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Abstract

How much can we infer about a person’s looks from the

way they speak? In this paper, we study the task of recon-

structing a facial image of a person from a short audio

recording of that person speaking. We design and train a

deep neural network to perform this task using millions of

natural Internet/YouTube videos of people speaking. Dur-

ing training, our model learns voice-face correlations that

allow it to produce images that capture various physical

attributes of the speakers such as age, gender and ethnicity.

This is done in a self-supervised manner, by utilizing the

natural co-occurrence of faces and speech in Internet videos,

without the need to model attributes explicitly. We evalu-

ate and numerically quantify how–and in what manner–our

Speech2Face reconstructions, obtained directly from audio,

resemble the true face images of the speakers.

1. Introduction

When we listen to a person speaking without seeing his/her

face, on the phone, or on the radio, we often build a mental

model for the way the person looks [23, 44]. There is a strong

connection between speech and appearance, part of which is

a direct result of the mechanics of speech production: age,

gender (which affects the pitch of our voice), the shape of the

mouth, facial bone structure, thin or full lips—all can affect

the sound we generate. In addition, other voice-appearance

correlations stem from the way in which we talk: language,

accent, speed, pronunciations—such properties of speech

are often shared among nationalities and cultures, which can

in turn translate to common physical features [12].

Our goal in this work is to study to what extent we can

infer how a person looks from the way they talk. Specifically,

from a short input audio segment of a person speaking, our

method directly reconstructs an image of the person’s face

in a canonical form (i.e., frontal-facing, neutral expression).

Fig. 1 shows sample results of our method. Obviously, there

is no one-to-one matching between faces and voices. Thus,

our goal is not to predict a recognizable image of the exact

face, but rather capture dominant facial traits of the person

that are correlated with the input speech.
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Figure 1. Top: We consider the task of reconstructing an image

of a person’s face from a short audio segment of speech. Bottom:

Several results produced by our Speech2Face model, which takes

only an audio waveform as input; the true faces are shown just for

reference. Note that our goal is not to reconstruct an accurate image

of the person, but rather to recover characteristic physical features

that are correlated with the input speech. All our results including

the input audio, are available in the supplementary material (SM).

We design a neural network model that takes the com-

plex spectrogram of a short speech segment as input and

predicts a feature vector representing the face. More specif-

ically, the predicted face feature represents a 4096-D face

feature that is extracted from the penultimate layer (i.e., one

layer prior to the classification layer) of a pre-trained face

recognition network [39]. We decode the predicted face fea-

ture into a canonical image of the person’s face using a

separately-trained reconstruction model [10]. To train our

model, we use the AVSpeech dataset [13], comprised of

millions of video segments from YouTube with more than

100,000 different people speaking. Our method is trained

in a self-supervised manner, i.e., it simply uses the natural

co-occurrence of speech and faces in videos, not requiring

additional information, e.g., human annotations.
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Figure 2. Speech2Face model and training pipeline. The input to our network is a complex spectrogram computed from the short audio

segment of a person speaking. The output is a 4096-D face feature that is then decoded into a canonical image of the face using a pre-trained

face decoder network [10]. The module we train is marked by the orange-tinted box. We train the network to regress to the true face feature

computed by feeding an image of the person (representative frame from the video) into a face recognition network [39] and extracting the

feature from its penultimate layer. Our model is trained on millions of speech–face embedding pairs from the AVSpeech dataset [13].

We are certainly not the first to attempt to infer infor-

mation about people from their voices. For example, pre-

dicting age and gender from speech has been widely ex-

plored [52, 16, 14, 7, 49]. Indeed, one can consider an alter-

native approach to attaching a face image to an input voice

by first predicting some attributes from the person’s voice

(e.g., their age, gender, etc [52]), and then either fetching

an image from a database that best fits the predicted set of

attributes, or using the attributes to generate an image [51].

However, this approach has several limitations. First, pre-

dicting attributes from an input signal requires the existence

of robust and accurate classifiers and often requires ground

truth labels for supervision. For example, predicting age,

gender, or ethnicity, from speech requires building classifiers

specifically trained to capture those properties. More impor-

tantly, this approach limits the predicted face to resemble

only an a priori specific set of attributes.

