 2D net-

works can be initialized using pre-trained models from nat-

ural images (e.g., RSTN [31] borrowed FCN [21] as ini-

2110

𝒓

𝒓(𝟓𝟎)

𝑰(𝟓𝟎)

𝑶(𝟓𝟎) 𝑰 𝑶

𝑰(𝟎)

𝒓(𝟏)

𝑰(𝟏)

𝒓(𝟔)

𝑰(𝟔)

𝒓(𝟏𝟔)

𝑰(𝟏𝟔)

𝒓(𝟑𝟐)

𝑰(𝟑𝟐)

𝑶(𝟎) 𝑶(𝟏) 𝑶(𝟑𝟐)𝑶(𝟏𝟔)𝑶(𝟔)

𝒓(𝟎)

p

𝑩 𝒓 generates 𝑰𝒓 generates 𝑶𝑰 predicts𝑶𝑶 updates 𝒓

Figure 1. The overall flowchart of EBP (best viewed in color). We show the elastic shell after some specific numbers of iterations (green

voxels in the second row) generated by a pivot p (the red center voxel in the second row) within a boundary B of the organ (blue voxels in

2nd row). The data generation process starts from a perfect sphere initialized by r(0), and then we obtain the
(

I(t),O(t)
)

pairs (the third

and fourth row) by r(t) in the training stage. In the testing stage, O(t) is predicted by our model M given I(t). After that, one iteration is

completed by the adjustment of r(t) to r(t+1) by the addition of O(t). Finally, the elastic shell converges to B.

tialization). On the other hand, processing volumetric data

(e.g., 3D convolution) often requires heavier computation in

both training and testing. We aim at designing an algorithm

which takes both benefits of 2D and 3D approaches.

3.2. EBP: the Overall Framework

Our algorithm is named Elastic Boundary Projection

(EBP). As the name shows, our core idea is to predict the

boundary of an organ instead of every pixel in it.

Consider a binary volume V with V indicating the

foreground voxel set. We define its boundary B = ∂V
as a set of (continuous) coordinates that are located be-

tween the foreground and background voxels1. Since B
is a 2D surface, we can parameterize it using a rectan-

gle, and then apply a 2D deep network to solve it. We

first define a set of pivots P = {p1,p2, . . . ,pN} which

are randomly sampled from the region-of-interest (ROI),

e.g., the 3D bounding-box of the object. Then, in the

spherical coordinate system, we define a fixed set of di-

rections D = {d1,d2, . . . ,dM}, in which each dm is a

unit vector (x̂m, ŷm, ẑm), i.e., x̂2
m + ŷ2m + ẑ2m = 1, for

1The actual definition used in implementation is slightly different –

see Section 3.4 for details.

m = 1, 2, . . . ,M . For each pair of pn and dm, there is

a radius rn,m indicating how far the boundary is along this

direction, i.e., en,m = pn + rn,m · dm ∈ B2. When B
is not convex, it is possible that a single pivot cannot see

the entire boundary, so we need multiple pivots to provide

complementary information. Provided a sufficiently large

number of pivots as well as a densely distributed direction

set D, we can approximate the boundary B and thus recover

the volume V which achieves the goal of segmentation.

Therefore, volumetric segmentation reduces to the fol-

lowing problem: given a pivot pn and a set of directions D,

determine all rn,m so that en,m = pn + rn,m · dm ∈ B.

This task is difficult to solve directly, which motivates us

to consider the following counter problem: given pn, D
and a group of rn,m values, determine whether these values

correctly describe the boundary, i.e., whether each en,m

2If p is located outside the boundary, there may exist some directions

that the ray en,m(r) = pn + r · dm does not intersect with B. In this

case, we define rn,m = 0, i.e., along these directions, the boundary

collapses to the pivot itself. In all other situations (including p is located

within the boundary), there may be more than one rm’s that satisfy this

condition, in which cases we take the maximal rm. When there is a

sufficient number of pivots, the algorithm often reconstructs the entire

boundary as expected. See Sections 3.4 and 3.5 for implementation details.

2111

falls on the boundary. We train a model M : O = f(I;θ)
to achieve this goal. Here, the input is a generated image

In ≡ {U(pn + rn,m · dm)}Mm=1 = {U(en,m)}Mm=1, where

U(en,m) is the intensity value of U at position en,m, in-

terpolated by neighboring voxels if necessary. Note that I

appears in a 2D rectangle. The output is a map O of the

same size, with each value om indicating whether en,m is

located within, and how far it is from the boundary.

