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Abstract

We study how to leverage off-the-shelf visual and lin-

guistic data to cope with out-of-vocabulary answers in

visual question answering task. Existing large-scale vi-

sual datasets with annotations such as image class labels,

bounding boxes and region descriptions are good sources

for learning rich and diverse visual concepts. However, it

is not straightforward how the visual concepts can be cap-

tured and transferred to visual question answering models

due to missing link between question dependent answering

models and visual data without question. We tackle this

problem in two steps: 1) learning a task conditional vi-

sual classifier, which is capable of solving diverse question-

specific visual recognition tasks, based on unsupervised

task discovery and 2) transferring the task conditional vi-

sual classifier to visual question answering models. Specif-

ically, we employ linguistic knowledge sources such as

structured lexical database (e.g. WordNet) and visual de-

scriptions for unsupervised task discovery, and transfer a

learned task conditional visual classifier as an answering

unit in a visual question answering model. We empirically

show that the proposed algorithm generalizes to out-of-

vocabulary answers successfully using the knowledge trans-

ferred from the visual dataset.

1. Introduction

Human sees and understands a visual scene based on di-

verse visual concepts. For example, from a single image of

a chair, human effortlessly recognizes diverse visual con-

cepts such as its color, material, style, usage, and so on.

Such diverse visual concepts may be associated with dif-

ferent questions in natural languages defining a recognition

task for each of the visual concepts (e.g., what color is the

chair?). Recently visual question answering (VQA) [5] is

proposed as an effort to learn deep neural network models

∗This work is performed while at Devsisters.

with capability to perform diverse visual recognition tasks

defined adaptively by questions.

Approaches to VQA rely on a large-scale dataset of im-

age, question and answer triples, and train a classifier tak-

ing an image and a question as inputs and producing an an-

swer. Despite recent remarkable progress [3, 12, 43], this

direction has a critical limitation that image, question and

answer triples in datasets are the only source for learning

visual concepts. Such drawback may result in lack of scala-

bility because the triplets may be collected artificially by hu-

man annotators with limited quality control and have weak

diversity in visual concepts. In fact, VQA datasets [1, 13]

suffer from inherent bias, which hinders learning true visual

concepts from the datasets.

On the contrary, human answers a question based on vi-

sual concepts learned from diverse sources such as books,

pictures, videos, and personal experience that are not neces-

sarily associated with target questions. Even for machines,

there exist more natural and scalable sources for learning vi-

sual concepts: image class labels, bounding boxes and im-

age descriptions. Such information is already available in

large-scale [9, 24, 22] and can scale further with reasonable

cost [31, 32]. This observation brings a natural question;

can we learn visual concepts without question annotations

and transfer them for VQA?

To address this question, we introduce a VQA problem

with out-of-vocabulary answers, which is illustrated in Fig-

ure 1. External visual dataset provides a set of labels A and

only a subset of these labels B ⊂ A appears in VQA train-

ing set as answers. The goal of this task is to handle out-of-

vocabulary answers a ∈ A − B successfully by exploiting

visual concepts learned from external visual dataset.

This paper studies how to learn visual concepts with-

out questions and how to transfer the learned concepts to

VQA models. To learn transferable visual concepts, we

train a task conditional visual classifier, whose task is de-

fined by a task feature. The classifier is used as an an-

swering unit, where a task feature is inferred from a ques-

tion. To train the task conditional visual classifier without
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Figure 1. VQA with out-of-vocabulary answers. Given a set of labels in visual dataset A and a set of answers in VQA training set B,

we evaluate a model on VQA test set with answers a ∈ A − B. External visual dataset provides a set of bounding box labels and visual

descriptions for all answers in VQA training set and test set. See text for details.

task annotations, we propose an unsupervised task discov-

ery technique based on linguistic knowledge sources such

as structured lexical databases, e.g., WordNet [10] and re-

gion descriptions [22]. We claim that the proposed transfer

learning framework helps generalization in VQA with out-

of-vocabulary answers. The main contribution of our paper

is three-fold:

• We present a novel transfer learning algorithm for vi-

sual question answering based on a task conditional

visual classifier.

• We propose an unsupervised task discovery technique

for learning task conditional visual classifiers without

explicit task annotations.

