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Abstract

Large-scale distributed training of deep neural networks
suffer from the generalization gap caused by the increase
in the effective mini-batch size. Previous approaches try to
solve this problem by varying the learning rate and batch
size over epochs and layers, or some ad hoc modifica-
tion of the batch normalization. We propose an alterna-
tive approach using a second-order optimization method
that shows similar generalization capability to first-order
methods, but converges faster and can handle larger mini-
batches. To test our method on a benchmark where highly
optimized first-order methods are available as references,
we train ResNet-50 on ImageNet. We converged to 75%
Top-1 validation accuracy in 35 epochs for mini-batch sizes
under 16,384, and achieved 75% even with a mini-batch
size of 131,072, which took only 978 iterations.

1. Introduction

As the size of deep neural network models and the train-
ing data continues to increase rapidly, the demand for dis-
tributed parallel computing is increasing. A common ap-
proach is to use the data-parallel approach, where the data
is distributed across different processes while the model is
replicated across them. When the mini-batch size per pro-
cess is fixed to increase the ratio of computation over com-
munication, the effective mini-batch size over the entire sys-
tem grows proportional to the number of processes.

When the mini-batch size is increased beyond a certain
point, the validation accuracy starts to degrade. This gener-
alization gap caused by large mini-batch sizes have been

studied extensively for various models and datasets [23].
Hoffer et al. attribute this generalization gap to the limited
number of updates, and suggest to train longer [13]. This
has lead to strategies such as scaling the learning rate pro-
portional to the mini-batch size, while using the first few
epochs to gradually warmup the learning rate [24]. Such
methods have enabled the training for mini-batch sizes of
8K, where ImageNet [7] with ResNet-50 [12] could be
trained for 90 epochs to achieve 76.3% top-1 validation
accuracy in 60 minutes [9]. Combining this learning rate
scaling with other techniques such as RMSprop warm-up,
batch normalization without moving averages, and a slow-
start learning rate schedule, Akiba et al. were able to train
the same dataset and model with a mini-batch size of 32K
to achieve 74.9% accuracy in 15 minutes [3].

More complex approaches for manipulating the learning
rate were proposed, such as LARS [29], where a different
learning rate is used for each layer by normalizing them
with the ratio between the layer-wise norms of the weights
and gradients. This enabled the training with a mini-batch
size of 32K without the use of ad hoc modifications, which
achieved 74.9% accuracy in 14 minutes (64 epochs) [29].
It has been reported that combining LARS with counter in-
tuitive modifications to the batch normalization, can yield
75.8% accuracy even for a mini-batch size of 65K [15].

The use of small batch sizes to encourage rapid conver-
gence in early epochs, and then progressively increasing the
batch size is yet another successful approach [8,24]. Using
such an adaptive batch size method, Mikami et al. were able
to train 122 seconds with an accuracy of 75.3%. The hierar-
chical synchronization of mini-batches have also been pro-
posed [18], but such methods have not been tested at scale
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to the extent of the authors’ knowledge.

In the present work, we take a more mathematically rig-
orous approach to tackle the large mini-batch problem, by
using second-order optimization methods. We focus on
the fact that for large mini-batch training, each mini-batch
becomes more statistically stable and falls into the realm
where second-order optimization methods may show some
advantage. Another unique aspect of our approach is the
accuracy at which we can approximate the Hessian when
compared to other second-order methods. Unlike methods
that use very crude approximations of the Hessian, such
as the TONGA [17], Hessian free methods [19], we adopt
the Kronecker-Factored Approximate Curvature (K-FAC)
method [21]. The two main characteristics of K-FAC are
that it converges faster than first-order stochastic gradient
descent (SGD) methods, and that it can tolerate relatively
large mini-batch sizes without any ad hoc modifications.
K-FAC has been successfully applied to convolutional neu-
ral networks [10], distributed memory training of ImageNet
[5], recurrent neural networks [20], Bayesian deep learn-
ing [30], and reinforcement learning [27].

