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Abstract

Encoding individual facial expressions via action unit-

s (AUs) coded by the Facial Action Coding System (FACS)

has been found to be an effective approach in resolving the

ambiguity issue among different expressions. While a num-

ber of methods have been proposed for AU detection, robust

AU detection in the wild remains a challenging problem be-

cause of the diverse baseline AU intensities across individu-

al subjects, and the weakness of appearance signal of AUs.

To resolve these issues, in this work, we propose a novel

AU detection method by utilizing local information and the

relationship of individual local face regions. Through such

a local relationship learning, we expect to utilize rich local

information to improve the AU detection robustness against

the potential perceptual inconsistency of individual local re-

gions. In addition, considering the diversity in the baseline

AU intensities of individual subjects, we further regularize

local relationship learning via person-specific face shape

information, i.e., reducing the influence of person-specific

shape information, and obtaining more AU discriminative

features. The proposed approach outperforms the state-of-

the-art methods on two widely used AU detection datasets

in the public domain (BP4D and DISFA).

1. Introduction

Facial expression is a natural and powerful means for hu-

man communications, which is highly associated with hu-

man’s intention, attitude or mental state. Therefore, facial

expression analysis has wide potential applications in di-

agnosing mental health [32], improving e-learning experi-

AU6 (Cheek Raiser) AU4 (Brow Lowerer)AU4 (Brow Lowerer)AU6 (Cheek Raiser)

Figure 1: Each single local facial region defined for AUs

in FACS (red circles) can be ambiguous because of face

variations in pose, illumination, etc.; therefore, taking in-

to account the relationship of multiple related face region-

s (yellow circles) can provide more robustness than us-

ing individual single local regions separately. At the same

time, person-specific face shape information also influ-

ences the AU detection performance, i.e., detection of AU4

(Brow Lowerer) is highly influenced by the eye-eyebrow

distance, which may vary significantly among different sub-

jects. Therefore, we expect to reduce the influence of such

person-specific shape information to the AU detection task,

i.e., through regularization during feature learning.

ences [30], and detecting deception [12]. However, direct

facial expression recognition in the wild can be challenging

because of ambiguities between several expressions. One

of the effective methods in resolving the ambiguity issue is

to represent individual expression using the Facial Action

Coding System (FACS) [10], in which each expression is

identified as a specific configuration of multiple basic fa-
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cial AUs. Therefore, a robust facial AU detection system is

important for the accurate analysis of facial expressions.

Since different AUs correspond to different muscular ac-

tivations of the face, the appearance of multiple local re-

gions jointly reflects the presence of individual AUs, and

the local information is crucial for AU detection. The ear-

ly works on facial AUs detection represented different lo-

cal facial areas using the traditional hand-crafted features,

which can be not discriminative enough for capturing the fa-

cial morphology [46, 48]. Recently, deep learning has been

widely applied for facial representation learning, including

using the deep representation for more effective AU detec-

tion [5, 8, 24, 35, 47].

However, besides learning more AU discriminative fea-

tures, the relationship of individual facial regions can be

very important for AU detection. As shown in Fig. 1, each

single local face region defined in FACS can be ambiguous

for AU detection because of face variations in pose, illumi-

nation, etc.; therefore, taking into account the relationship

of multiple face regions can provide more robustness than

using a single local region. For instance, the cheek area

and the mouth corner of the face usually active simultane-

ously in a common facial behavior called Duchenne smile,

resulting in high correlations between AU6 (cheek raiser)

and AU12 (lip corner puller). Some approaches tried to uti-

lize such local relationship information by using multi-label

learning [24, 46, 47], but only holistic feature representa-

tions were used. A meticulous modeling method is required

for effectively leveraging the relationship of different local

facial regions to perform robust AU detection.

Another critical characteristic of AU is that the appear-

ance of the same AU may vary among different subjects

due to the different morphological aspects and ways to ex-

press the emotions of different subjects (see Fig. 1). This

is the reason why designing a person-specific AU detector

can improve the AU detection accuracy. However, existing

person-specific AU detection methods require either retrain-

ing the model for the new subjects [7, 43], or additional data

of the new subjects for model generation [1, 33] or normal-

ization [2]. These constraints limit the range of applications

of the existing AU detection methods.