• We show that the proposed approach handle out-of-

vocabulary answers through knowledge transfer from

visual dataset without question annotations.

The rest of the paper is organized as follows. Section 2

discusses prior works related to our approach. We describe

the overall transfer learning framework in Section 3. Learn-

ing visual concepts by unsupervised task discovery is de-

scribed in Section 4. Section 5 analyzes experimental re-

sults and Section 6 makes our conclusion.

2. Related Works

The standard VQA evaluation assumes identically dis-

tributed train and test set [5, 29, 45]. As this evaluation

setting turns out to be vulnerable to models exploiting bi-

ases in training set [13], several alternatives have been pro-

posed. One approach is to reduce observed biases either by

balancing answers for individual questions [13] or by pro-

viding different biases to train and test sets intentionally [1].

Another approach is to construct compositional generaliza-

tion split [2, 18] whose question and answer pairs in test set

are formed by novel compositions of visual concepts and

question types appearing in the training set. This split is

constructed by repurposing an existing VQA dataset [2] or

by constructing a synthetic dataset [18]. The problem set-

ting studied in this paper is similar to [19, 36] in the sense

that out-of-vocabulary answers are used for testing, but un-

like the prior work, we formulate the problem as a transfer

learning, where out-of-vocabulary answers are learned from

external visual data.

External data are often employed in VQA for better gen-

eralization. Convolutional neural networks [15, 23] pre-

trained on ImageNet [9] is a widely accepted standard for

diverse VQA models [12, 43]. As an alternative, object de-

tector [34] trained on the Visual Genome dataset [22] is em-

ployed to extract pretrained visual features [3]. Pretrained

language models such as word embeddings [33] or sentence

embeddings [21] are frequently used to initialize parameters

of question encoders [12, 30, 35]. Exploiting information

retrieval from knowledge base [6, 7] or external vision algo-

rithms [40] to provide additional inputs to VQA models are

investigated in [39, 40, 41]. Transfer between VQA datasets

is studied in [16]. Sharing aligned image-word representa-

tions between VQA models and image classifiers has been

proposed in [14] to exploit external visual data.

Transfer learning from external data to cope with out-

of-vocabulary words has hardly been studied in VQA, but

is actively investigated in novel object captioning [4, 28,

37, 44]. For example, [4] and [37] decompose image cap-

tioning task into visual classification and language mod-

eling, and exploit unpaired visual and linguistic data as

additional resources to train visual classifier and language

model, respectively. Recent approaches incorporate pointer

networks [38] and learn to point an index of word candi-

dates [44] or an associated region [28], where the word

candidates are detected by a multi-label classifier [44] or

an object detector [28] trained with external visual data.

However, these algorithms are not directly applicable to
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Figure 2. Overview of the proposed algorithm. (a) Unsupervised task discovery samples a task specification for a sampled visual data

(a, I,b), where I, b and a are an image, a bounding box and an label (answer), respectively. It leverages linguistic knowledge sources

such as visual description d and WordNet. (b) A visual data with a task specification, denoted by (a, I,b, t), is employed to pretrain a

task conditional visual classifier. (c) The pretrained task conditional visual classifier is transferred to VQA and the parameters are frozen.

Attention layer and question encoder are learned from scratch with VQA dataset. The terms label and answer are used interchangeably.

our problem setting because they focus on predicting object

words without task specification while the task conditional

visual recognition is required for VQA.

Our problem setting is closely related to zero-shot learn-

ing [11, 17, 25, 26, 42], where out of vocabulary answers

are considered in classification. Zero-shot learning aims to

recognize objects or classes that are unseen during training.

As it aims generalization to completely unseen classes, any

exposure to zero-shot classes during training is strictly pro-

hibited [42]. On the contrary, our goal is to exploit class

labels available in external dataset.

3. Transfer Learning Framework

The main goal of our work is to handle out-of-vocabulary

answers in VQA by learning visual concepts from off-the-

shelf visual dataset and transfering the concepts to VQA

for answering the questions. Inspired by the fact that VQA

can be thought of as a task conditional classification prob-

lem, where tasks are defined by questions, we introduce a

task conditional visual classifier, which generates an answer

from a visual input and a task specification, as a medium

for learning and transfering visual concepts. Figure 2 il-

lustrates the overall framework of the proposed approach.