Our contributions are:

e We implement a distributed K-FAC optimizer using a
synchronous all-worker scheme. We use half-precision
floating point numbers for computation and exploit the
symmetry of the Kronecker factors to reduce the over-
head.

e We were able to show for the first time that second-
order optimization methods can achieve similar gen-
eralization capability compared to highly optimized
SGD, by training ResNet-50 on ImageNet as a bench-
mark. We converged to 75% top-1 validation accuracy
in 35 epochs for mini-batch sizes under 16,384, and
achieved 75% even with a mini-batch size of 131,072,
which took only 978 iterations (Table 1).

e We show that we can reduce the frequency of updat-
ing the Fisher matrices for K-FAC after a few hundred
iterations. In doing so, we are able to reduce the over-
head of K-FAC. We were able to train ResNet-50 on
ImageNet in 10 minutes to a top-1 accuracy of 74.9%
using 1,024 Tesla V100 GPUs (Table 2).

e We show that the Fisher matrices for Batch Normal-
ization layers [14] can be approximated as diagonal
matrices, which further reduces the computation and
memory consumption.

2. Related work

With respect to large-scale distributed training of deep
neural networks, there have been very few studies that use
second-order methods. At a smaller scale, there have been

Table 1. Training epochs (iterations) and top-1 single-crop valida-
tion accuracy of ResNet-50 for ImageNet with K-FAC.

Mini-batch size Epoch Iteration Accuracy
4,096 35 10,948  75.1 £0.09%
8,192 35 5,434 75.2 £ 0.05 %
16,384 35 2,737 75.2 £ 0.03%
32,768 45 1,760 753 +0.13%
65,536 60 1,173 75.0 £ 0.09 %

131,072 100 978 75.0 £ 0.06 %

previous studies that used K-FAC to train ResNet-50 on Im-
ageNet [5]. However, the SGD they used as reference was
not showing state-of-the-art Top-1 validation accuracy (only
around 70%), so the advantage of K-FAC over SGD that
they claim was not obvious from the results. In the present
work, we compare the Top-1 validation accuracy with state-
of-the-art SGD methods for large mini-batches mentioned
in the introduction (Table 2).

The previous studies that used K-FAC to train ResNet-
50 on ImageNet [5] also were not considering large mini-
batches and were only training with mini-batch size of 512
on 8 GPUs. In contrast, the present work uses mini-batch
sizes up to 131,072, which is equivalent to 32 per GPU on
4096 GPUs, and we are able to achieve a much higher Top-
1 validation accuracy of 75%. Note that such large mini-
batch sizes can also be achieved by accumulating the gradi-
ent over multiple iterations before updating the parameters,
which can mimic the behavior of the execution on many
GPUs without actually running them on many GPUs.

The previous studies using K-FAC also suffered from
large overhead of the communication since they im-
plemented their K-FAC in TensorFlow [1] and used a
parameter-server approach. Since the parameter server re-
quires all workers to send the gradients and receive the latest
model’s parameters from the parameter server, the parame-
ter server becomes a huge communication bottleneck espe-
cially at large scale. Our implementation uses a decentral-
ized approach using MPI/NCCL collective communications
among the processes. Although, software like Horovod can
alleviate the problems with parameter servers, the decen-
tralized approach has been used in high performance com-
puting for a long time, and is known to scale to thousands
of GPUs without modification.

3. Distributed K-FAC
3.1. Notation and background

Throughout this paper, we use E[-] as the mean among
the samples in the mini-batch {(x,y)}, and compute the
cross-entropy loss as

L(0) = E[-logp(y|x; 8)] . (1)
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Table 2. Training iterations (time) and top-1 single-crop validation accuracy of ResNet-50 for ImageNet reported by related work.