The overall flowchart of EBP is illustrated in Figure 1. In

the training stage, we sample P and generate (I,O) pairs

to optimize θ. In the testing stage, we randomly sample

P ′ and initialize all r′n,m’s with a constant value, and use

the trained model to iterate on each p′
n until convergence,

i.e., all entries in O′ are close to 0 (as we shall see later,

convergence is required because one-time prediction can be

inaccurate). Finally, we perform 3D reconstruction using

all e′n,m’s to recover the volume V. We will elaborate the

details in the following subsections.

3.3. Data Preparation: Distance to Boundary

In the preparation stage, based on a binary annotation

V, we aim at defining a relabeled matrix C, with its each

entry C(x, y, z) storing the signed distance between each

integer coordinate (x, y, z) and ∂V. The sign of C(x, y, z)
indicates whether (x, y, z) is located within the boundary

(positive: inside; negative: outside; 0: on), and the abso-

lute value indicates the distance between this point and the

boundary (a point set). We follow the convention to define

|C(x, y, z)| = min
(x′,y′,z′)∈∂V

Dist[(x, y, z) , (x′, y′, z′)],

(1)

where we use the ℓ2-distance Dist[(x, y, z) , (x′, y′, z′)] =
(

|x− x′|2 + |y − y′|2 + |z − z′|2
)1/2

(the Euclidean dis-

tance) while a generalized ℓp-distance can also be used.

We apply the KD-tree algorithm for fast search. If other

distances are used, e.g., ℓ1-distance, we can apply other

efficient algorithms, e.g., floodfill, for constructing matrix

C. The overall computational cost is O(N0 logN
◦
0), where

N0 = HxHyHz is the number of voxels and N◦
0 = |∂V| is

the size of the boundary set3.

After C is computed, we multiply C(x, y, z) by −1 for

all background voxels, so that the sign of C(x, y, z) distin-

guishes inner voxels from outer voxels. In the following

3Here are some technical details. The KD-tree is built on the set of

boundary voxels, i.e., the integer coordinates with at least one (out of six)

neighborhood voxels having a different label (foreground vs. background)

from itself. There are in average N◦

0 = 50,000 such voxels for each case,

and performing N0 individual searches on this KD-tree takes around 20
minutes. To accelerate, we limit |C(x, y, z)| 6 τ which implies that all

coordinates with a sufficiently large distance are truncated (this is actually

more reasonable for training – see the next subsection). We filter all pixels

with an ℓ−∞-distance not smaller than τ 4, which runs very fast5 and

typically reduces the number of searches to less than 1% of N0. Thus,

data preparation takes less than 1 minute for each case.

parts, (x, y, z) can be a floating point coordinate, in which

case we use trilinear interpolation to obtain C(x, y, z).

3.4. Training: Data Generation and Optimization

To optimize the model M, we need a set of training pairs

{(I,O)}. To maximally reduce the gap between training

and testing data distributions, we simulate the iteration pro-

cess in the training stage and sample data on the way.

We first define the direction set D = {d1,d2, . . . ,dM}.

We use the spherical coordinate system, which means

that each direction has an azimuth angle αm1
∈ [0, 2π)

and a polar angle ϕm2
∈ [−π/2, π/2]. To organize

these M directions into a rectangle, we represent D as

the Cartesian product of an azimuth angle set of Ma

elements and a polar angle set of Mp elements where

Ma ×Mp = M . The Ma azimuth angles are uniformly

distributed, i.e., αm1
= 2m1π/M

a, but the Mp polar

angles have a denser distribution near the equator, i.e.,

ϕm2
= cos−1(2m2/ (M

p + 1)− 1) − π/2, so that the M
unit vectors are approximately uniformly distributed over

the sphere. Thus, for each m, we can find the corresponing

m1 and m2, and the unit direction vector (x̂m, ŷm, ẑm)
satisfies x̂m = cosαm1

cosϕm2
, ŷm = sinαm1

cosϕm2

and ẑm = sinϕm2
, respectively. dm = (x̂m, ŷm, ẑm).

In practice, we fix Ma = Mp = 120 which is a tradeoff

between sampling density (closely related to accuracy) and

computational costs.