We pretrain the task conditional visual classifier using vi-

sual dataset without questions or task specifications via un-

supervised task discovery, and adapt it to VQA models by

transferring the learned parameters. We describe the task

conditional visual classifier and how it is pretrained and

transferred to VQA in the rest of this section.

3.1. Task conditional visual classifier

Task conditional visual classifier is a function taking a

visual feature v ∈ R
d and a task feature τ ∈ R

k and

producing a probability distribution of answers or labels

a ∈ [0, 1]l, where the terms answer and label are used

interchangeably based on context hereafter. The classifier

formulated as a neural network with parameter θ models a

conditional distribution pθ(a|v, τ). Note that two inputs v

and τ are typically obtained by encoders vφ(·) and τη(·).
In the proposed transfer learning scenario, a task con-

ditional visual classifier is pretrained with off-the-shelf vi-

sual dataset, e.g., Visual Genome [22], and transfered to

VQA. In the pretraining stage, the parameters of the clas-

sifier and two feature encoders θ, φpre and ηpre are jointly

learned. This stage allows the task conditional visual clas-

sifier to handle diverse visual recognition tasks by learning

the task feature τ . Transfer learning to VQA is achieved by

reusing parameter θ and adapting new encoders vφvqa
(·) and

τηvqa
(·) to the learned task conditional visual classifier.

3.2. Pretraining

Learning the task conditional visual classifier is naturally

formulated as the problem to maximize the following ex-

pected log likelihood:

θ∗, φ∗
pre, η

∗
pre = argmax

θ,φpre,ηpre

Ep
D

[

log pθ(a|vφpre
(I,b), τηpre

(t))
]

,

(1)

where vφpre
(I,b) is a visual feature based on an image I

and a bounding box b, and τηpre
(t) is a task feature encoded

from a task specification t, a is an answer sampled from

data distribution and it satisfies a ∈ A, and {θ, φpre, ηpre}
are model parameters. We obtain vφpre

(I,b) using a learn-

able attention network parametrized by φpre on top of off-

the-shelf feature extractor [3], where the bounding box po-

sition b is used as a key to the attention. The optimization

in Eq. (1) requires a joint distribution, pD(a, I,b, t), which

is not accessible in the external datasets in our setting due

to missing task specifications t. Section 4 describes how

to model the joint distribution pD(a, I,b, t) with the visual
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Figure 3. Unsupervised task discovery with two different lin-

guistic knowledge sources. (a) For visual description, task spec-

ification is generated by replacing a visual word (label) from the

description into a blank. (b) For WordNet, task specification is a

synset from one of the labels hypernyms. We use inverted wordset

to sample a synset from an input label. See Section 4 for details.

annotations and linguistic knowledge sources.

3.3. Transfer learning for VQA

As illustrated in Figure 2, the proposed VQA model con-

tains a task conditional visual classifier pθ(a|v, τ). The pre-

trained visual concepts are transferred to VQA by sharing

the learned parameters θ. Then, learning a VQA model is

now formulated as learning input representations v and τ

for pθ(a|v, τ), which is given by

φ∗
vqa, η

∗
vqa = argmax

φvqa,ηvqa

Epvqa

[

log pθ(a|vφvqa
(I,q), τηvqa

(q))
]

,

(2)

where vφvqa
(I,q) is an encoded visual feature with an im-

age I and a question q using an attention mechanism with

parameter φvqa and a off-the-shelf feature extractor [3]. A

task feature τηvqa
(q) encodes a question q using parameter

ηvqa. The joint distribution of a training dataset for VQA,

pvqa(a, I,q), is required for optimization, where answers

from the distribution satisfy a ∈ A − B. We learn φvqa

and ηvqa by maximizing the likelihood of the objective in

Eq. (2) while the parameter for the pretrained task condi-

tional visual classifier θ remains fixed.