Hardware Software Mini-batch size Optimizer Iteration Time Accuracy
Goyal et al. [9] Tesla P100 x 256 Caffe2 8,192 SGD 14,076 1 hr 76.3%
You et al. [29] KNL x 2048 Intel Caffe 32,768 SGD 3,519 20 min 75.4%
Akiba et al. [3] Tesla P100 x 1024 Chainer 32,768 RMSprop/SGD 3,519 15 min 74.9%
You et al. [29] KNL x 2048 Intel Caffe 32,768 SGD 2,503 14 min 74.9%
Jia et al. [15] Tesla P40 x 2048 TensorFlow 65,536 SGD 1,800 6.6 min 75.8%
Ying et al. [28] TPU v3 x 1024 TensorFlow 32,768 SGD 3,519 2.2 min 76.3%
Mikami et al. [22] Tesla V100 x 3456 NNL 55,296 SGD 2,086 2.0 min 75.3%
This work (Sec. 5.4) Tesla V100 x 1024 Chainer 32,768 K-FAC 1,760 10 min 74.9%
This work (Sec. 5.3) - Chainer 131,072 K-FAC 978 - 75.0%

where x, y are the input and the label, p(y|x; 0) is the like-
lihood calculated by the probabilistic model using a deep
neural network with the parameters 8 € RY .

Update rule of SGD. For the standard first-order stochastic
gradient descent (SGD), the parameters w, € R™V* in the /-
th layer is updated based on the gradient of the loss function:

wétﬂ) — wét) - nV,CEt) . 2)

where 7 > 0 is the learning rate and VL, € R™* represents
the gradient of the loss function for wy.

Fisher information matrix. The Fisher information matrix
(FIM) of the probabilistic model is estimated by

Fg = E[Vlogp(y|x; 0)Vlogp(y|x;0)"] € RV*N. (3)

Strictly speaking, F'g is the empirical (stochastic version of)
FIM [21], but we refer to this matrix as FIM throughout this
paper for the sake of brevity. In the training of deep neural
networks, FIM can be assumed as the curvature matrix in
the parameter space [4,6,21].

3.2. K-FAC

Kronecker-Factored Approximate Curvature (K-FAC)
[21] is a second-order optimization method for deep neural
networks, which is based on an accurate and mathematically
rigorous approximation of the FIM. K-FAC is applied to the
training of convolutional neural networks, which minimizes
the log likelihood (e.g. a classification task).

For the training of the deep neural network with L layers,
K-FAC approximates Fg as a diagonal block matrix:

Fo ~ diag (Fy,...,Fy,...,Fy1) . @)

The diagonal block F, € RY¢*N¢ represents the FIM for
the ¢ th layer of the deep neural network with weights
wy € RV (¢ = 1,...,L). Each diagonal block matrix
F is approximated as a Kronecker product:

Fe%Gg@)Ag,l((:l,...,L). (@)

This is called Kronecker factorization and Gy, Ay_1 are
called Kronecker factors. Gy is computed from the gra-
dient of the loss with regard to the output of the ¢ th layer,
and Ay_; is computed from the activation of the £ — 1 th
layer (the input of ¢ th layer) [10,21].

The inverse of a Kronecker product is approximated by
the Kronecker product of the inverse of each Kronecker fac-
tor.

Flx~(G@Ar) '=G'0A Y. (©

Update rule of K-FAC. The parameters wy in the ¢ th layer
is updated as follows:

-1 -1
g = (Gf) A, ) vel @)
w§t+1) — wE,t) - ngét) . )
where Gy is the preconditioned gradient.

3.3. Our design

Due to the extra calculation of the inverse FIM, K-FAC
has considerable overhead compared to SGD. We designed
a distributed parallelization scheme so that this overhead
decreases as the number of processes is increased. Fur-
thermore, we introduce a relaxation technique to reduce the
computation of the FIM, which is explained in Section 5.4.
In doing so, we were able to reduce the overhead of K-FAC
to almost a negligible amount.

Figure 1 shows the overview of our design, which shows
a single iteration of the training. We use the term stage to
refer to each phase of the computation, which is indicated
at the top of the figure. The variables in each box illustrates
what the process computes during that stage, e.g. at stage
1, each process computes the Kronecker factor A from the
activation.