We aim at studying a more general, open question: what

kind of facial information can be extracted from speech? Our

approach of predicting full visual appearance (e.g., a face

image) directly from speech allows us to explore it without

being restricted to predefined facial traits. Specifically, we

show that our reconstructed face images can be used as a

proxy to convey the visual properties of the person including

age, gender and ethnicity. Beyond these dominant features,

our reconstructions reveal non-negligible correlations be-

tween craniofacial features (e.g., nose structure) and voice.

This is achieved with no prior information or the existence of

accurate classifiers for these types of fine geometric features.

In addition, we believe that predicting face images directly

from voice may support useful applications, such as attach-

ing a representative face to phone/video calls based on the

speaker’s voice.

To our knowledge, our paper is the first to explore learning

to reconstruct face images directly from speech. We test our

model on various speakers and numerically evaluate different

aspects of our reconstructions including: how well a true face

image can be retrieved based solely on an audio query; and

how well our reconstructed face images agree with the true

face images (unknown to the method) in terms of age, gender,

ethnicity, and craniofacial features.

2. Related Work

Audio-visual cross-modal learning. The natural co-

occurrence of audio and visual signals often provides rich

supervision signal, without explicit labeling, also known

as self-supervision [11] or natural supervision [22]. Arand-

jelović and Zisserman [4] leveraged this to learn a generic

audio-visual representations by training a deep network to

classify if a given video frame and a short audio clip cor-

respond to each other. Aytar et al. [6] proposed a student-

teacher training procedure in which a well established visual

recognition model is used to transfer knowledge into the

sound modality, using unlabeled videos. Similarly, Castrejon

et al. [8] designed a shared audio-visual representation that is

agnostic of the modality. Such learned audio-visual represen-

tations have been used for cross-modal retrieval [37, 38, 45],

sound source localization in the scenes [41, 5, 36], or sound

source separation [53, 13]. Our work utilizes the natural

co-occurrence of faces and voices in Interent videos. We

use a pre-trained face recognition network to transfer facial

information to the voice modality.

Speech-face association learning. The associations be-

tween faces and voices have been studied extensively in

many scientific disciplines. In the domain of computer vi-

sion, different cross-modal matching methods have been pro-

posed: a binary or multi-way classification task [33, 32, 43];

metric learning [25, 19]; and using the multi-task classifi-

cation loss [49]. Cross-modal signals extracted from faces

and voices have been used disambiguate voiced and un-

voiced consonants [35, 9]; to identify active speakers of a

video from non-speakers therein [18, 15]; to separate mixed

speech signals of multiple speakers [13]; to predict lip mo-

tions from speech [35, 3]; or to learn the correlation between

speech and emotion [2]. Our goal is to learn the correlations

between facial traits and speech, by directly reconstructing a

face image from short audio segment.
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Layer

CONV CONV CONV CONV CONV CONV CONV CONV AVGPOOL

Input RELU RELU RELU MAXPOOL RELU MAXPOOL RELU MAXPOOL RELU MAXPOOL RELU RELU CONV RELU FC FC

BN BN BN BN BN BN BN BN BN RELU

Channels 2 64 64 128 – 128 – 128 – 256 – 512 512 512 – 4096 4096

Stride – 1 1 1 2× 1 1 2× 1 1 2× 1 1 2× 1 1 2 2 1 1 1

Kernel size – 4× 4 4× 4 4× 4 2× 1 4× 4 2× 1 4× 4 2× 1 4× 4 2× 1 4× 4 4× 4 4× 4 ∞× 1 1× 1 1× 1

Table 1. Voice encoder architecture. The input spectrogram dimensions are 598× 257 (time× frequency) for a 6-second audio segment

(which can be arbitrarily long), with the two input channels in the table corresponding to the spectrogram’s real and imaginary components.