Weakly supervised task regression Utilizing a pre-

trained task conditional visual classifier for the visual recog-

nition specified by a question q requires to infer an opti-

mal task feature τ∗
q

. This requirement introduces a learn-

ing problem—task regression—that optimizes an encoder

τηvqa
(q) to predict τ∗

q
correctly. Because directly min-

imizing error E(τ∗
q
, τηvqa

(q)) requires additional supervi-

sion about the tasks, we instead exploit VQA data as a

source of weak supervision. We optimize indirect loss

−Eτ∗
q
(a|v)[log pθ(a|v, τηvqa

(q))], which encourages the an-

swer distributions conditioned on τ∗
q

and τηvqa
(q) to be sim-

ilar. By assuming that true task conditional answer distri-

bution τ∗
q
(a|v) is implicitly modeled in VQA dataset, we

employ Eq. (2) as the objective function for weakly super-

vised task regression.

Out-of-vocabulary answering We learn a VQA model

by adapting input representations while fixing the pre-

trained task conditional visual classifier pθ(a|v, τ). This

strategy allows a model to focus on learning to infer a vi-

sual recognition task τηvqa
(q) from questions, which does

not require data for all possible answers. Once the task fea-

ture τ is inferred, the learned task conditional visual clas-

sifier pθ(a|v, τ) can answer the pretrained visual concepts

including out-of-vocabulary ones.

Matching visual features To reuse pretrained visual clas-

sifier in VQA without fine-tuning, semantics of visual fea-

tures v should not change by learning with VQA dataset.

This is fulfilled in recent approaches for VQA models that

do not fine-tune pretrained visual feature extractors and fo-

cus on learning attention mechanism [20] over the extracted

feature map. In our setting, we simply use the identical vi-

sual feature extractor [3] for both pretraining and VQA.

4. Unsupervised Task Discovery

Learning a task conditional visual classifier with the off-

the-shelf visual dataset [22] is not straightforward due to

missing annotation for task specifications, which is neces-

sary to learn an encoder for a task specification vector τ . To

address this issue, we propose unsupervised task discovery

which samples a task specification t from a task distribution

modeled by exploiting linguistic knowledge sources.

4.1. Leveraging linguistic knowledge sources

A visual recognition task given by a question typically

defines a mapping from visual inputs to a set of possible

visual concepts, that is, a word group. For example, a ques-

tion of “what is the woman holding?” defines a visual recog-

nition task finding holdable objects in an image, which is a

classification over a word group {ball, racket, cup, ...}. This

intuition leads to a simple approach for modeling distribu-

tion of task description t by treating a task as a word group

(i.e. holdable objects). The main reason to use linguistic

knowledge sources for the unsupervised task discovery is

that the word groups are often accessible in the linguistic

knowledge sources. We consider two linguistic knowledge

sources: 1) visual descriptions provided with a visual data

and 2) a structured lexical database called WordNet [10].

Figure 3 illustrates the overview of our approach.
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task tw word groups

appliance.n.02 freezer, hair dryer, refrigerator, fridge, oven, dishwasher, washing machine, ...

opening.n.10 manhole, rear window, exit, nozzle, car window, coin slot, spout, vent, ...

food.n.02 potatoes, french fries, chicken, melted cheese, tomatoes, sausage, vegetable, ...

move.v.03 twisted, ruffled, curving, curved, wheeled, rolled, coiled, turned, rippled, ...

act.n.02 fishing, skateboarding, sailing, playing baseball, surfing, traveling, driving, ...

area.n.01 middle, in corner, center, parking space, playground, landscape, neighborhood, ...

color.n.01 yellow, pink, red, beige, royal blue, amber, aqua, dark red, olive green, teal, ...

Figure 4. Illustration of WordNet and constructed word group table. (Left) A subgraph of the WordNet [10]. Complex hierarchy of

words reveals the diverse categorization of each words. (Right) A set of words sharing common parents in the tree is grouped as a single

word group. Diverse grouping of words reveals diverse visual recognition tasks that can be defined on each word group.

4.2. Visual description

We use Visual Genome [22] as an off-the-shelf visual

dataset, which determines a data distribution pV(a, I,b,d)
based on a set of quadruples (a, I,b,d) including visual

descriptions d. The description in this dataset is designed

to mention answer a explicitly, so that relation between the

answer and the description is clear.

