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Abstract

In this work, we present a novel meta-learning algo-

rithm that regresses model parameters for novel tasks for

which no ground truth is available (zero-shot tasks). In

order to adapt to novel zero-shot tasks, our meta-learner

learns from the model parameters of known tasks (with

ground truth) and the correlation of known tasks to zero-

shot tasks. Such intuition finds its foothold in cognitive sci-

ence, where a subject (human baby) can adapt to a novel

concept (depth understanding) by correlating it with old

concepts (hand movement or self-motion), without receiv-

ing an explicit supervision. We evaluated our model on the

Taskonomy dataset, with four tasks as zero-shot: surface

normal, room layout, depth and camera pose estimation.

These tasks were chosen based on the data acquisition com-

plexity and the complexity associated with the learning pro-

cess using a deep network. Our proposed methodology out-

performs state-of-the-art models (which use ground truth)

on each of our zero-shot tasks, showing promise on zero-

shot task transfer. We also conducted extensive experiments

to study the various choices of our methodology, as well as

showed how the proposed method can also be used in trans-

fer learning. To the best of our knowledge, this is the first

such effort on zero-shot learning in the task space.

1. Introduction

The major driving force behind modern computer vision,

machine learning, and deep neural network models is the

availability of large amounts of curated labeled data. Deep

models have shown state-of-the-art performances on differ-

ent vision tasks. Effective models that work in practice en-

tail a requirement of very large labeled data due to their

large parameter spaces. Expecting availability of large-

scale hand-annotated datasets for every vision task is not

practical. Some tasks require extensive domain expertise,

long hours of human labor, expensive data collection sen-

sors - which collectively make the overall process very ex-

pensive. Even when data annotation is carried out using

Figure 1: Our Zero-Shot Task Transfer framework explores

the meta-manifold of Encoder-Decoder parameters of m known
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D }, to regress Encoder-

Decoder parameters of zero-shot tasks, i.e. τ
(m+1)
E and τ

(m+1)
D

(for which no ground truth is available). We compare our objec-

tive with that of Taskonomy [42], where the main objective is to

find an optimum path from a source task and target task, to delin-

eate the difference.

crowdsourcing (e.g. Amazon Mechanical Turk), additional

effort is required to measure the correctness (or goodness)

of the obtained labels. Due to this, many vision tasks are

considered expensive [43], and practitioners either avoid

such tasks or continue with lesser amounts of data that can

lead to poorly performing models. We seek to address this

problem in this work, viz., to build an alternative approach

that can obtain model parameters for tasks without any la-

beled data. Extending the definition of zero-shot learning

from basic recognition settings, we call our work Zero-Shot

Task Transfer.

Cognitive studies show results where a subject (human

baby) can adapt to a novel concept (e.g. depth understand-

ing) by correlating it with known concepts (hand move-

ment or self-motion), without receiving an explicit super-

vision [15]. In similar spirit, we present our meta-learning

algorithm that computes Encoder-Decoder parameters for

novel tasks for which no ground truth is available (called

zero-shot tasks). In order to adapt to a zero-shot task, our

meta-learner learns from the Encoder-Decoder parameters

of known tasks (with ground truth) and their task correla-

tion to the novel task. Formally, given the knowledge of
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m known tasks {τ1, · · · , τm}, a meta-learner F(.) can be

used to extrapolate parameters for τ (m+1), a novel task. We

are dropping the Encoder-Decoder subscripts, i.e. τ iE and

τ iD for any ith task τ i, for the sake of simplicity of discus-

sion.

However, with no knowledge of relationships between

the tasks, it may not be plausible to learn a meta-learner, as

its output could map to any point on the meta-manifold (see

Figure 1). We hence consider the task correlation between

known tasks and a novel task as an additional input to our

framework. There could be different notions on how task

correlation is obtained. In this work, we use the approach

of wisdom-of-crowd for this purpose. Many vision [30] and

non-vision machine learning applications [32], [38] encode

such crowd wisdom in their learning methods. Harvesting

task correlation knowledge from the crowd is fast, cheap,

and brings domain knowledge. High-fidelity aggregation of

crowd votes is used to integrate the task correlation between

known and zero-shot tasks in our model. We however note

that our framework can admit any other source of task cor-

relation beyond crowdsourcing. (We show our results with

other sources in the supplementary section.)