Visual reconstruction from audio. Various methods

have been recently proposed to reconstruct visual infor-

mation from different types of audio signals. In a more

graphics-oriented application, automatic generation of facial

or body animations from music or speech has been gaining

interest [47, 24, 46, 42]. However, such methods typically

parametrize the reconstructed subject a priori, and its texture

is manually created or mined from a collection of textures. In

the context of pixel-level generative methods, Sadoughi and

Busso [40] reconstruct lip motions from speech, and Wiles

et al. [50] control the pose and expression of a given face,

using audio (or another face). While not directly related to

audio, Yan et al. [51] and Liu and Tuzel [29] synthesis a face

image from given facial attributes as input. Our model recon-

struct a face image directly from speech, with no additional

information.

3. Speech2Face (S2F) Model

The large variability in facial expressions, head poses, occlu-

sions, and lighting conditions in natural face images make

the design and training of a Speech2Face model non-trivial.

For example, a straightforward approach of regressing from

input speech to image pixels does not work; such a model

have to learn to factor out many irrelevant variations in the

data and to implicitly extract some meaningful internal rep-

resentation of faces—a challenging task by itself.

To sidestep these challenges, we train our model to regress

to a low-dimensional intermediate representation of the face.

More specifically, we utilize the VGG-Face model, a pre-

trained face recognition model trained on a large-scale face

dataset [39], and extract a 4096-D face feature from the

penultimate layer (fc7) of the network. These face features

were shown to contain enough information to reconstruct the

corresponding face images while being robust to many of

the aforementioned variations [10].

Our Speech2Face pipeline, illustrated in Fig. 2, consists

of two main components: 1) a voice encoder, which takes

a complex spectrogram of speech as input, and predicts a

low-dimensional face feature that would correspond to the

associated face; and 2) a face decoder, which takes as input

the face feature and produces an image of the face in a

canonical form (frontal-facing and with neutral expression).

During training, the face decoder is fixed, and we train only

the voice encoder that predicts the face feature. The voice

encoder is a model we designed and trained, while for the

face decoder we used the previously proposed model by [10].

We now describe both models in detail.

Voice encoder network. Our voice encoder module is a

convolutional neural network that turns the spectrogram of a

short input speech into a pseudo face feature, which is sub-

sequently fed into the face decoder to reconstruct the face

image (Fig. 2). The architecture of the voice encoder is sum-

marized in Table 1. The blocks of a convolution layer, ReLU,

and batch normalization [21] alternate with max-pooling

layers, which pool along only the temporal dimension of the

spectrograms, while leaving the frequency information car-

ried over. This is intended to preserve more of the vocal char-

acteristics, since they are better contained in the frequency

content whereas linguistic information usually spans longer

time duration [20]. At the end of these blocks, we apply

average pooling along the temporal dimension. This allows

us to efficiently aggregate information over time and makes

the model applicable to input speech of varying duration.

The pooled features are then fed into two fully-connected

layers to produce a 4096-D face feature.

Face decoder network. The goal of the face decoder is

to reconstruct the image of a face from a low-dimensional

face feature. We opt to factor out any irrelevant variations

(pose, lighting, etc.), while preserving the facial attributes.

To do so, we use the face decoder model of Cole et al. [10] to

reconstruct a canonical face image that only contains frontal-

ized face with neutral expression. We train this model using

the same face features extracted from VGG-Face model as

input to the face decoder. This model is trained separately

and kept fixed during the voice encoder training.

Training. Our voice encoder is trained in a self-supervised

manner, using the natural co-occurrence of a speaker’s

speech and facial images in videos. To this end, we use

the AVSpeech dataset [13], a large-scale “in-the-wild” audio-

visual dataset of people speaking. A single frame containing

the speaker’s face is extracted from each video clip and fed

to the VGG-Face model to extract the 4096-D feature vec-

tor, vf . This serves as the supervision signal for our voice

encoder—the feature, vs, of our voice encoder is trained to

predict vf .