In this paper, we propose an end-to-end trainable net-

work for AU detection using Local relationship learning

with Person-specific shape regularization (namely LP-Net).

The LP-Net consists of a stem network, a local relation-

ship learning module (L-Net) and a person-specific shape

regularization module (P-Net). The stem network mainly

contains convolutional layers for local region feature extrac-

tion. The extracted local features are then fed to the local

relationship learning module for relationship learning and

predicting the AU occurrence probabilities. At the same

time, P-Net aims to learn features that are independent with

the features by L-Net, and thus works as a regularization

term to reduces the influence of person-specific shape in-

formation. As a result, the final features learned by L-Net

are more discriminative and generalizable for AU detection.

The contributions of this work are three-fold: (i) we pro-

pose a novel end-to-end trainable framework for AU detec-

tion, which is able to leverage not only the local information

but also the relationship of individual regions to improve the

AU detection robustness; (ii) we regularize local relation-

ship learning via person-specific face shape information to

obtain more discriminative and generalizable features relat-

ed to AU detection; (iii) the proposed approach outperforms

the state-of-the-art methods on two widely used AU detec-

tion datasets BP4D and DISFA.

2. Related Work

Automatic facial action unit detection has been studied

for decades, and several works have been proposed. Var-

ious features [4, 20, 25, 26] and classifiers [7, 38, 44, 46]

have been applied to build a robust facial action unit detec-

tion system under realistic situations. Recently, CNNs have

shown great power in many computer vision tasks such as

face verification [37], objection detection [13], and image

recognition [17], and have been successfully applied to au-

tomatic facial action unit detection [5, 15]. The reader can

refer the recent surveys and challenges [9, 27, 39] for more

information. In the following paragraphs, we will review

the relative works to ours.

Since facial AUs are defined as patterns of different fa-

cial muscular movements, the ways they perform the fa-

cial expressions are relatively based on the local facial ap-

pearance. Several works are based on this character and

use local information for facial AU detection. Zhong et

al. [48] divided the face area into multiple uniform patch-

es, and use the common and specific patches to describe

different expressions. Taheri et al. [36] defined fixed region-

s for different AUs and used sparse coding to recover facial

expressions using the composition rules of AUs. Zhao et

al. [46] performed a patch selection method based on facial

landmarks and group sparsity learning. All these methods

used traditional features to represent the face local informa-

tion and these features are not sufficiently expressive.

Besides of traditional features, the great modeling pow-

er of CNNs has also been successfully leveraged to facial

action unit detection. In [47], Zhao et al. proposed a re-

gion layer to induce the CNN to focus on important facial

regions for better feature learning. In [23], Li et al. trained

different CNNs using different parts of a face and merged

the features from different areas in an early fusion fashion

using fully connected layers. In [24], Li et al. proposed a lo-

cal feature learning method based on enhanced and cropped

facial area. In [35], Shao et al. proposed an end-to-end

deep learning framework for joint AU detection and face

alignment, which used the alignment feature to compute

11918



Stem Network

…

Local Relationship Learning

Person-specific Shape Regularization

Face image

2D face shape

Local Features

Shape feature

Global AU 

feature

Orthogonal 

feature space𝑓𝑓𝑎𝑎𝑎𝑎

𝑓𝑓𝑠𝑠 𝑓𝑓𝑠𝑠 Regularization 

term 𝒎𝒎𝒋𝒋

�𝒑𝒑𝒋𝒋𝒍𝒍
AU probability �𝒑𝒑𝑗𝑗

Figure 2: An overview of our approach for AU detection, which consists of a stem network, a local relationship learning

module (L-Net) and a person-specific shape regularization module (P-Net). By using P-Net to model the person-specific

shape information, and enforcing the person-specific shape features are independent with the features learned by L-Net, we

expect the final features for AU detection can be more discriminative and generalizable.

an adaptive attention map for better local feature learning.

These methods have drastically improved the performance

of facial AU detection with the great modeling power of

deep learning. However, all these methods only focused on

different regions and failed to consider the relationship of

different local areas. At the same time, the appearance of

different facial local areas usually changes simultaneously

because of the underlying facial anatomy, and this relation-

ship of different local regions will also benefit the detection

of AUs.