Our broad idea of leveraging task correlation can be

found similar to the recently proposed idea of Taskonomy

[42], but our method and objectives are different in many

ways (see Figure 1): (i) Taskonomy studies task correlation

to find a way to transfer one task model to another, while

our method extrapolates to a zero-shot task, for which no

labeled data is available; (ii) To adapt to a new task, Taskon-

omy requires a considerable amount of target labeled data,

while our work does not require any target labeled data

(which is, in fact, our objective); (iii) Taskonomy obtains

a task transfer graph based on the representations learned

by neural networks; while in this work, we leverage task

correlation to learn new tasks; and (iv) Lastly, our method

can be used to learn multiple novel tasks simultaneously. As

stated earlier, though we use crowdsourced task correlation,

any other compact notion of task correlation can easily be

encoded in our methodology. More precisely, our proposal

in this work is not to learn an optimal task relation, but to

extrapolate to zero-shot tasks.

Our contributions can be summarized as follows:

• We propose a novel methodology to infer zero-shot

task parameters that be used to solve vision tasks with

no labeled data.

• The methodology can scale to solving multiple zero-

shot tasks simultaneously, as shown in our experi-

ments. Our methodology provides near state-of-the-

art results by considering a smaller set of known tasks,

and outperforms state-of-the-art models (learned with

ground truth) when using all the known tasks, although

trained with no labeled data.

• We also show how our method can be used in a transfer

learning setting, as well as conduct various studies to

study the effectiveness of the proposed method.

2. Related Work

We divide our discussion of related work into subsec-

tions that capture earlier efforts that are related to ours from

different perspectives.

Transfer Learning: Reusing supervision is the core com-

ponent of transfer learning, where an already learned model

of a task is finetuned to a target task. From the early ex-

perimentation on CNN features [41], it was clear that initial

layers of deep networks learn similar kind of filters, can can

hence be shared across tasks. Methods such as in [3], [23]

augment generation of samples by transferring knowledge

from one category to another. Recent efforts have shown

the capability to transfer knowledge from model of one task

to a completely new task [34][33]. Zamir et al. [42] ex-

tended this idea and built a task graph for 26 vision tasks

to facilitate task transfer. However, unlike our work, [42]

cannot be generalized to a novel task without accessing the

ground truth.

Multi-task Learning: Multi-task learning learns multi-

ple tasks simultaneously with a view of task generalization.

Some methods in multi-task learning assume a prior and

then iterate to learn a joint space of tasks [7][19], while

other methods [26][19] do not use a prior but learn a joint

space of tasks during the process of learning. Distributed

multi-task learning methods [25] address the same objec-

tive when tasks are distributed across a network. However,

unlike our method, a binding thread for all these methods is

that there is an explicit need of having labeled data for all

tasks in the setup. These methods can not solve a zero-shot

target task without labeled samples.

Domain Adaptation: The main focus of domain adap-

tation is to transfer domain knowledge from a data-rich

domain to a domain with limited data [27][9]. Learning

domain-invariant features requires domain alignment. Such

matching is done either by mid-level features of a CNN

[13], using an autoencoder [13], by clustering [36], or more

recently, by using generative adversarial networks [24]. In

some recent efforts [35][6], source and target domain dis-

crepancy is learned in an unsupervised manner. However, a

considerable amount of labeled data from both domains is

still unavoidable. In our methodology, we propose a gen-

eralizable framework that can learn models for a novel task

from the knowledge of available tasks and their correlation

with novel tasks.

Meta-Learning: Earlier efforts on meta-learning (with

other objectives) assume that task parameters lie on a low-

dimensional subspace [2], share a common probabilistic

prior [22], etc. Unfortunately, these efforts are targeted

only to achieve knowledge transfer among known tasks and
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Figure 2: Overview of our work. Figure (a) represents the training phase of TTNet, where it learns a correspondence between task

correlation γ(i,j) of τ i and τ j , and the physical distance of τ i and τ j on the meta-manifold, given the Encoder-Decoder parameters of

m-known tasks and the task correlation The proposed TTNet gives Encoder-Decoder parameters of known tasks; (b) Once TTNet learns a

correspondence between task correlation and the physical distance on the manifold, it can regress zero-shot task given the task correlation

of zero-shot task and m-known tasks. Please see Section 3 for a more insight.