Stage 1 and 2 are the forward pass and backward pass, in
which the Kronecker factors Ay;_; and G, are computed,
respectively. Since the first two stages are computed in a
data-parallel fashion, each process computes the Kronecker
factors for all layers, but using different mini-batches. In
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 6
Layer1 | Ag Ay, G1,VE; Ay, G, VEL | | Aj!, G VE, G1
GPU 1 Layer2 Aq A,Gy, VE, A, Gy, VE, Al_l, G2_1, VE, gz
Layer 3 Ay Ay, G3, VE; g3
Layer 1 Ay Ay, G, VE; gl
GPU2 Layer2 A, A, Gy, VE, g2
Layer3 | A, Ay, G3,VE; Ay, G3,VE; | | A;Y, G VE; g3

time

Figure 1. Overview of our distributed K-FAC design. There are two processes (GPUs) training on three layers model.

order to get the Kronecker factors for the global mini-batch,
we need to average these matrices over all processes. This
is performed by a ReduceScatterV collective communica-
tion, which essentially transitions our approach from data-
parallelism to model-parallelism. This collective is much
more efficient than an AllReduce, and distributes the Kro-
necker factors to different processes while summing their
values. Stage 3 shows the result after the communication,
where the model is now distributed across the GPUs.

Stage 4 is the matrix inverse computation and stage 5 is
the matrix-matrix multiplication for the preconditioned gra-
dient G, (Equation 7). These computations are performed
in a model-parallel fashion, where each process updates
the preconditioned gradient for different layers. When the
number of layers is larger than the number of GPUs, mul-
tiple layers are handled by each GPU, as shown in Figure
1. If the number of layers is smaller than the number of
GPUs, some layers will be calculated redundantly on multi-
ple GPUs. This simplifies the implementation, reduces the
communication, and prevents load-imbalance.

Once we obtain the preconditioned gradients, we switch
back to data-parallelism by calling an AllGatherV collec-
tive. After stage 6 is finished, all processes can update their
parameters using the pre-conditioned gradients for all lay-
ers. As we will mention in Section 5.4, we are able to reduce
the amount of communication required for the Kronecker
factors A and G. Therefore, the amount of communication
is similar to SGD, where the AllReduce is implemented as
a ReduceScatter+AllGather. Algorithm 1 shows the pseudo
code of our distributed K-FAC design.

3.4. Further acceleration

Our data-parallel and model-parallel hybrid approach al-
lows us to minimize the overhead of K-FAC in a distributed
setting. However, K-FAC still has a large overhead com-
pared to SGD. There are two hotspots in our distributed K-
FAC design. The first is the construction of Kronecker fac-
tors, which cannot be done in a model-parallel fashion. The
second is the extra communication for distributing these
Kronecker factors. In this section, we discuss how we ac-
celerated these two hotspots to achieve faster training time.

Algorithm 1: Distributed K-FAC Optimizer

while not converge do
foreach/ =1,--- , L do

| forward ¢ and compute Ay_;
end
// stage 1 done
foreach/ =L, --- ,1do

| backward ¢ and compute Gy
end
// stage 2 done
Reduce+ScatterV(VE1.L, Ao.,—1, G1.1)
// stage 3 done
for /! =1,--- L do in parallel

‘ compute G;l, A;_ll, and Gy
end
// stage 4 and 5 done
AllGatherV (G1.1)
// stage 6 done
update 6 using G;.1,

end
return 6

Mixed-precision computation. K-FAC requires the con-
struction of Kronecker factors G, and Ay_; for all lay-
ers { = 1,---, L in the model. Since this operation must
be done before taking the global average, it is in the data-
parallel stages of our hybrid approach. Therefore, its com-
putation time does not decrease even when more processes
are used, and becomes relatively heavy compared to the
other stages. To accelerate this computation, we use the
Tensor Cores in the NVIDIA Volta Architecture. This more
than doubles the speed of the calculation for this part.