A natural choice for the loss function would be the L1 dis-

tance between the features: ‖vf − vs‖1. However, we found

that the training undergoes slow and unstable progression

with this loss alone. To stabilize the training, we introduce ad-

ditional loss terms, motivated by Castrejon et al. [8]. Specifi-

cally, we additionally penalize the difference in the activation

of the last layer of the face encoder, fVGG : R4096 → R
2622,

i.e., fc8 of VGG-Face, and that of the first layer of the face

decoder, fdec : R4096→R
1000, which are pre-trained and

fixed during training the voice encoder. We feed both our
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Figure 3. Qualitative results on the AVSpeech test set. For every example (triplet of images) we show: (left) the original image, i.e.,

a representative frame from the video cropped around the person’s face; (middle) the frontalized, lighting-normalized face decoder

reconstruction from the VGG-Face feature extracted from the original image; (right) our Speech2Face reconstruction, computed by decoding

the predicted VGG-Face feature from the audio. In this figure, we highlight successful results of our method. Some failure cases are shown

in Fig. 11, and more results (including the input audio for all the examples) can be found in the SM.
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Age

(a) Confusion matrices for the attributes (b) AVSpeech dataset statistics

Figure 4. Facial attribute evaluation. (a) confusion matrices (with row-wise normalization) comparing the classification results on our

Speech2Face image reconstructions (S2F) and those obtained from the original images for gender, age, and ethnicity; the stronger diagonal

tendency the better performance. Ethnicity performance in (a) appears to be biased due to uneven distribution of the training set shown in (b).

predictions and the ground truth face features to these layers

to calculate the losses. The final loss is:

Ltotal = ‖fdec(vf )− fdec(vs)‖1 + λ1

∥

∥

∥

vf

‖vf‖
− vs

‖vs‖

∥

∥

∥

2

2

+λ2 Ldistill (fVGG(vf ), fVGG(vs)) , (1)

where λ1=0.025 and λ2=200. λ1 and λ2 are tuned such

that the gradient magnitude of each term with respect to

vs are within a similar scale at an early iteration (we

measured at the 1000th iteration). The knowledge distil-

lation loss Ldistill(a,b) = −
∑

i p(i)(a) log p(i)(b), where

p(i)(a) =
exp(ai/T )∑
j exp(aj/T ) , is used as an alternative of the cross

entropy loss, which encourages the output of a network to

approximate the output of another [17]. T=2 is used as

recommended by the authors, which makes the activation

smoother. We found that enforcing similarity over these ad-

ditional layers stabilized and sped up the training process, in

addition to a slight improvement in the resulting quality.

Implementation details. We use up to 6 seconds of audio

taken from the beginning of each video clip in AVSpeech. If

the video clip is shorter than 6 seconds, we repeat the audio

such that it becomes at least 6-seconds long. The audio wave-

form is resampled at 16 kHz and only a single channel is used.

Spectrograms are computed similarly to Ephrat et al. [13] by

taking STFT with a Hann window of 25 mm, the hop length

of 10 ms, and 512 FFT frequency bands. Each complex

spectrogram S subsequently goes through the power-law

compression, resulting sgn(S)|S|0.3 for real and imaginary

independently, where sgn(·) denotes the signum. We run

the CNN-based face detector from Dlib [26], crop the face

regions from the frames, and resize them to 224× 224 pixels.

The VGG-Face features are computed from the resized face

images. The computed spectrogram and VGG-Face feature

of each segment are collected and used for training. The

resulting training and test sets include 1.7 and 0.15 million

spectra–face feature pairs, respectively. Our network is im-

plemented in TensorFlow and optimized by ADAM [27]

with β1 = 0.5, ǫ = 10−4, the learning rate of 0.001 with the

exponentially decay rate of 0.95 at every 10,000 iterations,

and the batch size of 8 for 3 epochs.

4. Results

We test our model both qualitatively and quantitatively on

the AVSpeech dataset [13] and the VoxCeleb dataset [34].

Our goal is to gain insights and to quantify how—and in

which manner—our Speech2Face reconstructions resemble

the true face images.