We then sample a set of pivots P = {p1,p2, . . . ,pN}.

At each pn, we construct a unit sphere with a radius of R0,

i.e., r
(0)
n,m = R0 for all m, where the superscript 0 indicates

the number of undergone iterations. After the t-th iteration,

the coordinate of each ending point is computed by:

e(t)n,m = pn + r(t)n,m · dm. (2)

Using the coordinates of all m, we look up the ground-truth

to obtain an input-output data pair:

I(t)n,m = U
(

e(t)n,m

)

, O(t)
n,m = C

(

e(t)n,m

)

, (3)

and then adjust r
(t)
n,m accordingly6:

r(t+1)
n,m = max

{

r(t)n,m + C
(

e(t)n,m

)

, 0
}

, (4)

until convergence is achieved and thus all ending points fall

on the boundary or collapse to pn itself7.

6Eqn 4 is not strictly correct, because dm is not guaranteed to be the

fastest direction along which e
(t)
n,m goes to the nearest boundary. However,

since C
(

e
(t)
n,m

)

is the shortest distance to the boundary, Eqn (4) does not

change the inner-outer property of e
(t)
n,m.

7If pn is located within the boundary, then all ending points will

eventually converge onto the boundary. Otherwise, along all directions

with e
(0)
n,m being outside the boundary, r

(t)
n,m will be gradually reduced to

0 and thus the ending point collapses to pn itself. These collapsed ending

points will not be considered in 3D reconstruction (see Section 3.6).

2112

When the 3D target is non-convex, there is a possibility

that a ray en,m(r) = pn + r · dm has more than one inter-

sections with the boundary. In this case, the algorithm will

converge to the one that is closest to the initial sphere. We

do not treat this issue specially in both training and testing,

because we assume a good boundary can be recovered if (i)

most ending points are close to the boundary and (ii) pivots

are sufficiently dense.

Here we make an assumption: by looking at the pro-

jected image at the boundary, it is not accurate to predict

that the radius along any direction should be increased or

decreased by a distance larger than τ (we use τ = 2
in experiments). So, we constrain C(x, y, z) ∈ [−τ, τ].
This brings three-fold benefits. First, the data generation

process becomes much faster (see the previous subsection);

second, iteration allows to generate more training data; third

and the most important, this makes prediction easier and

more reasonable, as we can only expect accurate prediction

within a small neighborhood of the boundary.

After the training set is constructed, we optimize M :
O = f(I;θ) with regular methods, e.g., stochastic gradient

descent is used in this paper. Please see section 4.1 for

the details of M. As a side comment, our approach can

generate abundant training data by increasing N and thus

the sampling density of pivots, which is especially useful

when the labeled training set is very small.

3.5. Testing: Iteration and Inference

The testing stage is mostly similar to the training stage,

which starts with a set of randomly placed pivots and a

unit sphere around each of them. We fix the parameters

θ and iterate until convergence or the maximal number

of rounds T is reached (unlike training in which ground-

truth is provided, iteration may not converge in testing).

After that, all ending points of all pivots, except for those

collapsed to the corresponding pivot, are collected and fed

into the next stage, i.e., 3D reconstruction. The following

techniques are applied to improve testing accuracy.

First, the input image I
(t)
n at each training/testing round

only contains intensity values at the current shell defined by
{

e
(t)
n,m

}

. However, such information is often insufficient

to accurately predict O
(t)
n , so we complement it by adding

more channels to I
(t)
n . The l-th channel is defined by M

radius values
{

s
(t)
n,l,m

}

. There are two types of channels,

with LA of them being used to sample the boundary and

LB of them to sample the inner volume:

s
(t)
n,lA,m

= r(t)n,m + lA −
(

LA + 1
)

/2,

s
(t)′
n,lB,m

=
lB

LB + 1

[

r(t)n,m −
(

LA + 1
)

/2
]

.
(5)

When LA = 1 and LB = 0, it degenerates to using one

single slice at the boundary. With relatively large LA and

LB (e.g., LA = LB = 5 in our experiments), we benefit

from seeing more contexts which is similar to volumetric

segmentation but the network is still 2D. The number of

channels in O remains to be 1 regardless of LA and LB.

Second, we make use of the spatial consistency of dis-

tance prediction to improve accuracy. When the radius

values at the current iteration
{

r
(t)
n,m

}

are provided, we can

randomly sample M numbers εm ∼ N
(

0, σ2
)

where σ is

small, add them to
{

r
(t)
n,m

}

, and feed the noisy input to M.