tasks with limited data. Recent meta-learning approaches

consider all task parameters as input signals to learn a

meta manifold that helps few-shot learning [28], [37], trans-

fer learning [33] and domain adaptation [13]. A recent

approach introduces learning a meta model in a model-

agnostic manner [12][17] such that it can be applied to a

variety of learning problems. Unfortunately, all these meth-

ods depend on the availability of a certain amount of labeled

data in target domain to learn the transfer function, and can-

not be scaled to novel tasks with no labeled data. Besides,

the meta manifold learned by these methods are not explicit

enough to extrapolate parameters of zero-shot tasks. Our

method relaxes the need for ground truth for zero-shot tasks,

by leveraging task correlation among known tasks and novel

zero-shot tasks. To the best of our knowledge, this is the

first such work that involves regressing model parameters

of novel tasks without using any ground truth information

for the task.
Learning with Weak Supervision: Task correlation is

used as a form of weak supervision in our methodology.

Recent methods such as [32][38] proposed generative mod-

els that use a fixed number of user-defined weak supervi-

sion to programatically generate synthetic labels for data

in near-constant time. Alfonseca et al. [1] use heuris-

tics for weak supervision to acccomplish hierachical topic

modeling. Broadly, such weak supervision is harvested

from knowledge bases, domain heuristics, ontologies, rules-

of-thumb, decisions of weak classifiers or obtained using

crowdsourcing. Structure learning [4] also exploits the use

of distant supervision signals for generating labels. Such

methods use factor graph to learn a high fidelity aggrega-

tion of crowd votes. Similar to this, [30] uses weak supervi-

sion signals inside the framework of a generative adversar-

ial network. However, none of them operate in a zero-shot

setting. We also found related work zero-shot task general-

ization in the context of reinforcement learning (RL) [29],

or in lifelong learning [16]. An agent is validated based on

its performance on unseen instructions or a longer instruc-

tions. We find that the interpretation of task, and primary

objectives, are very different from our present study.

3. Methodology

The primary objective of our methodology is to learn a

meta-learning algorithm that regresses nearly optimum pa-

rameters of a novel task for which no ground truth (data

or labels) is available. To this end, our meta-learner seeks

to learn from the model parameters of known tasks (with

ground truth) to adapt to a novel zero-shot task. For-

mally, let us consider K tasks to accomplish, i.e. T = {τ1,

· · · ,τK}, each of whose model parameters lie on a meta-

manifold Mθ of task model parameters. We have ground-

truth available for first m tasks, i.e. {τ1, · · · , τm}, and

we know their corresponding model parameters {(θτi) :
i = 1, · · · ,m} on Mθ. Complementarily, we have

no knowledge of the ground truth for the zero-shot tasks

{τ(m+1), · · · , τK}. (We call the tasks {τ1, · · · , τm} as

known tasks, and the rest {τ(m+1), · · · , τK} as zero-shot

tasks for convenience.) Our aim is to build a meta-learning

function F(·) that can regress the unknown zero-shot model

parameters {(θτj ) : j = (m+ 1), · · · ,K} from the knowl-

edge of known model parameters (see Figure 2 (b), i.e.:

F(θτ1 , · · · , θτm) = θτj , j = m+ 1, · · · ,K (1)

However, with no knowledge of relationships between

the tasks, it may not be plausible to learn F(·) as it can map

to any point on Mθ. We hence introduce a task correlation

matrix, Γ, where each entry γi,j ∈ Γ captures the task cor-

relation between two tasks τi, τj ∈ T . Equation 1 hence

now becomes:

F(θτ1 , · · · , θτm ,Γ) = θτj , j = m+ 1, · · · ,K (2)

The function F(.) is itself parameterized by W . We design
our objective function to compute an optimum value for W

as follows:
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min
W

m
∑

i=1

||F((θτ1 , γ1,i), · · · , (θτm , γm,i));W )− θ∗τi ||
2

(3)
Similar to [42], without any loss of generality, we as-

sume that all task parameters are learned as an autoencoder.

Hence, our previously mentioned task parameters θτi can be

described in terms of an encoder, i.e. θEτi
, and a decoder,

i.e. θDτi
. We observed that considering only encoder pa-

rameters θEτi in Equation 3 is sufficient to regress zero-shot

encoders and decoders for tasks {τ(m+1), · · · , τK}. Based

on this observation, we rewrite our objective as (we show

how our methodology works with other inputs in later sec-

tions of the paper):

min
W

m
∑

i=1

||F

(

(θEτ1
, γ1,i), · · · , (θEτ1

, γm,i);W

)

− (θ∗Eτi
, θ∗Dτi

)||2
(4)

where θ∗Eτi
and θ∗Dτi

and the learned model parameters of

a known task τi ∈ T . This alone is, however, insufficient.