Besides directly using local features to predict AUs, an-

other way of modeling the relationship of AUs is to use the

correlations of different AUs. Walecki et al. [40] proposed

a method to model the AU relations and feature represen-

tations simultaneously by combining conditional random

field (CRF) with deep learning. In [41], Wang et al. pro-

posed a restricted Boltzmann machine to capture high-order

AU interactions. In [8], Corneanu et al. applied a graph-

ical model inference approach to passing AU probabilities

between different AU labels. All these methods took the

probabilistic dependencies between different AUs into con-

sideration and used the correlations to refine the predict-

ed results. However, most of these methods computed the

AU probabilities using the feature generated from the en-

tire face area. Local information has been ignored, which

can be very important for facial AU detection. At the same

time, AU-to-AU relationships are mainly generated using

facial anatomy and FACS [10] based on posed expressions,

and their generalization ability to spontaneous expressions

is not known.

Another key characteristic of AUs is that the appearance

of the same AU may vary among different subjects. This

is the reason why many person-specific AU analysis model-

s have been proposed, and have been found to be effective

for AU detection. Chu et al. [7] proposed a selective trans-

fer machine to personalize the AU detector by re-weighting

of the source distribution to match that of the target dis-

tribution. Zeng et al. [43] applied a similar re-weighting

strategy and learned a person-specific classifier using syn-

thetic labels provided by confident classifiers. This kind of

person-specific AU detectors requires re-training the model

for each subject, which can be time-consuming. Besides re-

weighting the source distribution, Sangineto et al. [33] pro-

posed a transfer process to learn discriminative mappings

between the data distribution associated with each source

subject and the corresponding parameters. Almaev et al. [1]

proposed a multi-task learning structure to learn the laten-

t relations among tasks using one single AU and transfer

the latent relations to other AUs. In [2], Baltrušaitis et al.

proposed a simple but efficient way for person-specific fea-

ture normalization using the median of all the features in a

video. Although all these methods do not need to re-train

the model for a new subject, they still need additional data

to generate a new AU predictor, which limits the application

scope in practical scenarios.

In contrast to these existing methods, we employ an end-

to-end deep framework LP-Net to predict AUs. We not on-

ly consider the local information for facial AUs prediction

but also take the relationship of different facial regions in-

to consideration. At the same time, person-specific shape

regularization is also utilized to reduce the influence of the

diverse baseline AU intensities among different subjects.

3. Proposed Method

Fig. 2 shows the overall framework of our LP-Net for

facial AU detection, which consists of a stem network, a

local relationship learning module (L-Net) and a person-

specific shape regularization module (P-Net). We detail the

proposed approach in the following sections.
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3.1. Overview of LPNet

Feature representation is the key component of building

a robust AU detection system, in which CNN has shown its

great power and achieved great success in many computer

vision tasks [13, 17, 37]. Traditional CNNs usually feed

the output of convolutional layers to a global pooling lay-

er in order to get a robust global feature. However, such

an operation would fail to capture the local information for

structured objects like faces and thus ignoring some local

but important information related to AU detection.

To overcome these limitations, as shown in Fig. 2, we

remove the global pooling layer in CNN and directly use

the output feature maps from the convolutional layers as

the representation of local features. CNN networks like

ResNet [17] have been proved to have a strong ability for lo-

cal features generation with only convolutional layers. So,

here, we choose ResNet-34 [17] as our stem network for

local feature learning. The output of the last convolutional

layer of ResNet-34, which contains 512 feature maps with

a size of 7 × 7, is regarded as the set of local features and

utilized for further processing. Thus, we in total obtain 49

local features of 512-dimension from the stem network.

After we get the local features generated from the stem

network, a local relationship learning module based on

Long Short-Term Memory (LSTM) [18] (L-Net) is intro-

duced to automatically explore the underline relationship of

individual local facial regions in the feature space. Our L-

Net jointly considers the features of local regions and their

relationship and outputs the probabilities of individual AUs.