Qualitative results on the AVSpeech test set are shown

in Fig. 3. For each example, we show the true image of the

speaker for reference (unknown to our model), the face re-

constructed from the face feature (computed from the true

image) by the face decoder (Sec. 3), and the face recon-

structed from a 6-seconds audio segment of the person’s

speech, which is our Speech2Face result. While looking

somewhat like average faces, our Speech2Face reconstruc-

tions capture rich physical information about the speaker,

such as their age, gender, and ethnicity. The predicted im-

ages also capture additional properties like the shape of the

face or head (e.g., elongated vs. round), which we often find

consistent with the true appearance of the speaker; see the

last two rows in Fig. 3 for instance.

4.1. Facial Features Evaluation

We quantify how well different facial attributes are being cap-

tured in our Speech2Face reconstructions and test different

aspects of our model.

Demographic attributes. We use Face++ [28], a leading

commercial service for computing facial attributes. Specifi-
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(a) Landmarks marked on reconstructions from image (F2F)

(b) Landmarks marked on our corresponding reconstructions from speech (S2F)

Face measurement Correlation p-value

Upper lip height 0.16 p < 0.001
Lateral upper lip heights 0.26 p < 0.001
Jaw width 0.11 p < 0.001
Nose height 0.14 p < 0.001
Nose width 0.35 p < 0.001
Labio oral region 0.17 p < 0.001
Mandibular idx 0.20 p < 0.001
Intercanthal idx 0.21 p < 0.001
Nasal index 0.38 p < 0.001
Vermilion height idx 0.29 p < 0.001
Mouth face with idx 0.20 p < 0.001
Nose area 0.28 p < 0.001

Random baseline 0.02 –

(c) Pearson correlation coefficient

Figure 5. Craniofacial features. We measure the correlation be-

tween craniofacial features extracted from (a) face decoder recon-

structions from the original image (F2F), and (b) features extracted

from our corresponding Speech2Face reconstructions (S2F); the

features are computed from detected facial landmarks, as described

in [30]. The table reports Pearson correlation coefficient and statis-

tical significance computed over 1,000 test images for each feature.

Random baseline is computed for “Nasal index” by comparing

random pairs of F2F reconstruction (a) and S2F reconstruction (b).

cally, we evaluate and compare age, gender, and ethnicity, by

running the Face++ classifiers on the original images and our

Speech2Face reconstructions. The Face++ classifiers return

either “male” or “female” for gender, a continuous number

for age, and one of the four values, “Asian”, “black”, “India”,

or “white”, for ethnicity.1

Fig. 4(a) shows confusion matrices for each of the at-

tributes, comparing the attributes inferred from the original

images with those inferred from our Speech2Face recon-

structions (S2F). See the supplementary material for similar

evaluations of our faced-decoder reconstructions from the

images (F2F). As can be seen, for age and gender the clas-

sification results are highly correlated. For gender, there is

an agreement of 94% in male/female labels between the

true images and our reconstructions from speech. For ethnic-

ity, there is a good correlation on the “white” and “Asian”,

but we observe less agreement on “India” and “black”. We

1We directly refer to the Face++ labels, which are not our terminology.

Length cos (deg) L2 L1

3 seconds 48.43± 6.01 0.19± 0.03 9.81± 1.74

6 seconds 45.75± 5.09 0.18± 0.02 9.42± 1.54

Table 2. Feature similarity. We measure the similarity between our

features predicted from speech and the corresponding face features

computed on the true images of the speakers. We report average

cosine, L2 and L1 distances over 5000 random samples from the

AVSpeech test set, using 3- and 6-second audio segments.

6 sec.

3 sec.

Figure 6. The effect of input audio duration. We compare our

face reconstructions when using 3-second (middle row) and 6-

second (bottom row) input voice segments at test time (in both

cases we use the same model, trained on 6-second segments). The

top row shows representative frames from the videos for reference.

With longer speech duration the reconstructed faces capture the

facial attributes better.

believe this is because those classes have a smaller represen-

tation in the data (see statistics we computed on AVSpeech

in Fig. 4(b)). The performance can potentially be improved

by leveraging the statistics to balance the training data for

the voice encoder model, which we leave for future work.