Symmetry-aware communication. The Kronecker factors
are all symmetric matrices [10,21], so we exploit this prop-
erty to reduce the volume of communication. To commu-
nicate a symmetric matrix of size N x N, we only need to
send the upper triangular matrix of size N(N + 1)/2.
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4. Training schemes

The behavior of K-FAC on large models and datasets has
not been studied in length. Also, there are very few studies
that use K-FAC for large mini-batches (over 4K) using dis-
tributed parallelism at scale [5]. Contrary to SGD, where
the hyperparameters have been optimized by many practi-
tioners even for large mini-batches, there is very little in-
sight on how to tune hyperparameters for K-FAC. In this
section, we have explored some methods, which we call
training schemes, to achieve higher accuracy in our exper-
iments. In this section, we show those training schemes in
our large mini-batch training with K-FAC.

4.1. Data augmentation

We resize the all images in ImageNet to 256 x 256
ignoring the aspect ratio of original images and compute
the mean value (224 x 224) of the upper left of the re-
sized images. When reading an image, we randomly crop
a 224 x 224 image from it, randomly flip it horizontally,
subtract the mean value, and scale every pixel to [0, 1].

Running mixup. We extend mixup [11,31] to increase its
regularization effect. We synthesize virtual training sam-
ples from raw samples and virtual samples from the previ-
ous step (while the original mixup method synthesizes only
from the raw samples):

£ =X x® (1N x0D] 9)
v =x.y® 4+ (1—2X) Ly (10)

x® y® is a raw input and label (one-hot vector), and
%™y is a virtual input and label for ¢ th step. \ is sam-
pled from the Beta distribution with the beta function

1
B(a,ﬂ):/ 71— )P tde. (11)
0

where we set @ = 8 = Qmixup-

Random erasing with zero value. We also adopt the Ran-
dom Erasing [30]. We put zero value on the erasing region
of each input instead of a random value as used in the orig-
inal method. We set the erasing probability p = 0.5, the
erasing area ratio S, € [0.02,0.25], and the erasing aspect
ratio r. € [0.3, 1]. We randomly switch the size of the eras-
ing area from (H,, W,) to (We, H.).

4.2. Warmup damping

The eigenvalue distribution of the Fisher information
matrix (FIM) of deep neural networks is known to have an
extremely long tail [16], where most of the eigenvalues are
close to zero. This in turn causes the eigenvalues of the
inverse FIM to become extremely large, which causes the

norm of the preconditioned gradient G to become huge com-
pared to the parameter w, so the training becomes unstable.
To prevent this problem, we add the damping [21] value v
to the diagonal of the FIM to get a preconditioned gradient:

Go=(Fo+11) ' VL. (12)

We use a modified Tikhonov damping technique [21] for a
Kronecker-factored FIM (Equation 5). At early stages of
the training, the FIM changes rapidly (Figure 4). Therefore,
we start with a large damping rate and gradually decrease it
using following rule:

o — 2. 10%10 (’Y(O) /’ytargct)

twarmup

Oé)W(t) + o ’Vtargct . (14)

; (13)
,y(tJrl) =(1-

4 is the value for the damping in the ¢ th step. () is
the initial value, and ¢warmup > 0 controls the steps to reach
the target value “yarget > () At each iteration, we use
7](3% = pe~ -7 (pgNn > 1) for the Batch Normalization
layers to stabilize the training.

4.3. Learning rate and momentum

The learning rate used for all of our experiments is
schedule by polynomial decay. The learning rate n¢) for
e th epoch is determined as follows:

e, Pdecay
77(e) _ 77(0) . (1 . € — €start ) ]

€end — CEstart

77(0) is the initial learning rate and eggart, €ena 1S the epoch
when the decay starts and ends. The decay rate pgecay
guides the speed of the learning rate decay. The learning
rate scheduling in our experiments are plotted in Figure 3 .