As summarized in Section 1, another challenge is that

different subjects may have different baseline AU intensi-

ties because of the face shape differences. A person-specific

shape regularization module (P-Net) is used to model such

person-specific information based on 2D face shape. The

features encoded by P-Net are expected to be independen-

t with the features encoded by L-Net, and further used to

calculate the regularization term to refine the AU probabil-

ities predicted by L-Net. Thus P-Net works as a regular-

ization module to enforce the L-Net to learn more subject-

independent features for AU detection, and the refined AU

probabilities by P-Net are used as the final prediction of our

LP-Net.

3.2. Local Relationship Learning via LNet

Fig. 3 gives the detailed structure of our L-Net for local

relationship learning. Since the feature maps generated by

the stem network are from the last convolutional layer of

ResNet-34, each element (1 × 1 × 512) in the feature map

highlights the characteristic of a facial region. Therefore,

we use each element on the feature maps as a representation

of the local face area and use it to perform local relationship

learning.

Specifically, we get k local features f1, f2, · · · , fk from
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Figure 3: Each element (49 elements in total) of the feature

map generated by the stem network is treated as a represen-

tation of a local region and used as the input of our L-Net

based on LSTM. L-Net explores the underline relationship

of individual local regions, and outputs the probabilities.

the stem network (k = 49 for ResNet-34). Each local feature

fi will be used for AU prediction, and output an AU occur-

rence probability. The LSTM structure is utilized to learn

the relationship and outputs the probabilities of different

local features. Since different AUs have different mus-

cular activations, and the contributions of individual local

features for predicting the probability should be different.

Therefore, we predict the occurrence probability of each

AU separately, i.e., using C LSTM structures to predict the

probabilities of all the C AUs.

At the same time, we believe that every local feature can

be helpful for detecting individual AUs, and thus all the k

local features are fed to each LSTM structure. The final

decision for the detection of each AU is obtained by com-

bining all prediction results and the final predicted AU oc-

currence probabilities by L-Net can be written as

p̂lj = σ(
1

k

k∑

i=1

LSTMj(fi))

j = 1, 2, · · · , C

(1)

where σ is a sigmoid function.

3.3. Personspecific Shape Regularization via PNet

P-Net aims to reduce the influence of person-specific

shape information and obtaining more discriminative and

general features for AU detection. As shown in Fig. 4,

we use 2D facial landmarks as a representation of the

face shape [14, 21]. Specifically, we use a robust

facial landmarks detector (Convolutional Experts Con-

strained Local Model [3, 42]) to detect 68 facial landmarks

P1, P2, · · · , P68, and then all the face images based on the

two eye centers to reduce the influence of head pose. After

the face images are aligned, each landmark point is normal-

ized using

Pnorm =
P − Pcenter

d
(2)
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Figure 4: The detailed structure of our person-specific

shape regularization network (P-Net). The 68 facial land-

marks are treated as the representation of face shape, and

used for regularization terms calculation. A regularization

loss Lr is applied to guide the P-Net to output the AU-

independent person-specific facial shape regularization ter-

m mj for C AUs, which are further used for refining the AU

occurrence probabilities predicted by L-Net.

where Pcenter is the center point of the two eyes, and d is

the interpupillary distance (IPD).

The normalized landmarks are used as the input to our

P-Net in order to predict the person-specific shape regular-

ization term (see Fig. 4). We expect the P-Net only learn the

AU-independent person-specific face shape information, so

we propose a regularization loss Lr aiming for orthogonal-

izing the features learned by P-Net and the features used for

AU detection by L-Net. The loss is formulated as

Lr = |fau • fs| (3)

where • represents the inner product of two vectors, fau
is the average of the k local features generated from the

stem network, and fs is the last layer feature of P-Net for

regularization term prediction. For each input image, we

calculate the regularization terms m1,m2, · · · ,mc for all

the C AUs and use them to refine the predicted probabilities

by L-Net. The final predicted probability p̂1, p̂2, · · · , p̂c of

the LP-Net for all the C AUs can be written as

p̂j = σ(
1

k

k∑

i=1

LSTMj(fi) +mj)

j = 1, 2, · · · , C

(4)