Craniofacial attributes. We evaluated craniofacial mea-

surements commonly used in the literature for capturing

ratios and distances in the face [30]. For each such measure-

ment, we computed the correlation between F2F (Fig. 5(a)),

and our corresponding S2F reconstructions (Fig. 5(b)). Face

landmarks were computed using the DEST library [1]. Note

that this evaluation is made possible because we are working

with normalized faces (neutral expression, fronto-parallel),

thus differences between the facial landmarks’ positions re-

flect geometric craniofacial changes. Fig. 5(c) shows the

Pearson correlation coefficient for several measures, com-

puted over 1,000 random samples from the AVSpeech test

set. As can be seen, there is statistically significant (i.e.,

p < 0.001) positive correlation for several measurements.

In particular, the highest correlation is measured for nasal

index (0.38) and nose width (0.35), features indicative of

nose structure that may affect a speaker’s voice.

Feature similarity. We test how well a person can be rec-

ognized from on the face features predicted from speech. We

first directly measure the cosine distance between our pre-

dicted features and the true ones obtained from the original

face image of the speaker. Table 2 shows the average error

over 5,000 test images, for the predictions using 3s and 6s

audio segments. The use of longer audio clips exhibits consis-
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Duration Metric R@1 R@2 R@5 R@10

3 sec L2 5.86 10.02 18.98 28.92

3 sec L1 6.22 9.92 18.94 28.70

3 sec cos 8.54 13.64 24.80 38.54

6 sec L2 8.28 13.66 24.66 35.84

6 sec L1 8.34 13.70 24.66 36.22

6 sec cos 10.92 17.00 30.60 45.82

Random 1.00 2.00 5.00 10.00

Table 3. S2F→Face retrieval performance. We measure retrieval

performance by recall at K (R@K, in %), which indicates the

chance of retrieving the true image of a speaker within the top-K

results. We used a database of 5,000 images for this experiment;

see Fig. 7 for qualitative results. The higher the better. Random

chance is presented as a baseline.

S2F recon. Retrieved top-5 results

Figure 7. S2F→Face retrieval examples. We query a database of

5,000 face images by comparing our Speech2Face prediction of in-

put audio to all VGG-Face face features in the database (computed

directly from the original faces). For each query, we show the top-5

retrieved samples. The last row is an example where the true face

was not among the top results, but still shows visually close results

to the query. More results are available in the SM.

tent improvement in all error metrics; this further evidences

the qualitative improvement we observe in Fig. 6.

We further evaluated how accurately we can retrieve the

true speaker from a database of face images. To do so, we

take the speech of a person to predict the feature using our

Speech2Face model, and query it by computing its distances

to the face features of all face images in the database. We

report the retrieval performance by measuring the recall at K,

i.e., the percentage of time the true face is retrieved within the

rank of K. Table 3 shows the computed recalls for varying

configurations. In all cases, the cross-modal retrieval using

our model shows a significant performance gain compared to

the random chance. It also shows that a longer duration of the

input speech noticeably improves the performance. In Fig. 7,

we show several examples of 5 nearest faces such retrieved,

80k 120k

1.42

1.46

1.50

40k
Iterations

Loss

w/o BN, 3 sec. audio

w/ BN, 3 sec. audio

w/ BN, 6 sec. audio

Figure 8. Training convergence patterns. BN denotes batch nor-

malization. The red and green curves are obtained by using 3- and

6-second audio clips as input during training, respectively (dashed

line: training loss; solid line: validation loss). The face thumbnails

show reconstructions from models trained with and without BN.

which demonstrate the consistent facial characteristics that

are being captured by our predicted face features.

t-SNE visualization for learned feature analysis. To

gain more insights on our predicted features, we present

2-D t-SNE plot [48] of the features in the SM.

4.2. Ablation Studies

The effect of audio duration and batch normalization.

We tested the effect of the duration of the input audio during

both the train and test stages. Specifically, we trained two

models with 3- and 6-second speech segments. We found

that during the training time, the audio duration has an only

subtle effect on the convergence speed, without much effect

on the overall loss and quality of the reconstructions (Fig. 8).