The model parameters thus obtained not only should min-

imize the above loss function on the meta-manifold Mθ,

but should also have low loss on the original data manifold

(ground truth of known tasks).

Let DθDτ〉
(.) denote the data decoder parametrized by

θDτi , and EθEτ〉
(.) denote the data encoder parametrized by

θEτi . We now add a data model consistency loss to Equa-

tion 4 to ensure that our regressed encoder and decoder pa-

rameters perform well on both the meta-manifold network

as well as the original data network:

min
W

m
∑

i=1

||F

(

(θEτ1
, γ1,i), · · · , (θEτ1

, γm,i);W

)

− (θ∗Eτi
, θ∗Dτi

)||2

+ λ
∑

x∈Xτi
y∈yτi

L

(

Dθ̃Dτi

(Eθ̃Eτi

(x)), y

)

(5)

where L(·) is an appropriate loss function (mean-squared

error, cross-entropy or similar) defined for the task τi.

Network: To accomplish the aforementioned objective in

equation 5, we design F(.) as a network of m branches,

each with parameters {W1, · · · ,Wm} respectively. These

are not coupled in the initial layers but are later combined

in a Wcommon block that regresses encoder and decoder pa-

rameters. Dividing F(.) into two parts, Wis and Wcommon,

is driven by the intuition discussed in [41], that initial lay-

ers of F(.) transform the individual task model parame-

ters into a suitable representation space, and later layers

parametrized by Wcommon capture the relationships be-

tween tasks and contribute to regressing the encoder and

decoder parameters. For simplicity, we refer W to mean

{W1, · · · ,Wm} and Wcommon. More specifics of the ar-

chitecture of our model, TTNet, are discussed as part of our

implementation details in Section 4.

Learning Task Correlation: Our methodology admits

any source of obtaining task correlation, including through

other work such as [42]. In this work, we obtain the task

correlation matrix, Γ, using crowdsourcing. We will dis-

cuss this in more detail in Section 4.2.

Input: To train our meta network F(.), we need a batch

of model parameters for each known task τ1, · · · , τm. This

process is similar to the way a batch of data samples are

used to train a standard data network. To obtain a batch

of p model parameters for each task, we closely follow the

procedure described in [40]. This process is as follows. In

order to obtain one model parameter set Θ∗
τi

, for a known

task τi, we train a base learner (autoencoder), defined by

D(E(x; θEτi
); θDτi

). This is achieved by optimizing the

base learner on a subset (of size l) of data x ∈ Xτi and

corresponding labels y ∈ yτi with an appropriate loss func-

tion for the known task (mean-square error, cross-entropy

or the like, based on the task). Hence, we learn one Θ∗1
τi

=
{θ∗1Eτi

, θ∗1Dτi
}. Similarly, p subsets of labeled data are ob-

tained using a sampling-with-replacement strategy from the

dataset (Xτi ,yτi) corresponding to τj . Following this, we

obtain a set of p optimal model parameters (one for each of

p subsets sampled), i.e. Θ∗
τj

= {Θ∗1
τj

, · · · ,Θ∗p
τj
}, for task τj .

A similar process is followed to obtain p “optimal” model

parameters for each known task {Θ∗
τ1

, · · · ,Θ∗
τm

}. These

model parameters (a total of p×m across all known tasks)

serve as the input to our meta network F(.).

Training: The meta network F(.) is trained on the ob-

jective function in Eqn 5 in two modes: a self mode and a

transfer mode for each task. Given a known task τi, training

in self mode implies updation of weights Wi and Wcommon

alone. On the other hand, training in transfer mode implies

updation of weights W¬i (all Wj 6=i, j = 1, · · · ,m) and

Wcommon of F(.). Self mode is similar to training a stan-

dard autoencoder, where F(.) leanrs to projects the model

parameters θτj near the given model parameter (learned

from ground truth) θ∗τj . In transfer mode, a set of model

parameters of tasks (other than τj) attempt to map the posi-

tion of learned θτj , near the given model parameter θτj on

the meta manifold. We note that the transfer mode is es-

sential in being able to regress model parameters of a task,

given model parameters of other tasks. At inference time

(for zero-shot task transfer), F(.) operates in transfer mode.

Regressing Zero-Shot Task Parameters: Once we learn

the optimal parameters W ∗ for F(.) using Algorithm

1, we use this to regress zero-shot task parameters, i.e.