AU prediction is a multi-label binary classification prob-
lem, and for most of the AU prediction benchmarks, the
occurrences of AUs are highly imbalanced [9, 27, 39]. To
better handle such a multi-label and imbalance problem, we
choose to use binary cross entropy loss Lau with Selective
Learning [16] as our loss function

Lau = −
1

C

C∑

j=1

wc[pj log p̂j + (1− pj) log(1− p̂j)] (5)

where pj represents the ground-truth probability of the oc-

currence for the j-th AU, with 1 denoting occurrence of an

AU and 0 denoting no occurrence. p̂j is the predicted prob-

ability by our LP-Net. The weight wc is a balancing param-

eter which is calculated in each batch using the Selective

Learning strategy [16]. The overall loss function of the pro-

posed LP-Net can be written as

Lall = Lau + λLr (6)

where λ is a hyper-parameter that balances the influences of

the two losses.

4. Experimental Results

In this section, we provide experimental evaluations on

several public-domain AU detection databases and give de-

tailed analysis of the experimental results.

4.1. Experimental Settings

4.1.1 Database

We evaluate our LP-Net on two spontaneous databases

BP4D [45] and DISFA [28], which have been widely used

for facial AUs detection. BP4D is a spontaneous facial ex-

pression database containing 328 videos for 41 participants

(23 females and 18 males). Each subject is involved in 8

sessions, and their spontaneous facial actions are captured

with both 2D and 3D videos. 12 AUs are coded for the 328

videos, and there are about 140,000 frames with AU label-

s of occurrence or absence. DISFA consists of 27 videos

from 12 females and 15 males. Each subject is asked to

watch a 4-minute video to elicit facial AUs. 12 AUs are la-

beled with AU intensity from 0 to 5 for each video. About

130,000 frames are used in the final experiments. Follow-

ing the experiment setting of [8, 23, 24, 35], we conduc-

t a subject-exclusive 3-fold cross-validation on BP4D, and

further fine-tune the best model trained on BP4D for AU

detection on DISFA under a subject-exclusive 3-fold vali-

dation protocol. For DISFA databse, 8 of the 12 AUs are

used for evaluation and the frames with AU intensity equal

or greater than 2 are selected as positive samples and the

rest are selected as negative samples.

4.1.2 Image Pre-processing

For each input image, the CE-CLM facial landmark detec-

tor is used to estimate the 68 facial landmarks (see Fig. 4).

Then following the idea of Baltrušaitis et al. [2], all the

faces are aligned and masked using a similarity transform

based on the detected landmarks to reduce the variations of

pose and scale. All the aligned face images are resized to

240 × 240 and then randomly cropped to 224 × 224 for

training. Images center-cropped from the aligned faces are

utilized for testing. We also use random horizontal flip and

random rotation for data augmentation.
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4.1.3 Training

We incrementally train each part of our LP-Net. First, we

pre-train our stem network on the face recognition database

VGGFace2 [6]. Then we train the stem network on the AU

databases. An Adam optimizer with an initial learning rate

of 0.001 is applied for optimizing the stem network. After

that, we add the L-Net module and jointly train the stem net-

work and the L-Net. The initial learning rate is set to 0.0005

for the stem network and 0.001 for L-Net. Next, we add the

P-Net to the network and jointly train the whole network

with an initial learning rate of 0.0005 for stem network and

L-Net and an initial learning rate of 0.001 for P-Net. The

max iteration for all the training steps is set to 30 epochs,

and the batch size is set to 100. The balance parameter λ for

regularization loss Lr is set to 1. All the implementations

are based on PyTorch [31].

4.1.4 Evaluation Metrics

We evaluate the performance of all methods using F1-frame

score [19]. F1-frame score is the harmonic mean of preci-

sion and recall of frame-based AU detection and has been

widely used for AU detection. For each method, F1-frame

for all the AUs are calculated and then averaged (donated as

Avg.) for evaluation.