To this end, we define task specification td by replacing

the answer in visual description to a special word <blank>,

which is formally denoted as td = ρ(d,a), where ρ(d,a)
is a function generating a blanked description. The sub-

script in td means that a task specification is extracted based

on a visual description. Based on this definition, joint dis-

tribution, pD(a, I,b, td) =
∫

p(a, I,b, td,d)dd, with task

specification is given by

p(a, I,b, td,d) = p(td|d,a)pV(a, I,b,d) (3)

where p(td|d,a) = δ
(

td, ρ(d,a)
)

is a delta function that

returns 1 if two inputs are identical and 0 otherwise. As il-

lustrated in Figure 3a, we sample data required for pretrain-

ing (a, I,b, tw) by first sampling a visual data (a, I,b,d)
and then sampling a task specification td from p(td|d,a).
This procedure results in sampling description d as well,

but we do not care about it when we pretrain the task con-

ditional visual classifier. For pretraining, we encode td into

a task feature τηpre
(td) based on a gated recurrent unit [8]

because td is a sequence of words.

The main reason to use a blanked description for a task

specification is that it is effective to define a set of candidate

words. For example, a blanked description “a man is hold-

ing ” restricts candidate words for the blank to a set

of objects that can be held. Therefore, a blanked descrip-

tion can be used to determine a word group implicitly that

represents a visual recognition task.

4.3. WordNet

WordNet [10] is a lexical database represented with a di-

rected acyclic graph of disambiguated word entities, called

synsets. A sample subgraph of WordNet is illustrated in

Figure 4 (left). The graph represents a hierarchical struc-

ture of words, where the parents of a node correspond to

hypernyms of the word in the child. In WordNet, we de-

fine a task specification tw as a synset for a node that is a

common ancestor of multiple words because a set of words

sharing a common ancestor constructs a word group and the

word group may also define a visual recognition task.

A procedure for sampling a task specification tw based

on WordNet and a visual data (a, I,b,d) is illustrated in

Figure 3b. The main idea for the procedure is to model a

task distribution conditioned on an answer p(tw|a) as a uni-

form distribution over possible word groups that the answer

belongs to, where a task specification tw is a common an-

cestor of words in an word group. Modeling the distribution

p(tw|a) requires two stages: 1) constructing a word group

table, which maps a task specification to a word group and

2) constructing an inverted word group table, which maps

an answer word to a set of task specifications. The inverted

word group table is used to retrieve a set of possible task

specifications for an answer a and the distribution p(tw|a)
is the uniform distribution over task specifications in the

set. Given the distribution p(tw|a), the joint distribution,

pD(a, I,b, tw) =
∫

p(a, I,b, tw,d)dd, is given by

p(a, I,b, tw,d) = p(tw|a)pV(a, I,b,d). (4)

Therefore we sample a quadruple (a, I,b,d) from the vi-

sual dataset and sample a task specification tw subse-

quently. While this procedure samples a description as well,

we marginalize it out. For pretraining, we encode tw into a

task specification vector τηpre
(tw) based on a word embed-

ding function that is learned from scratch.

The word group table is constructed by selecting a synset

of a node in WordNet as a task specification tw and map-

ping it to a set of words (a word group) corresponding to all

its descendants. Any word group can be defined regardless

of its level in WordNet hierarchy and the part-of-speech of

its members; the biggest word group contains all words in

WordNet and its task specification corresponds to the root

of WordNet. We illustrate the constructed word group table

in Figure 4. The inverted word group table is constructed in

a similar way to an inverted index of the word group table,

but the range of mapping is not a set of indices but a set of

task specifications.
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Figure 5. Model comparisons. Exploiting external data with the unsupervised task discovery boosts performance of the proposed model

and separable classifier significantly while the separable classifier shows limited gains on attribute answers with large variations.

Figure 6. Data comparisons. Using visual description and WordNet shows different generalization characteristics and combining them

brings additional improvement.

Figure 7. Complementary characteristics of data. Visual

description and WordNet show complementary characteriscs in

terms of VQA score for different answers.