By spatial consistency we mean the following approxima-

tion is always satisfied for each direction m:

C
(

e(t)n,m + εm · dm

)

= C
(

e(t)n,m

)

+ εm · cosβ
(

dm, e(t)n,m

)

,

(6)

where β
(

dm, e
(t)
n,m

)

is the angle between dm and the nor-

mal direction at e
(t)
n,m. Although this angle is often difficult

to compute, we can take the left-hand side of Eqn (6) as

a linear function of εm and estimate its value at 0 using

multiple samples of εm. This technique behaves like data

augmentation and improves the stability of testing.

Third, we shrink the gap between training and testing

data distributions. Note that in the training stage, all r
(t)
n,m

values are generated using ground-truth, while in the testing

stage, they are accumulated by network predictions. There-

fore, inaccuracy may accumulate with iteration if the model

is never trained on such “real” data. To alleviate this issue,

in the training stage, we gradually replace the added term

in Eqn (4) with prediction, following the idea of curriculum

learning [2]. In Figure 1, we show that this strategy indeed

improves accuracy in validation.

Last but not least, we note that most false positives in the

testing stage are generated by outer pivots, especially those

pivots located within another organ with similar physical

properties. In this case, the shell may converge to an un-

expected boundary which harms segmentation. To alleviate

this issue, we introduce an extra stage to determine which

pivots are located within the target organ. This is achieved

by constructing a graph with all pivots being nodes and

edges being connected between neighboring pivots. The

weight of each edge is the the intersection-over-union (IOU)

rate between the two volumes defined by the elastic shells.

To this end, so we randomly sample several thousand points

in the region-of-interest (ROI) and compute whether they

fall within each of the N shells, based on which we can

estimate the IOU of any pivot pairs. Then, we find the

minimum cut which partitions the entire graph to two parts,

and the inner part is considered the set of inner pivots. Only

the ending points produced by inner pivots are considered

in 3D reconstruction.

2113

predicted inner pivots point clouds before KDE point clouds after KDE voxelization

Step 1 Step 2 Step 3

Figure 2. An example of 3D reconstruction (best viewed in color). We start with all pivots (green and blue points indicate ground-truth

and predicted inner pivots, respectively) predicted to be located inside the target. In Step 1, all converged ending points generated by these

pivots form the point clouds. In Step 2, a kernel density estimator (KDE) is applied to remove outliers (marked in a red oval in the second

figure). In Step 3, we adopt a graphics algorithm for 3D reconstruction and finally we voxelize the point cloud.

3.6. 3D Reconstruction

The final step is to reconstruct the surface of the 3D

volume based on all ending points. Note that there always

exist many false positives (i.e., predicted ending points that

do not fall on the actual boundary), so we adopt kernel

density estimation (KDE) to remove them, based on the

assumption that with a sufficient number of pivots, the

density of ending points around the boundary is much larger

than that in other regions. We use the Epanechnikov kernel

with a bandwidth of 1, and preserve all integer coordinates

with a log-likelihood not smaller than −14.

Finally, we apply a basic graphics framework to accom-

plish this goal, which works as follows. We first use the

Delaunay triangulation to build the mesh structure upon the

survived ending points, and then remove improper tetrahe-

drons with a circumradius larger than α. After we obtain the

alpha shape, we use the subdivide algorithm to voxelize it

into volumes with hole filling. Finally, we apply surface

thinning to the volumes by 3 slices. This guarantees a

closed boundary, filling which obtains final segmentation.

We illustrate an example of 3D reconstruction in Figure 2.

3.7. Discussions and Relationship to Prior Work

The core contribution of EBP is to provide a 2D-based

approach for 3D segmentation. To the best of our knowl-

edge, this idea was not studied in the deep learning litera-

ture. Conventional segmentation approaches such as Graph-

Cut [3] and GrabCut [26] converted 2D segmentation to find

the minimal cut, a 1D contour that minimizes an objective

function, which shared a similar idea with us. Instead of

manually defining the loss function by using voxel-wise or

patch-wise difference, EBP directly measures the loss with

a guess and iteratively approaches the correct boundary.

This is related to the active contour methods [14, 5].