4.2. Results

4.2.1 Comparisons with the State-of-the-art

We first compare our LP-Net against the state-of-the-art

methods under the same subject-exclusive three-fold cross-

validation protocol. Traditional methods LSVM [11], JPM-

L [46], APL [48], and CPM [43], and deep learning method-

s DRML [47], EAC-Net [24], ROI [23], DSIN [8], and JAA-

Net [35] are used for comparison. Since we focus on image-

based AU detection in this work, the video-based methods

such as ROI-LSTM [23] are not used for comparison. At

the same time, we notice some methods such as DSIN [8]

used threshold turning per AU, while most of the other base-

line methods did not use threshold turning per AU. So for

fair comparisons, we report the performance of individual

methods without threshold tuning per AU. For the baseline

methods LSVM [11], JPML [46], APL [48], and CPM [43],

we directly use their results reported in [24, 35, 47].

Table 1 shows the results of different methods on the

BP4D database. It can be seen that our LP-Net outperform-

s all the baseline approaches on this challenging sponta-

neous facial expression database. Comparing LP-Net with

the state-of-the-art methods based on deeply-learned local

features such as ROI [23], DRML [47], JAA-Net [35] and

DSIN [8], our LP-Net could achieve the best or second-best

detection performance for most of the 12 AUs annotated in

BP4D. We also achieve the best performance in terms of av-

erage F1-frame score. At the same time. Our LP-Net also

outperforms the person-specific AU detection models, such

as CPM [43], by a large margin, which indicates that our P-

Net is very effective in dealing with the challenge of diverse

baseline AU intensities among different subjects.

When comparing with the state-of-the-art methods [35,

8], we also find that the performance of our LP-Net drops

when the facial regions of the AUs are small, such as AU1

and AU2. The reason is that the local features are generat-

ed from the last layer of the Stem-Net, which are high-level

in semantics and may be not sensitive in representing small

regions. However, although the performance drops when di-

rectly using the Stem-Net for local features generation, the

computational complexity is significantly reduced because

our LP-Net does not need an additional backbone network-

s [8] for local feature generation or an additional branch to

enhance the local feature [35].

Experimental results on the DISFA database are reported

in Table 2. It can be observed that our LP-Net again outper-

forms all the state-of-the-art methods. We achieve the best

performance on most AUs, as well as the average F1-frame

score for all AUs. These results suggest that our LP-Net has

a good generalization ability.

4.2.2 Ablation Study

We provide ablation study to investigate the effectiveness

of each part of our LP-Net. Table 3 shows the F1-frame

scores for each AU as well as the average F1-frame score

by individual ablation experiments on BP4D.

Choice of Stem Network: In our LP-Net, stem network

is used for local features generation. We choose ResNet

as the stem network and three commonly used networks

(RestNet-18, ResNet-34, and Rest-Net50) have been con-

sidered. The results are shown in Table 3. From the results,

we can see that ResNet-34 outperforms ResNet-18 with an

improvement of average F1-frame from 52.9 to 53.7, indi-

cating that the deeper network could give richer features for

AU detection. However, when the network is further deep-

ened to ResNet-50, the performance drops to 52.5. The pos-

sible reason is that the AU databases have limited subjects

and a very deep network may suffer from over-fitting. We

use ResNet-34 in our following experiments.

Data Balancing with Selective Learning: Since it is

complicated to collect and annotate AUs for a large face

database, most AU databases are highly imbalanced. After

we apply the Selective Learning strategy [16] for data bal-

ancing, the average F1-frame on BP4D has been improved

from 53.7 to 55.2, indicating the effectiveness of Selective

Learning [16] used in our LP-Net.

Data Augmentation and Model Pre-training: Because of

the difficulties of AU data collection, there are usually limit-

ed subjects in AU databases. Data augmentation and model
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Table 1: F1-frame score (in %) for 12 AUs reported by the proposed LP-Net and the state-of-the-art methods on the BP4D

database. The best and second are indicated using brackets and bold, and brackets alone, respectively.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

LSVM [11] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 [64.3] 18.4 33.0 19.4 20.7 35.3

JPML [46] 32.6 25.6 37.4 42.3 50.5 72.2 74.1 [65.7] 38.1 40.0 30.4 [42.3] 45.9

DRML [47] 36.4 [41.8] 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

CPM [43] 43.4 40.7 43.3 59.2 61.3 62.1 68.5 52.5 36.7 54.3 39.5 37.8 50.0

EAC-Net [24] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

ROI [23] 36.2 31.6 43.4 [77.1] 73.7 [85.0] [87.0] 62.6 [45.7] 58.0 38.3 37.4 56.4

JAA-Net [35] [47.2] [44.0] [54.9] [77.5] [74.6] [84.0] 86.9 61.9 43.6 60.3 [42.7] 41.9 [60.0]