FW∗

(

(θEτ1 , γ1,j), · · · , (θEτm , γm,j)
)

for all j = (m +
1), · · · , T . (We note that the implementation of Algorithm
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1 was found to be independent of the ordering of the tasks,

τ1, · · · , τm.)

Algorithm 1: Training our meta network, TTNet

Input: Number of epochs - Num Epochs; Number

of iterations needed for self mode/transfer mode - k;

Optimal model parameters {Θ∗
τ1
, · · · ,Θ∗

τm
} of

known tasks; Task correlation matrix Γ = {γij}
(m× T matrix)

Output: Trained TTNet model, F(.)
for Num Epochs do

for j = 1, · · · ,m do

for k steps do

/* Self mode */

Update weights Wi,Wcommon of F(.) by

optimizing:

∣

∣

∣

∣F
(

(θEτ1
, γ1,i), · · · , (θEτ1

, γm,i);

Wi,Wcommon

)

− (θ∗Eτi
, θ∗Dτi

)
∣

∣

∣

∣

2
+

λ
∑

x∈Xτi
y∈yτi

L
(

Dθ̃Dτi

(Eθ̃Eτi

(x)), y
)

end

for k steps do

/* Transfer mode */

Update weights W¬i,Wcommon of F(.)
by optimizing:

∣

∣

∣

∣F
(

(θEτ1
, γ1,i), · · · , (θEτ1

, γm,i);

W¬i,Wcommon

)

− (θ∗Eτi
, θ∗Dτi

)
∣

∣

∣

∣

2
+

λ
∑

x∈Xτi
y∈yτi

L
(

Dθ̃Dτi

(Eθ̃Eτi

(x)), y
)

end

end

end

4. Results

To evaluate our proposed framework, we consider the vi-

sion tasks defined in [42]. (Whether this is an exhaustive list

of vision tasks is arguable, but they are sufficient to support

our proof of concept.) In this section, we consider four of

the tasks as unknown or zero-shot: surface normal, depth

estimation, room layout, and camera-pose estimation. We

have curated this list based on the data acquisition complex-

ity and the complexity associated with the learning process

using a deep network. Surface normal, depth estimation

and room layout estimation tasks are monocular tasks but

involve expensive sensors to get labeled data points. Cam-

era pose estimation requires multiple images (two or more)

to infer six degrees-of-freedom and is generally considered

a difficult task. We have three different TTNet s to accom-

plish them; (1) TTNet6, TTNet10 and TTNet20 those con-

+ 
3

+ 
2

+ 
1

- 
1

+ 3

+ 2

+ 1

- 1

Figure 3: Task correlation matrix. (Please zoom the image to

see the details) We get the task correlation matrix Γ after receiving

votes from 30 annotators. We use this Γ to build our meta-learner

TTNet.

sider 6, 10 and 20 vision tasks as known tasks. In addi-

tion, we have another model TTNetLS (having 20 known

tasks) in which, the regressed parameters are finetuned on a

small amount, (20%), of data for the zero-shot tasks. (This

provides low supervision to TTNet and hence, the name

TTNetLS .) Studies on other sets of tasks as zero-shot tasks

are presented in Section 5. We also performed an ablation

study on permuting the source tasks differently, which is

presented in the supplementary section.

4.1. Dataset

We evaluated TTNet on the Taskonomy dataset [42], a

publicly available dataset comprised of more than 150K

RGB data samples of indoor scenes. It provides the ground

truths of 26 tasks given the same RGB images, which is

the main reason for considering this dataset. We considered

120K images for training, 16K images for validation, and,

17K images for testing as described in [42].

4.2. Implementation Details

Network Architecture: Following Section 3, each data

network is considered an Encoder-Decoder network, and

closely follows the model architecture of [42]. The encoder

is a fully convolutional ResNet 50 model without pooling,

and the decoder comprises of 15 fully convolutional lay-

ers for all pixel-to-pixel tasks, e.g. normal estimation, and

for low dimensional tasks, e.g. vanishing points, it con-

sists of 2-3 FC layers. To make input samples for TTNet,

we created 5000 samples of the model parameters for each

task, each of which is obtained by training the model on 1k

data points sampled (with replacement) from the Taskon-

omy dataset. These data networks were trained with mini-

batch Stochastic Gradient Descent (SGD) using a batch size
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of 32, learning rate of 0.001, momentum factor of 0.5 and

Adam as an optimizer.