In the perspective of dimension reduction, EBP adds a

different solution to a large corpus of 2D segmentation ap-

proaches [23, 24, 25, 32, 31] which cut 3D volumes into 2D

slices without considering image semantics. Our solution

enjoys the ability of extracting abundant training data, i.e.,

we can sample from an infinite number of pivots (no need

to have integer coordinates). This makes EBP stand out

especially in the scenarios of fewer training data (see ex-

periments). Also, compared to pure 3D approaches [8, 22],

we provide a more efficient way of sampling voxels which

reduces computational overheads as well as the number of

parameters, and thus the risk of over-fitting.

4. Experiments

4.1. Datasets, Evaluation and Details

We evaluate EBP in a dataset with 48 high-resolution CT

scans. The width and height of each volume are both 512,

and the number of slices along the axial axis varies from

400 to 1,100. These data were collected from some poten-

tial renal donors, and annotated by four expert radiologists

in our team. Four abdominal organs were labeled, including

left kidney, right kidney and spleen. Around 1 hour is

required for each scan. All annotations were later verified

by an experienced board certified Abdominal Radiologist.

We randomly choose half of these volumes for training,

and use the remaining half for testing. The data split is

identical for different organs. We compute DSC for each

case individually, i.e., DSC(V,W) = 2×|V∩W|
|V|+|W| where V

and W are ground-truth and prediction, respectively.

For the second dataset, we refer to the spleen subset in

the Medical Segmentation Decathlon (MSD) dataset (web-

2114

site: http://medicaldecathlon.com/). This is a public dataset

with 41 cases, in which we randomly choose 21 for training

and the remaining 20 are used for testing. This dataset has

quite a different property from ours, as the spatial resolution

varies a lot. Although the width and height are still both

512, the length can vary from 31 to 168. DSC is also used

for accuracy computation.

Two recenty published baselines named RSTN [31] and

VNet [22] are used for comparison. RSTN is a 2D-

based network, which uses a coarse-to-fine pipeline with a

saliency transformation module. We directly follow the im-

plementation by the authors. VNet is a 3D-based network,

which randomly crops into 128×128×64 patches from the

original patch for training, and uses a 3D sliding window

followed by score average in the testing stage. Though

RSTN does not require a 3D bounding-box (ROI) while

EBP and VNet do, this is considered fair because a 3D

bounding-box is relatively easy to obtain. In addition, we

also evaluate RSTN with 3D bounding-box, and found very

little improvement compared to the original RSTN.

The model M : O = f(I;θ) of EBP is instantiated as

a 2D neural network based on UNet [23]. The input image

I has a resolution of M = Ma ×Mp = 120 × 120. We

set LA = LB = 5, and append 3 channels of d for both

parts (thus each part has 8 channels, and group convolution

is applied). Our network has 3 down-sampling and 3 up-

sampling blocks, each of which has three consecutive 2-

group dilated (rate is 2) convolutions. There are also short

(intra-block) and long (inter-block) residual connections.

The output O is a one-channel signed distance matrix.

4.2. Quantitative Results

Results are summarized in Table 2. In all these or-

gans, EBP achieves comparable segmentation accuracy

with RSTN, and usually significantly outperforms VNet.

On our own data, EBP works slightly worse than RSTN,

but on the spleen set, the worst case reported by RSTN has

a much lower DSC (78.75%) than that of EBP (89.67%).

After diagnosis, we find that RSTN fails to detect a part this

organ in a few continuous 2D slices, but EBP, by detecting

the boundary, successfully recovers this case. This suggests

that in many cases, EBP and RSTN can provide supple-

mentary information to organ segmentation. Moreover, on

the MSD spleen dataset, a challenging public dataset, EBP

outperforms RSTN by more than 2%. In addition, (i) the

worst case in MSD spleen reported by EBP is 77.07%,

much higher than 48.45% reported by RSTN; (ii) all stan-

dard deviations reported by RSTN are significantly larger.

Both the above suggest that EBP enjoys higher stability.

We can observe that VNet often suffers even lower sta-

bility in terms of both standard deviation and worst ac-

curacy. In addition, the training process is not guaran-

teed to converge to a good model, e.g., in right kidney

of our own dataset, we trained two VNet models – one

of them, as shown in Table 2, is slightly worse than both

RSTN and EBP; while the other, reports even worse results:

86.30 ± 6.50% average, 95.32% max and 73.66% min

DSCs, respectively. Similar phenomena, which are mainly

due to the difficulty of optimizing a 3D-based network, were

also observed in [8, 20, 30].