We use the momentum method for K-FAC updates. Be-
cause the learning rate decays rapidly in the final stage of
the training with the polynomial decay, the current update
can become smaller than the previous update. We adjust the
momentum rate m ¢ for e th epoch so that the ratio between
m(®) and (¢ is fixed throughout the training:

m(©

m(® = W -, (16)

15)

where m(©) is the initial momentum rate. The weights are
updated as follows:

WD w® (0 GO L (@) (w® _ =Dy (17
4.4. Weights rescaling

To prevent the scale of weights from becoming too large,
we adopt the Normalizing Weights [26] technique. We
rescale the w to have a norm +/2 - doy after (17):

(t+1)
W(t+1) — V 2- dout : || hud

wenee U9
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where we use ¢ = 1-107? to stabilize the computation. doy;
is the output dimension or channels of the layer.

5. Results

We train ResNet-50 [12] for ImageNet [7] in all of
our experiments. We use the same hyperparameters for
the same mini-batch size when comparing the different
schemes in Section 4. The training curves shown in Fig-
ures 3 are averaged over 2 or 3 executions using the same
hyperparameters. The hyperparameters for our results are
shown in Table 3. We implement all computation on top
of Chainer [2, 25] (our Chainer extenstion is available at
https://github.com/tyohei/chainerkfac). We initialize the
weights by the HeNormal initializer of Chainer with the de-
fault parameters.

5.1. Experiment environment

We conduct all experiments on the ABCI (AI Bridg-
ing Cloud Infrastructure) operated by the National Institute
of Advanced Industrial Science and Technology (AIST) in
Japan. ABCI has 1088 nodes with four NVIDIA Tesla V100
GPUs per node. Due to the additional memory required
by K-FAC, all of our experiments use a mini-batch size of
32 images per GPU. For large mini-batch size experiments
which cannot be executed directly, we used an accumula-
tion method to mimic the behavior by accumulating over
multiple steps. We were only given a 24 hour window to
use the full machine so we had to tune the hyperparameters
on a smaller number of nodes while mimicking the global
mini-batch size of the full node run.

5.2. Scalability

We measure the scalability of our distributed K-FAC im-
plementation on ResNet-50 with ImageNet dataset. Fig-
ure 2 shows the time for one iteration using different num-
ber of GPUs. Ideally, this plot should show a flat line par-
allel to the x-axis, since we expect the time per iteration to
be independent of the number of GPUs. From 1 GPU to
64 GPUs, we observed a superlinear scaling, where the 64
GPU case is 131.1% faster compared to 1 GPU, which is
the consequence of our hybrid data/model-parallel design.
ResNet-50 has 107 layers in total when all the convolu-
tion, fully-connected, and batch normalization layers are
accounted for. Despite this superlinear scaling, after 256
GPUs we observe performance degradation due to the com-
munication overhead.

5.3. Large mini-batch training with K-FAC

We train ResNet-50 for the classification task on Im-
ageNet with extremely large mini-batch size BS={4,096
(4K), 8,192 (8K), 16,384 (16K), 32,768 (32K), 65,536
(65K), 131,072 (131K)}. We achieved a competitive top-1

Seconds / iteration
s o o
N ~J ~J
W (=) wn

g
[oN
=

o
wn
Iy

4 8 16 32 64 128 256 512 1024 2048
GPUs
Figure 2. Time per iteration of K-FAC on ResNet-50 with Ima-
geNet using different number of GPUs.