TTNet: We closely followed “classification network” of

[12] to build TTNet’s architecture. The TTNet is shown in

Figure 2 (b). The TTNet initially has m branches, that de-

pends on the model under consideration (TTNetm : m ∈
{6, 10, 20}). Each of the m branches is comprised of 15

fully convolutional (FCONV) layers followed by 14 fully

connected layers. The m branches are then merged to form

a common layer followed by 15 FCONV layers, trained

with mini-batch SGD, batch size of 32, learning rate of

0.0001, momentum factor of 0.5 and Adam as an optimizer.

Task correlation: Crowds are asked to response for each

pair of tasks (known and zero) on a scale of +2 (strong cor-

relation) to −1 (no correlation), while +3 is reserved to de-

note self relation. Votes are aggregated using using Dawid-

skene (DS) algorithm. We reported TTNet results based on

the task correlation matrix Γ, shown in Figure 3, by aggre-

gating votes of 30 annotators. More details of the Dawid-

skene methodology and ablation study on different number

of annotators are deferred to the supplementary section.

Method Mean-

(↓)
Medn-

(↓)
RMSE-

(↓)
11.25-

(↑)
22.5-

(↑)
30-

(↑)

MC[11] 30.30 35.30 - 30.29 57.17 68.29

DD [39] 25.71 20.81 31.01 38.12 59.18 67.21

DD[39] 21.10 15.61 - 44.39 64.48 66.21

Skip [5] 20.21 12.19 28.20 47.90 70.00 78.23

TN[42] 19.90 11.93 23.13 48.03 70.02 78.88

TTNet6 19.22 12.01 26.13 48.02 71.11 78.29

Geo [31] 19.00 11.80 26.90 48.04 72.27 79.68

TTNet10 19.81 11.09 22.37 48.83 71.61 79.00

TTNet20 19.27 11.91 26.44 48.81 71.97 79.72

TTNetLS 15.10 9.29 24.31 56.11 75.19 84.71

Table 1: Surface Normal Estimation. Mean, median and RMSE

refer to the difference between the model’s predicted surface nor-

mal and ground truth surface normal (a lower value is better, ↓).

Other 3 are the number of pixels within 11.25, 22.5 and 30 thresh-

olds within ground truth’s predicted pixels (a higher number is

better, ↑). − indicates those values cannot be obtained by the cor-

responding method.

4.3. Comparison with StateoftheArt Models

We show both qualitative and quantitative results for our

TTNet, trained using the aforementioned methodology, on

each of the four identified zero-shot tasks against state-of-

the-art models for each respective task below. We note that

the same TTNet is validated against all tasks.

4.3.1 Qualitative Results

Surface Normal Estimation: TTNet is compared

against: Multi-scale CNN (MC) [11], Deep3D (DD) [39],

Deep Network for surface normal estimation (DD) [39],

SkipNet (Skip) [5], GeoNet (Geo) [31] and Taskonomy

(TN) [42]. The results are shown in Figure 4(a), where the

red boxes correspond to our models trained under different

settings (as described at the beginning of Section 4). As

we increase the number of source tasks, our TTNet shows

improved results. TTNetLS captures finer details (see

edges of chandelier) which is not visible in other results.

Metd VM-

[14]

EM-

[44]

LN-

[45]

TT-

Net6

RN-

[20]

TN-

[42]

TT-

Nt10

TT-

Nt20

TT-

NtLS

Key. 15.5 11.2 7.64 7.5 6.3 6.2 6.00 5.82 5.52

Pixel 24.3 16.7 10.6 8.1 8.0 8.0 7.72 7.10 6.81

Table 2: Room Layout. Both TTNet20 and TTNetLS outper-

formed state-of-the-art models on keypoint and pixel error.

Room Layout Estimation: We followed layout types in

[20], and our TTNet’s results are compared against: Volu-

metric (VM) [14], Edge-map (EM) [44], LayoutNet (LN)

[45], RoomNet (RN) [20], and Taskonomy (TN) [42]. The

green boxes in Figure 4(b) indicate TTNet results; the red

edges indicate the predicted room edges. Each model in-

fers room corner points and joins them with straight lines.

We report two complex cases in Figure 4 (b): (1) lot of oc-

clusions, and (2) multiple edges such as roof-top, door, etc.