However, we found that feeding longer speech as input at

test time leads to improvement in reconstruction quality, that

is, reconstructed faces capture the personal attributes better,

regardless of which of the two models are used. Fig. 6 shows

several qualitative comparisons, which are also consistent

with the quantitative evaluations in Tables 2 and 3.

Fig. 8 also shows the training curves w/ and w/o Batch

Normalization (BN). As can be seen, without BN the re-

constructed faces converge to an average face. With BN the

results contain much richer facial information.

Additional observations and limitations. In Fig. 9, we

infer faces from different speech segments of the same per-

son, taken from different parts within the same video, and

from a different video, in order to test the stability of our

Speech2Face reconstruction. The reconstructed face images

are consistent within and between the videos. We show more

such results in the SM.

To qualitatively test the effect of language and accent, we

probe the model with an Asian male example, saying the

same sentence in English and Chinese (Fig. 10(a)). While

having the same reconstructed face in both cases would be

ideal, the model inferred different faces based on the spoken

language. However, in other examples, e.g., Fig. 10(b), the

model was able to successfully factor out the language, re-

constructing a face with Asian features even though the girl
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(a) (b)

Figure 9. Temporal and cross-video consistency. Face reconstruc-

tion from different speech segments of the same person taken from

different parts within (a) the same or from (b) a different video.

(a) (b)

An Asian male speaking in English (left)
& Chinese (right)

An Asian girl speaking in English

Figure 10. The effect of language. We notice mixed performance

in terms of the ability of the model to handle languages and accents.

(a) A sample case of language-dependent face reconstructions. (b)

A sample case that successfully factors out the language.

was speaking in English with no apparent accent (the audio

is available in the SM). In general, we observed mixed behav-

ior and a more thorough examination is needed to determine

to which extent the model relies on language.

More generally, the ability of speech to capture the latent

attributes, such as age, gender, and ethnicity, depends on

several factors such as accent, spoken language, or voice

pitch. Clearly, in some cases, these vocal attributes would

not match the person’s appearance. Several such typical

speech-face mismatch examples are shown in Fig. 11.

(a) Gender mismatch 

(b) Ethnicity mismatch 

(c) Age mismacth (old to young)

(d) Age mismacth (young to old)

Figure 11. Example failure cases. (a) High-pitch male voice, e.g.,

of kids, may lead to a face image with female features. (b) Spoken

language does not match ethnicity. (c-d) Age mismatches.

4.3. Speech2cartoon

Our face images reconstructed from speech may be used

for generating personalized cartoons of speakers from their

voices, as shown in Fig. 12. We use Gboard, the keyboard

app available on Android phones, which is also capable of

analyzing a selfie image to produce a cartoon-like version

of the face [31]. As can be seen, our reconstructions cap-

ture the facial attributes well enough for the app to work.

Such cartoon re-rendering of the face may be useful as a

visual representation of a person during a phone or a video-

conferencing call, when the person identity is unknown or

the person prefers not to share his/her picture. Our recon-

structed faces may also be used directly, to assign faces to

machine-generated voices used in home devices and virtual

assistants.

5. Conclusion

We have presented a novel study of face reconstruction di-

rectly from the audio recording of a person speaking. We

address this problem by learning to align the feature space of

speech with that of a pre-trained face decoder using millions

of natural videos of people speaking. We have demonstrated

that our method can predict plausible faces with the facial

attributes consistent with those of real images. By recon-

structing faces directly from this cross-modal feature space,

we validate visually the existence of cross-modal biometric

information postulated in previous studies [25, 33]. We be-

lieve that generating faces, as opposed to predicting specific

attributes, may provide a more comprehensive view of voice-

face correlations and can open up new research opportunities

and applications.
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(a) (b) (c) 

Figure 12. Speech-to-cartoon. Our reconstructed faces from audio

(b) can be re-rendered as cartoons (c) using existing tools, such

as the personalized emoji app available in Gboard, the keyboard

app in Android phones [31]. (a) The true images of the person are

shown for reference.
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