validation accuracy (> 75%). The summary of the train-
ing is shown in Table 1. The training curves and the
learning rate schedules are plotted in Figure 3. When we
use BS={4K, 8K, 16K, 32K, 65K}, the training converges
in much less than 90 epochs, which is the usual number
of epochs required by SGD-based training of ImageNet
[3,9,15,22,29]. For BS={4K,8K,16K}, the required epochs
to reach higher than 75% top-1 validation accuracy does not
change so much. Even for a relatively large mini-batch size
of BS=32K, K-FAC still converges in half the number of
epochs compared to SGD. When increasing the mini-batch
size to BS=65K, we see a 33% increase in the number of
epochs it takes to converge. Note that the calculation time is
still decreasing while the number of epochs is less than dou-
ble when we double the mini-batch size, assuming that dou-
bling the mini-batch corresponds to doubling the number of
GPUs (and halving the execution time). At BS=131K, there
are less than 10 iterations per epoch since the dataset size
of ImageNet is 1,281,167. None of the SGD-based training
of ImageNet have sustained the top-1 validation accuracy at
this mini-batch size. Furthermore, this is the first work that
uses K-FAC for the training with extremely large mini-batch
size BS={16K,32K,65K,131K} and achieves a competitive
top-1 validation accuracy.

5.4. Analyzing Fisher information

Staleness of Fisher information. To achieve faster train-
ing with distributed K-FAC, reducing the computation and
the communication of the FIM (the Kronecker factors) is re-
quired. In ResNet-50 for ImageNet classification, the data
of the Kronecker factors A, G for the convolutional layers
and the FIM F for the Batch Normalization layers are dom-
inant. Note that we do not factorize the FIM for the Batch
Normalization layers into A and G. Previous work on K-
FAC used stale Kronecker factors by only calculating them
every few steps [21]. Even though our efficient distributed
scheme minimizes the overhead of the Kronecker factor cal-
culation, we thought it was worth investigating how much
staleness we can tolerate to further speed up our method.
We examine the change rate of the Kronecker factors for
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Table 3. Hyperparameters of the training with large mini-batch size (BS) used for our schemes in Section 4

Running
mixup (Sec. 4.1)

Warmup damping (Sec. 4.2)

Learning rate and momentum (Sec. 4.3)

BS
Ctmixup 4(© Viarget  PBN  btwarmup  Ddecay  €start  Cend n© m©
4,096 0.4 25-1072  2.5-107*  16.0 313 11.0 1 53 8.18-107% 0.997
8,192 0.4 25-107° 25-107* 16.0 157 8.0 1 53.5 1.25-107° 0.993
16,384 0.4 25-107% 25107 32.0 79 8.0 1 535 2.5-107°  0.985
32,768 0.6 2.0-1072 2.0-107* 16.0 59 3.5 1.5 49.5 3.0-1072 0.97
65,536 0.6 15-107% 15-100% 16.0 40 2.9 2 645 4.0-107>  0.95
131,072 1.0 1.0-107% 10-107* 8.0 30 2.9 3 1076 7.0-107°  0.93
= sg layer. Hence, we can also consider refreshing A,_; less
0: ol BS= 4,096 frequently than Gy .
S 50! BS= 8,192 Training with stale Fisher information. We found that,
5 a0l BS= 16,384 regardless of the mini-batch size, the FIM changes rapidly
é 30t BS= 32,768 during the first 500 or so iterations. Based on this, we re-
< 50l BS= 65,536 duce the freq.ue.ncy of up(%atm g FIM after SQO 1t.erat10ns. We
& Lol BS=131 072 apply a hegrlstlc schedul}ng of the refreshing interval. The
B ! refreshing interval (iterations) interval(® for the ¢ th epoch
0 20 40 60 80 100 is determined by:
Epoch ) )
10-4 interval® = min(20,5 - |e/5] + 1). (20)
BS= 4,096 . .
o 107° Using 1024 NVIDIA Tesla V100, we achieve 74.9 % top-1
E 10-6 — BS=_ 8192 accuracy with ResNet-50 for ImageNet in 10 minutes (45
o — BS= 16,384 epochs, including a validation after each epoch). We used
g 107 BS= 32,768 the same hyperparameters shown in Table 3. The training
g 10-8 =.B8=-165,536 time and the validation accuracy are competitive with the
3 10~ BS=131,072 results reported by related work that use SGD for training
" (the comparison is shown in Table 2).
10 0 20 40 60 80 100 Diagonal Fisher information matrix. The FIM for Batch
Epoch Normalization (BN) layers contribute to a large portion