5. Experiments

We evaluate how effectively the proposed framework

leverages the external data without questions to answer out-

of-vocabulary words in visual question answering. We com-

pare the proposed method with the baselines equipped with

idea for zero-shot image classification [11] and novel object

captioning [4, 37], which are related to the proposed prob-

lem. We also analyze the impact of the external data used

for pretraining, and visualize the mapping between ques-

tions and task specifications learned by weakly supervised

task regression. Notably, the evaluation setting is not com-

parable to that from zero-shot learning literature [42], as our

objective is not generalization to completely unseen classes,

but exploiting class labels exposed in the external data. We

open-sourced all the codes and datasets used in the experi-

ments to facilitate reproducing the result in this paper 1.

5.1. Datasets

Pretraining We learn visual concepts of most frequently

observed 3,000 objects and 1,000 attributes in the Visual

Genome dataset [22]. To pretrain the task conditional vi-

sual classifier, we construct external visual data with bound-

ing box annotations, which are provided with region de-

scriptions. Then, visual words (answers) are extracted

from region descriptions to construct visual data quadruples

(a, I,b,d). We use 1,169,708 regions from 80,602 images

to construct the training data. To use WordNet [10], we map

visual words to synsets using synset annotations from Vi-

sual Genome dataset, and the words that are not covered by

the annotations are mapped to synsets using Textblob [27].

Dataset construction We repurpose VQA v2 dataset to

construct a training/test split as illustrated in Figure 1. We

use training and validation set of VQA v2. To ensure that

1https://github.com/HyeonwooNoh/vqa task discovery
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Figure 8. Out-of-vocabulary answers with diverse types of concepts. Green color denotes correct answers. All predicted answers are

from out-of-vocabulary answers. The proposed model successfully predicts diverse out-of-vocabulary answers depending on questions.

Table 1. Result of weakly supervised task discovery. We retrieve questions for each task specification based on the similarity score with

task features. Results show that appropriate task specifications are regressed from each question. Note that no explicit supervision is used

for learning the mapping between questions and task specifications.

Task specification tw Questions

organic process.n.01 what are the giraffes doing? / what are the animals doing? / what are the giraffes doing in this picture?

athletic game.n.01 what type of sport ball is shown? / what type of sport are the men participating in?

furniture.n.01 what piece of furniture are the cats sitting on? / what furniture is the cat sitting on?

fruit.n.01 what type of fruit is the animal eating? / what type of fruit juice is on the counter?

time period.n.01 what kind of season is it? / what type of season is it? / what holiday season is it? / which season is it?

tool.n.01 what utensil is in the person ’s hand? / what utensil is laying next to the bread?

hair.n.01 what hairstyle does the surfer have ? / what type of hairstyle does this man have ?

every out-of-vocabulary answer appears during pretraining,

we randomly select out-of-vocabulary answers from all the

visual words used for pretraining (954 out of 3,813). Since

we focus on transferability of visual words, answers about

yes/no and numbers are not considered in our evaluation.

Based on the selected out-of-vocabulary answers, we gen-

erate 3 questions splits—462,788 for training, 51,421 for

validation, and 20,802 for testing. The training and valida-

tion splits do not contain out-of-vocabulary answers while

the test split consist of out-of-vocabulary answers only. For

evaluation of models, we follow the standard VQA protocol

with 10 ground-truth answers for each question [5].

5.2. Baselines

Since leveraging external visual data for visual ques-

tion answering with out-of-vocabulary answers has hardly

been explored, there is no proper evaluation benchmark

and we employ the following baselines to compare with

our algorithm: 1) answer embedding, which employs idea

from zero-shot image classification [11] that learns map-

ping from visual features to pretrained answer embedding,

where we use GloVe [33] to embed each answer, and 2)

separable classifier, which adopts idea from novel object

captioning [4, 37] that learns visual and language classifier

separately and combines them by element-wise sum of log-

its for joint inference. Note that the separable classifier and

our proposed model are trained with the same data.

5.3. Results

Model comparisons Figure 5 illustrates model compari-

son results with the baselines. For this experiment, we per-

form VQA adaptation with 6 different random seeds and

plot their mean and standard deviation. The standard VQA

model fails to predict any out-of-vocabulary answers (i.e.,

0 VQA score) because there is no clue for inferring out-

of-vocabulary answers. Answer embedding baseline gen-

eralizes slightly better by exploiting the similarity of an-

swer words in the embedding space, but the improvement is

marginal. Using off-the-shelf visual data and task specifi-

cations from linguistic knowledge sources dramatically im-

proves performance both on the separable classifier and the

proposed model. However, independent consideration of vi-

sual data and task specifications in separable classifier has

a critical limitation of modeling joint interaction between

task specifications and visual features. Especially, this base-

line shows substantially lower performance on attribute an-

swers, which have significant variations depending on tasks.