We also observe the impact of spatial resolution in the

MSD spleen dataset. This dataset has a relatively low

spatial resolution (i.e., 31–168 voxels along the long axis),

which raises extra difficulties to VNet (it requires 128 ×
128 × 64 patches to be sampled). To deal with this issue,

we normalize all volumes so as to increase the number of

slices along the long axis. The results of VNet shown in

Table 2 are computed in this normalized dataset (in DSC

computation, all volumes are normalized back to the orig-

inal resolution for fair comparison), while both RSTN and

EBP directly work on the original non-normalized dataset.

In addition, VNet reports an 71.07± 36.27% average DSC

on the non-normalized dataset, with a few cases suffering

severe false negatives. This implies that VNet heavily

depends on data homogeneity, while EBP does not.

A complicated organ with irregular geometric shape and

blurring boundary, pancreas, is also investigated by these

approaches. We find that voxel-wise/region-based methods

such as RSTN perform well on it, with over 80% accuracy

on our own dataset. However, EBP predicts many false

positives and thus only has about 60% accuracy on the

same setting. After careful diagnosis, we figure out that for

pancreas segmentation, EBP tends to mistake some other

organs around pancreas within 3D bounding-box, such as

small bowel, inferior vena cava and duodenum, for pan-

creas. There are several reasons accounting for the weak-

ness in pancreas segmentation. First, those surrounding

organs are intertwined with pancreas and some parts of

their boundaries coincide within several voxels. Second,

their boundaries look similar to that of pancreas from the

perspective of intensity distribution, which adds difficulty

to EBP. Third, 3D reconstruction of EBP is inaccurate for

organs with irregular shape, for the difficulty in choosing

the hyperparameter α to trim the convex hull of the pre-

dicted point cloud to the ground-truth irregular shape.

4.3. How Does EBP Find the Boundary?

Now, we discuss on how EBP finds the boundary. We

study two aspects, i.e., convergence and consistency, on one

case of medium difficulty in the subset of right kidney.

We start with investigating convergence, by which we

refer to whether each pivot pn, after a sufficient number

of iterations, can converge to a boundary. We use the ℓ1-

norm of O′
n,m to measure convergence, the output of which

indicates the amount of revision along the radius. With

its value reaching at a low level (positive but smaller than

2115

Approach
left kidney right kidney spleen MSD spleen

Average Max Min Average Max Min Average Max Min Average Max Min

RSTN [31] 94.50± 2.66 97.69 93.64 96.09± 2.21 98.18 87.35 94.63± 4.21 97.38 78.75 89.70±12.60 97.25 48.45

VNet [22] 91.95± 4.63 95.23 71.40 92.97± 3.67 97.48 80.51 92.68± 3.25 96.75 83.18 92.94± 3.58 97.35 81.96

EBP (ours) 93.45± 1.62 97.28 90.88 95.26± 1.59 97.45 90.19 94.50± 2.64 96.76 89.67 92.01± 4.50 96.48 77.07

Table 2. Comparison of segmentation accuracy (DSC, %) on our multi-organ dataset and the spleen class in the MSD benchmark. Within

each group, average (with standard deviation), max and min accuracies are reported.

0.5), perfect convergence is achieved. Results are shown in

Figure 3. We can see that, starting from most inner pivots,

the elastic shell can eventually converge to the boundary.

In the figure, we show 200 iterations, but in practice, for

acceleration, we only perform 10 iterations before sending

all “ending points” to 3D reconstruction. This is to say,

although convergence is not achieved and many ending

points are not indeed located at the boundary, it is possi-

ble for 3D reconstruction algorithm to filter these outliers.

This is because we have sampled a large number of pivots.

Therefore, an ending point located near the boundary will

be accompanied by a lot of others, while one located inside

or even outside the target will be isolated. By applying

kernel density estimation (KDE), we can filter out those

isolated points so that 3D reconstruction is not impacted.