DSIN [8] [51.7] 40.4 [56.0] 76.1 73.5 79.9 85.4 62.7 37.3 [62.9] 38.8 41.6 58.9

LP-Net 43.4 38.0 54.2 [77.1] [76.7] 83.8 [87.2] 63.3 [45.3] [60.5] [48.1] [54.2] [61.0]

Table 2: F1-frame score (in %) for 8 AUs reported by the proposed LP-Net and the state-of-the-art methods on the DISFA

database. The best and second are indicated using brackets and bold, and brackets alone, respectively.

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.

LSVM [11] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8

DRML [47] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

APL [48] 11.4 12.0 30.1 12.4 10.1 65.9 21.4 26.9 23.8

ROI [24] 41.5 26.4 66.4 [50.7] 8.5 89.3 88.9 15.6 48.5

JAA-Net [35] [43.7] [46.2] 56.0 41.4 44.7 69.6 88.3 [58.4] [56.0]

DSIN [8] [42.4] [39.0] [68.4] 28.6 [46.8] [70.8] [90.4] 42.2 53.6

LP-Net 29.9 24.7 [72.7] [46.8] [49.6] [72.9] [93.8] [65.0] [56.9]

pre-training are commonly used strategies to reduce the risk

of modeling overfitting. With data augmentation, the aver-

age F1-frame on BP4D has been improved from 55.2 to 56.5

and further improved to 58.0 when pre-training the model

on VGGFace2 [6]. The results indicate that data augmen-

tation and model pre-training are effective ways to improve

AU detection performance.

Effectiveness of Local Relationship Learning: In order to

illustrate the effectiveness of local information and local re-

lationship learning, we first conduct the experiments by pre-

dicting AU probabilities from every local feature and fusing

all the results with mean pooling. This baseline method is

donated as Stem-Net+LF, and it achieves a better average

F1-frame of 58.8 than Stem-Net (see Table 3). The results

indicate that local features are more representative for AU

detection. However, directly fusing all the AU probabilities

predicted by local features with mean pooling ignores the

local relationship of different local regions. We further add

the local relationship learning module to the Stem-Net (do-

nated as Stem-Net+L-Net in Table 3). The average F1-frame

is improved from 58.0 to 60.2, indicating that the relation-

ship of different local regions are useful for AU predictions

and our L-Net is effective for modeling this kind of informa-

tion. Fig. 5 shows some example class activation maps [34]

for AU4 and AU23, and we can see that by using the pro-

posed L-Net, the model can focus more on the related areas

of the concerned AUs.

We further conduct experiment using all the local fea-

tures in the activation areas of different AUs defined in FAC-

S as the input of our relationship learning module to see

whether all the features are useful for AU detection. The

network is donated as Stem-Net+FACS in Table 3. From

the results, we can see that with relationship learning, Stem-

Net+FACS outperforms the network that only uses local fea-

tures for AU prediction (Stem-Net+LF), and achieves an av-

erage F1-frame score of 59.0. This again shows that the

local relationship is useful for improving the AU detection

performance. At the same time, when we take all the local

information into consideration, we could achieve a better re-

sult. This indicates that using all the local features is helpful

for AU detection. The possible reason is that the local fea-

tures are generated from the deep Stem-Net, which contains

rich information for AU detection.

Effectiveness of Person-specific Shape Regularization:

In order to illustrate the effectiveness of the person-specific

shape regularization module (P-Net), we conduct the exper-

iments with and without using the regularization loss Lr.