Figure 3. Top-1 validation accuracy and learning rate schedules of
training of ResNet-50 for ImageNet with K-FAC

the convolutional layers and the FIM for the Batch Normal-

ization layers.

||X(t) — x@-1 |7
| XD g

Diff® = (19)
where || - || is the Frobenius norm. The results from our
large mini-batch training in Section 5.3 are plotted in Fig-
ure 4. We can see that the FIM fluctuates less for larger
mini-batches, because each mini-batch becomes more sta-
tistically stable. This implies that we can reduce the fre-
quency of updating the FIM more aggressively for larger
mini-batches. For the convolutional layers, the Kronecker
factor A,_; which represents the correlation among the di-
mensions of the input of the ¢ th layer (¢ = 1,..., L) fluc-
tuates less than G, which represents the correlation among
the dimensions of the gradient for the output of the ¢ th

(42.3%) of the memory overhead of K-FAC. To alleviate
this overhead, we approximate it with a diagonal matrix. By
using the diagonal approximation, we can reduce the mem-
ory consumption of the FIM for the all layers of ResNet-50
from 1017MiB to 587MiB. We measure the effect of the di-
agonal approximation on the accuracy of ResNet-50 for Im-
ageNet with mini-batch size BS=32,768 with/without using
stale Fisher information for all layers. In this experiment,
we adopt another heuristic for interval(®:

1
20

ife <13,

21
otherwise . @h

interval(® = {

Using diagonal FIM does not affect the training curve even
with stale FIM. This result suggests that only diagonal val-
ues of the FIM is essential for the training of BN layers.

6. Conclusion

In this work, we proposed a large-scale distributed com-
putational design for the second-order optimization us-
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Figure 4. Change in the value of the Kronecker Factors (A, G) for
convolutional layers (left) and the FIM (F') for Batch Normaliza-
tion (BN) layers (right) in our large mini-batch training (5.3). Each
plot shows {5, 25, 50, 75, 95 }th percentile of the value among all
layers in ResNet-50. The red line in each plot shows the 500 th
iteration.

ing Kronecker-Factored Approximate Curvature (K-FAC)
and showed the advantages of K-FAC over the first-

order stochastic gradient descent (SGD) for the training
of ResNet-50 with ImageNet classification using extremely
large mini-batches. We introduced several schemes for the
training using K-FAC with mini-batch sizes up to 131,072
and achieved over 75% top-1 accuracy in much fewer num-
ber of epochs/iterations compared to the existing work us-
ing SGD with large mini-batch. Contrary to prior claims
that second order methods do not generalize as well as SGD,
we were able to show that this is not at all the case, even for
extremely large mini-batches. Data and model hybrid paral-
lelism introduced in our design allowed us to train on 1024
GPUs and achieved 74.9% in 10 minutes by using K-FAC
with the stale Fisher information matrix (FIM). This is the
first work which observes the relationship between the FIM
of ResNet-50 and its training on large mini-batches ranging
from 4K to 131K. There is still room for improvement in our
distributed design to overcome the bottleneck of computa-
tion/communication for K-FAC — the Kronecker factors can
be approximated more aggressively without loss of accu-
racy. One interesting observation is that, whenever we cou-
pled our method with a well known technique that improves
the convergence of SGD, it allowed us to approximate the
FIM more aggressively without any loss of accuracy. This
suggests that all these seemingly ad hoc techniques to im-
prove the convergence of SGD, are actually performing an
equivalent role to the FIM in some way. The advantage
that we have in designing better optimizers by taking this
approch is that we are starting from the most mathemati-
cally rigorous form, and every improvement that we make
is a systematic design decision based on observation of the
FIM. Even if we end up having similar performance to the
best known first-order methods, at least we will have a bet-
ter understanding of why it works by starting from second-
order methods. Further analysis of the eigenvalues of FIM
and its effect on preconditioning the gradient will allow us
to further understand the advantage of second-order meth-
ods for the training of deep neural networks with extremely
large mini-batches.
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