Next, we investigate consistency, for which we take

some pivot pairs and compute the DSC between the con-

verged shells centered at them. This criterion was intro-

duced in Section 3.5 to distinguish inner pivots from outer

pivots. The assumption is that the shells generated by a

pair of inner pivots should have a large similarity, while

those generated by an inner pivot and an outer pivot should

not. To maximally make fair comparison, we take all the

boundary pivots, defined as the inner pivots with at least

one neighbor being outside. Then, we sample all pivot pairs

in which at least one of them is a boundary pivot, and make

statistics. For those inner-inner pivot pairs, the average DSC

(73.46%) is much larger than that (51.39%) of inner-outer

pivot pairs. This experiment suggests that, two neighboring

pivots are more likely to agree with each other if both of

them are located within the target, otherwise the chance of

getting a low DSC becomes large8.

Last, we perform an interesting experiments to further

reveal how inter-pivot DSC changes with the relative posi-

tion of a pivot to the boundary. Starting from an inner pivot,

we keep going along a fixed direction until being outside,

and on the way, we record the DSC between the elastic

shells generated by every neighboring pivot pairs. Some

statistics are provided in Figure 3. On all these curves, we

8There is a side note here. Theoretically, for an inner pivot and an

outer pivot, if both elastic shells are perfectly generated, they should have

a DSC of 0. However, it is not often the case, because the elastic shell of

the outer pivot is also initialized as a sphere, which may intersect with the

boundary. In this case, all ending points that are initially located within

the target will start growing until they reach the other border of the target.

Consequently, it has a non-zero DSC with some of the inner pivots.

Figure 3. Left: the ℓ1-norm of O′

n,m during the first 200 itera-

tions. The thick curve is averaged over 15 pivots, each of which

appears as a thin curve. Right: The inter-pivot DSC recorded when

a pivot keeps going along a fixed direction until it goes out of the

target (we do not plot the curve beyond this point).

observe a sudden drop at some place, which often indicates

the moment that the pivot goes from inside to outside.

5. Conclusions

This paper presents EBP, a novel approach that trains

2D deep networks for 3D object segmentation. The core

idea is to build up an elastic shell and adjust it until it

converges to the actual boundary of the target. Since the

shell is parameterized in the spherical coordinate system,

we can apply 2D networks (low computational overhead,

fewer parameters, pre-trained models, etc.) to deal with vol-

umetric data (richer contextual information). Experiments

are performed on several organs in abdominal CT scans,

and EBP achieves comparable performance to both 2D and

3D competitors. In addition, EBP can sample sufficient

training data from few annotated examples, which claims

its advantage in medical image analysis.

We learn from this work that high-dimensional data often

suffer redundancy (e.g., not every voxel is useful in a 3D

volume), and mining the discriminative part, though being

challenging, often leads to a more efficient model. In the

future, we will continue investigating this topic and try to

cope with the weaknesses of EBP, so that it can be applied

to a wider range of 3D vision problems, in particular when

the object has a peculiar shape.

Acknowledgments This paper was supported by the

Lustgarten Foundation for Pancreatic Cancer Research. We

thank Prof. Zhouchen Lin for supporting our research.

We thank Prof. Wei Shen, Dr. Yan Wang, Weichao Qiu,

Zhuotun Zhu, Yuyin Zhou, Yingda Xia, Qihang Yu, Runtao

Liu and Angtian Wang for instructive discussions.

2116

References

[1] Dana H Ballard. Generalizing the hough transform to detect

arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

2

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and

Jason Weston. Curriculum learning. In International Con-

ference on Machine Learning, pages 41–48. ACM, 2009. 5

[3] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for

optimal boundary & region segmentation of objects in nd

images. In IEEE International Conference on Computer

Vision, volume 1, pages 105–112, 2001. 2, 6

[4] Jinzheng Cai, Le Lu, Yuanpu Xie, Fuyong Xing, and Lin

Yang. Pancreas segmentation in mri using graph-based

decision fusion on convolutional neural networks. In In-

ternational Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 674–682. Springer,

2017. 2

[5] Tony F Chan and Luminita A Vese. Active contours without

edges. IEEE Transactions on Image Processing, 10(2):266–

277, 2001. 6

[6] Jianxu Chen, Lin Yang, Yizhe Zhang, Mark Alber, and

Danny Z Chen. Combining fully convolutional and recurrent

neural networks for 3d biomedical image segmentation. In

Advances in Neural Information Processing Systems, pages

3036–3044, 2016. 1, 2

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2018. 2

[8] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,

Thomas Brox, and Olaf Ronneberger. 3d u-net: learning

dense volumetric segmentation from sparse annotation. In

International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 424–432. Springer,

2016. 2, 6, 7

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009. 2

[10] Mohammad Havaei, Axel Davy, David Warde-Farley, An-

toine Biard, Aaron Courville, Yoshua Bengio, Chris Pal,

Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor

segmentation with deep neural networks. Medical Image

Analysis, 35:18–31, 2017. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016. 2

[12] Paul VC Hough. Method and means for recognizing complex

patterns, Dec. 18 1962. US Patent 3,069,654. 2

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and

Kilian Q Weinberger. Densely connected convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 4700–4708, 2017. 2

[14] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.