Method RMSE(lin) RMSE(log) ARD SRD

FDA [21] 0.877 0.283 0.214 0.204

TTN6 0.745 0.262 0.220 0.210

TN [42] 0.591 0.231 0.242 0.206

TTN10 0.575 0.172 0.236 0.179

Geonet[31] 0.591 0.205 0.149 0.118

TTNet20 0.597 0.204 0.140 0.106

TTNetLS 0.572 0.193 0.139 0.096

Table 3: Depth estimation: TTNet20 and TTNetLS outperform

all other methods studied.

Depth Estimation: Depth is computed from a single im-

age. We compared our TTNet against: FDA [21], Taskon-

omy [42], and GeoNet [31]. The red bounding boxes show

our result. It can be observed from Figure 4(c) that TTNet10
outperforms [42]; and TTNet20 and TTNetLS outperform

all other methods studied.

Camera Pose Estimation (fixed): Camera pose is esti-

mated from two images captured from two different geo-

metric points of same view. A fixed camera pose estimation

predicts any five of the 6-degrees of freedom: yaw, pitch,

roll and x,y,z translation. In Figure 4(d), two different ge-

ometric camera angle translations: (1) perspective, and (2)

translation in y and z coordinate are shown for TTNet and

RANSAC [10], Latent RANSAC [18], Generic3D pose [43]

and Taskonomy [42]. First image is the reference frame of

the camera (green arrow), and second image (red arrow) is

taken after a geometric translation.

Method RANSAC[41] LR[18] G3D[43] TN[42]

TTNet6 88% 81% 72% 64%

TTNet10 90% 82% 79% 82%

TTNet20 90% 82% 92% 80%

TTNetLS 96% 88% 96% 87%

Table 4: Camera Pose Estimation (fixed). We have considered

win rate (%) on angular error. Columns are state-of-the-art meth-

ods and rows are our four TTNet models.
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Figure 4: Qualitative comparison (Best viewed in color): TTNet models compared against other state-of-the-art models, see Section

4.3.1 for details. (a) Surface Normal Estimation: Red boxes indicate results of our TTNet models; (b) Room Layout: Red edges indicate

the predicted room edges; green boxes indicate our TTNet model results; (c) Depth Estimation: Red bounding boxes show our results; (d)

Camera Pose Esimation: First image is the reference frame of the camera, i.e. green arrow. The second image, with red arrow, is taken

after a geometric translation w.r.t first image. Blue rectangles show our results.

4.3.2 Quantitative Results

Surface Normal Estimation: We evaluated our method

based on the evaluation criteria described in [31], [5]. The

results are presented in Table 1. Our TTNet6 is comparable

to state-of-the-art Taskonomy [42] and GeoNet [31]. Our

TTNet10, TTNet20, and TTNetLS outperforms all state-of-

the-art models.

Room Layout Estimation: Evaluation criteria are: (1)

Keypoint error: a global measurement avaraged on Eu-

clidean distance between model’s predicted keypoint and

the ground truth; and (2) Pixel error: a local measurement

that estimates pixelwise error between the predicted surface

labels and ground truth labels. Table 2 presents the results.

Depth Estimation: Following [21] evaluation criteria

are: RMSE (lin) = 1
N
(
∑

X(dX − d∗X)2)
1

2 ; RMSE(log)

= 1
N
(
∑

X(log dX − log d∗X)2)
1

2 ; Absolute relative dis-

tance = 1
N

∑

X

|dX−d∗
X |

dX
; Squared absolute distance =

1
N

∑

X

( |dX−d∗
X |

dX

)2
. d∗X is ground truth depth, dX is es-

timated depth, and N is the total number of pixels in all

images in the test set.

Camera Pose Estimation (fixed): We adopted the win

rate (%) evaluation criteria [42] that counts the propor-

tion of images for which a baseline is outperformed. Ta-

ble 4 shows the win rate of TTNet models on angular er-

ror with respect to state-of-the-art models: RANSAC [41],

LRANSAC [18], G3D and Taskonomy [42].
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Figure 5: (Please zoom to see more detail) (a) Task basis elements of Zero-shot task, i.e. z-depth (black box), is supported by six known

tasks (blue box), which is found using GO-MTL [19]; (b) Zero-shot task basis is comprised of the elements of know tasks basis elements;

(c) Surface normal estimation on Cityscapes: Red circles highlight details (car, tree, human) by TTNet; (d) Different choice zero shot tasks:

2D segmentation, Vanishing point estimation, Curvature estimation, 2.5D segmentation and reshading, other than Section 4.