Note that the bias in the VQA training set cannot be ex-

ploited in the proposed evaluation setting, as the evaluation

is performed with out-of-distribution answers only.

Data comparisons Figure 6 illustrates the effect of differ-

ent linguistic sources in our algorithm. Two models learned

using visual description and WordNet, respectively, have

complementary characteristics and additional improvement

is achieved by exploiting both data. More detailed comple-

8391



Figure 9. Combining knowledge from VQA and external visual data. Evaluation results on a test set containing both out-of-vocabulary

answers and trained answers. The proposed model shows relatively lower performance on trained answers but significantly better perfor-

mance on out-of-vocabulary answers. In total, the proposed model shows the best performance.

mentary characteristics of models are illustrated in Figure 7,

where we visualize average VQA scores for 20 answers.

Qualitative results Figure 8 shows examples of predicted

answers from the proposed model. The proposed model

correctly predicts out-of-vocabulary answers for questions

asking diverse visual concepts such as type of flooring, ma-

terial, type of sport and brand.

Weakly supervised task regression Given that task spec-

ifications extracted from WordNet models diverse visual

recognition tasks, matching them to relevant questions is

useful for categorization of VQA data and model interpre-

tation. As we learn VQA models by task regression, this

matching can be performed by comparing the encoded task

feature from a question τηvqa
(q) and the vector from a task

specification τηpre
(tw). For each τηpre

(tw), we sorted ques-

tions in a descending order of dot product similarity be-

tween τηpre
(tw) and τηvqa

(q). In the sorted question list, the

most similar questions are visualized in Table 1. The visu-

alization shows that the weakly supervised task regression

successfully trains a question encoder that match a question

to a relevant task feature.

5.4. Combining knowledge learned by VQA

While we focus on learning visual concepts from exter-

nal visual data, VQA dataset is still a valuable source of

learning diverse knowledges. Especially, some answers are

not visual words and require visual reasoning. For exam-

ple, yes and no are one of the most frequent answers in the

VQA dataset [5] but it is not straightforward to learn these

answers only with the external visual data. Therefore, we

consider combining knowledge learned from VQA dataset

and from external visual data.

We construct a split of the VQA dataset consisting of

405,228 training, 37,031 validation, and 172,681 test ques-

tions. The training and validation set do not contain any

out-of-vocabulary answers and test set contains out-of-

vocabulary answers. However, contrary to the main ex-

periment, the test set also contains training answers which

include logical answers, numbers and visual words. The

list of out-of-vocabulary answers are identical to that of the

main experiment. Among 172,681 test questions, 103,013

questions can be answered only with the training answers.

To combine knowledges from VQA dataset and exter-

nal visual data, we learn a VQA model with two task con-

ditional visual classifiers; we fine-tune one classifier for

adapting answers requiring visual reasoning (i.e., numbers

and yes/no) and fix the other classifier for visual answers in-

cluding out-of-vocabulary answers. After training the VQA

model, we combine two logits by element-wise sum and

pick the answer with the highest score in the inference.

The results are presented in Figure 9. Models in each

method are trained with 6 different random seeds and their

mean and standard deviation are plotted. Overall, the pro-

posed model performs the best. While the standard VQA

model achieves the best performance for training answers,

it fails to predict any out-of-vocabulary answers. The an-

swer embedding baseline somewhat generalizes to out-of-

vocabulary answers, but constraints in the answer embed-

ding degrade its performance on answers in training set.

6. Conclusion

We present a transfer learning approach for visual ques-

tion answering with out-of-vocabulary answers. We pre-

train a task conditional visual classifier with off-the-shelf

visual and linguistic data based on unsupervised task dis-

covery. The pretrained task conditional visual classifier

is transferred to VQA adaptively. The experimental re-

sults show that exploiting external visual and linguistic data

boosts performance in the proposed setting and training

with unsupervised task discovery is important to model in-

teraction between visual features and task specifications.
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