Snakes: Active contour models. International Journal of

Computer Vision, 1(4):321–331, 1988. 6

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012. 2

[16] Matthew Lai. Deep learning for medical image segmenta-

tion. arXiv preprint arXiv:1505.02000, 2015. 2

[17] Daw-Tung Lin, Chung-Chih Lei, and Siu-Wan Hung.

Computer-aided kidney segmentation on abdominal ct im-

ages. IEEE Transactions on Information Technology in

Biomedicine, 10(1):59–65, 2006. 1, 2

[18] Haibin Ling, S Kevin Zhou, Yefeng Zheng, Bogdan

Georgescu, Michael Suehling, and Dorin Comaniciu. Hierar-

chical, learning-based automatic liver segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2008. 1, 2

[19] Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selec-

tion. ACM Transactions on Graphics, 28(3):69, 2009. 2

[20] Siqi Liu, Daguang Xu, S Kevin Zhou, Olivier Pauly, Sasa

Grbic, Thomas Mertelmeier, Julia Wicklein, Anna Jerebko,

Weidong Cai, and Dorin Comaniciu. 3d anisotropic hybrid

network: Transferring convolutional features from 2d images

to 3d anisotropic volumes. In International Conference on

Medical Image Computing and Computer-Assisted Interven-

tion, pages 851–858. Springer, 2018. 1, 2, 7

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3431–3440, 2015. 2

[22] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In International Conference

on 3D Vision, pages 565–571. IEEE, 2016. 1, 2, 6, 7, 8

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234–241.

Springer, 2015. 1, 2, 6, 7

[24] Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin

Liu, Evrim B Turkbey, and Ronald M Summers. Deeporgan:

Multi-level deep convolutional networks for automated pan-

creas segmentation. In International Conference on Medi-

cal Image Computing and Computer-Assisted Intervention,

pages 556–564. Springer, 2015. 2, 6

[25] Holger R Roth, Le Lu, Amal Farag, Andrew Sohn, and

Ronald M Summers. Spatial aggregation of holistically-

nested networks for automated pancreas segmentation. In

International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 451–459. Springer,

2016. 2, 6

[26] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

Grabcut: Interactive foreground extraction using iterated

graph cuts. In ACM Transactions on Graphics, volume 23,

pages 309–314, 2004. 2, 6

[27] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. IEEE

2117

Transactions on Pattern Analysis and Machine Intelligence,

(4):640–651, 2017. 2

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. Interna-

tional Conference on Learning Representations, 2015. 2

[29] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd

Hurst, Christopher B Kendall, Michael B Gotway, and Jian-

ming Liang. Convolutional neural networks for medical im-

age analysis: Full training or fine tuning? IEEE Transactions

on Medical Imaging, 35(5):1299–1312, 2016. 2

[30] Yingda Xia, Lingxi Xie, Fengze Liu, Zhuotun Zhu, Elliot K

Fishman, and Alan L Yuille. Bridging the gap between 2d

and 3d organ segmentation with volumetric fusion net. In

International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 445–453. Springer,

2018. 2, 7

[31] Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot K

Fishman, and Alan L Yuille. Recurrent saliency transfor-

mation network: Incorporating multi-stage visual cues for

small organ segmentation. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 8280–8289, 2018. 1,

2, 6, 7, 8

[32] Yuyin Zhou, Lingxi Xie, Wei Shen, Yan Wang, Elliot K

Fishman, and Alan L Yuille. A fixed-point model for pan-

creas segmentation in abdominal ct scans. In International

Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 693–701. Springer, 2017. 2, 6

[33] Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K Fishman, and

Alan L Yuille. A 3d coarse-to-fine framework for automatic

pancreas segmentation. In International Conference on 3D

Vision, 2018. 1, 2

2118