5. Discussion and Analysis

How important is a source task while regressing the

zero-shot task?: To study which source task plays the

most important role when regressing a zero-shot task, we

computed the task basis of source tasks using the GO-MTL

approach [19]. The results are shown in Figure 5(a). We

consider a source task important if it shares maximum num-

ber of basis elements with zero-shot tasks. For e.g., source

task “autoencoding” in Fig 5(a) with a blue box shares four

basis elements with zero-shot task “z-depth” (discussed fur-

ther in the Supplementary Section).

Why Zero-shot Task Parameters Performs Better than

Supervised Training? When tasks are related (which is

the setting in our work), learning from similar tasks can by

itself provide good performance. From Figure 5 (b), we

can see that, the basis vector of zero-shot task “Z-depth” is

composed of latent elements from several source tasks.

Zero-shot to Known Task Transfer: We finetune the de-

coder to a target known task (encoder remains the same as of

zero-shot task). Figure 5(c) shows promising results. Quan-

titatively, we compared win rate of TTNet against [42] w.r.t

other state-of-the-art methods: Wang et al. [40], G3D [43],

and full supervision. Owing to space constraints, these re-

sults are presented in the Supplementary section.

Choice of Zero-shot Tasks: A different set of zero tasks

than those considered in Sec 4 is studied in Fig 5(d)

which shows promising results even for our weakest model,

TTNet6. More results of TTNet10, TTNet20, TTNetLS are

included in the Supplementary section.

Performance on Other Datasets: To further study the

generalizability of our models, we finetuned TTNet on the

Cityscapes dataset [8], and the surface normal results are re-

ported in Figure 5(c), with comparison to [42]. Our model

captures more detail.

Object detection on COCO-Stuff dataset: TTNet6 is

finetuned on the COCO-stuff dataset to do object detection,

shown in Figure 6. TTNet6 performs fairly well.

Optimal Number of Known Tasks: In this work, we

have reported results of TTNet with 6, 10 and 20 known

Auto(100/12) Cur(92/14) Den(88/12) 2DEg(99/24) Oclu.Eg(94/6) 2DKey(94/13) 3Dkey(89/14)
Resd(99/15) Z-dpth(92/9) Dis(91/6.) Nrml(95/8) Egom(96/6) VanPts(91/11) 2DSg(95/14)
2.5 Sg(87/14) SemSeg(82/9) Jigsw(84/6) Layot(82/15) ObjCls(92/10) Matchng(97/8) ScnCls(89/18)
Camera Pose (fxd)  (78/3) Camra Ps(non fxd)(70/2) In-Ptng(86/4) Clriztn(96/21) Clsficatn(86/9)

Method AP{50:95} AP{50} AP{75} AP{sml} AP{med} AP{lrg}
CoupleNet 34.4 54.8 37.2 13.4 8.1 50.8

Methd TTNet{6} 29.9 51.9 34.6 10.8 32.8 45
YOLOv2 21.6 44 19.2 5 22.4 35.5

Figure 6: Object Detection using TTNet6: TTNet6 is finetuned

on the COCO-stuff dataset.

tasks. We studied the question - how many tasks are suf-

ficient to adapt to zero-shot tasks in the considered setting,

and the results are reported in Table 5. Expectedly, a higher

number of known tasks provided improved performance.

Zero-shot Task Transfer using Taskonomy Graph: We

also conducted experiments on using our methodology by

using the task correlations obtained from the results of [42]

directly. We present these, as well as other results, includ-

ing the evolution of our TTNet model over the epochs of

training, in the Supplementary section.

Model TT4 TT6 TT8 TT10 TT15 TT20 TTLS

Wang[40] 81 84 84 88 88 91 97

Zamir[43] 73 75 81 82 86 87 90

TN[42] 62 65 84 85 84 89 94

Table 5: Win rate (%) of surface normal estimation of TTNet mod-

els with varying number of known tasks against: [40], [43], [42].

6. Conclusion

We present a meta-learning algorithm to regress model

parameters of a novel task for which no ground truth is

available (zero-shot task). We evaluated our learned model

on the Taskonomy [42] dataset, with four zero-shot tasks:

surface normal estimation, room layout estimation, depth

estimation and camera pose estimation. Our future work

will involve closer analysis of the implications of obtaining

task correlation from various sources, and the correspond-

ing results for zero-shot task transfer. In particular, negative

transfer in task space is a particularly interesting direction

of future work.
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