When the regularization loss is not used, the average F1-

frame can be improved from 58.0 to 58.7 because the face

shape information is added for AU detection. If we add the

regularization loss to decompose the AU features and face

shape features, the average F1-frame will be improved to
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Table 3: F1-frame score (in %) of ablation experiments for 12 AUs on the BP4D database. The best and second are indicated

using brackets and bold, and brackets alone, respectively.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

ResNet-18 42.3 30.3 37.1 74.1 72.4 81.9 83.6 57.1 34.2 54.5 37.0 31.1 52.9

ResNet-34 38.3 31.7 44.0 73.5 71.7 80.2 84.8 58.6 32.5 54.6 35.8 39.0 53.7

ResNet-50 38.2 31.1 40.3 73.6 69.7 80.5 82.9 55.1 29.1 56.2 37.1 36.0 52.5

ResNet-34+SL 38.6 34.0 46.9 72.0 73.0 79.8 84.5 60.7 38.7 60.0 33.0 41.5 55.2

ResNet-34+SL/DA 41.7 31.0 47.9 75.2 76.9 80.0 85.5 60.3 35.9 58.5 37.6 47.8 56.5

ResNet-34+SL/DA/P 41.3 37.7 49.8 [77.1] 75.6 81.8 86.4 61.7 41.1 58.1 42.4 43.5 58.0

Stem-Net∗+LF 40.5 36.2 48.0 76.2 77.4 82.6 86.0 62.8 42.8 60.3 [46.0] 46.7 58.8

Stem-Net∗+FACS 41.0 [39.9] 52.0 74.7 75.1 81.5 85.4 [63.1] 44.7 58.7 41.7 50.3 59.0

Stem-Net∗+L-Net 41.2 [39.7] 50.8 [76.3] 77.9 81.7 86.2 61.7 [46.2] [62.1] 45.5 53.2 [60.2]

Stem-Net∗+P-Net w/o Lr 42.3 36.1 50.3 75.8 [78.3] 82.4 [86.8] 61.5 [46.6] 60.7 42.5 41.5 58.7

Stem-Net∗+P-Net [43.5] 35.8 [53.1] 73.8 [78.5] [83.1] 85.6 58.5 43.0 [62.4] 43.7 [56.3] 59.8

LP-Net [43.4] 38.0 [54.2] [77.1] 76.7 [83.8] [87.2] [63.3] 45.3 60.5 [48.1] [54.2] [61.0]

SL: Selective Learning balancing; DA: Data augmentation; P: Pre-training model on VGGFace2;

LF: AU detection with all local features; FACS: AU detection with local features in areas defined by FACS;
∗ Stem-Net represents ResNet-34 + SL/DA/P.

Stem-Net P-NetL-Net LP-Net

AU4 

(Brow Lowerer)

AU23 

(Lip Tightener)

Figure 5: Class activation maps [34] that show the dis-

criminative regions for AU4 and AU23. The class activa-

tion maps for Stem-Net, L-Net, P-Net and LP-Net are listed

from left to right. The first two rows are activation maps for

AU4 and the bottom two rows are for AU23.

59.8, indicating that the regularization terms predicted by

P-Net are useful in reflecting the diverse baseline AU in-

tensities. The class activation maps [34] using P-Net are

also shown in Fig. 5. From the activation maps, we can see

that the network is more likely to focus on the informative

regions with P-Net.

When both local relationship learning module and

person-specific shape regularization module are included to

the Stem-Net (LP-Net), the network can focus on both the

concerned AU regions and the related facial regions (see

Fig. 5), and thus is able to achieve a better performance (an

average F1-frame of 61.0).

5. Conclusion

Robust facial action unit (AU) detection in the wild re-

mains a challenging problem due to the diversity of expres-

sion intensities across individual subjects and variation of

facial appearance due to pose, illumination, etc. While the

Facial Action Coding System (FACS) has been proven to be

an effective approach in resolving ambiguity in AU detec-

tion, the information of local face regions and their relation-

ship are still not fully exploited to achieve robust AU detec-

tion. We propose a novel end-to-end trainable framework

(LP-Net) for AU detection, which consists of three mod-

ules (Stem-Net, L-net, and P-Net) for share feature learn-

ing, local relationship modeling, and person-specific shape

regularization, respectively. The proposed approach outper-

forms the state-of-the-art methods on two widely used AU

detection datasets in the public domain.

In our future work, we would like to explore different ap-

proaches for modeling the local relationship, e.g., through

conditional random field [22], graph convolutional net-

works [29], etc. In addition, learning features covering di-

verse scales will also be taken into consideration.
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