
Transferrable Prototypical Networks for Unsupervised Domain Adaptation

Yingwei Pan †, Ting Yao †, Yehao Li ‡, Yu Wang †, Chong-Wah Ngo §, and Tao Mei †

† JD AI Research, Beijing, China
‡ Sun Yat-sen University, Guangzhou, China

§ City University of Hong Kong, Kowloon, Hong Kong

{panyw.ustc, tingyao.ustc, yehaoli.sysu, feather1014}@gmail.com, cscwngo@cityu.edu.hk, tmei@live.com

Abstract

In this paper, we introduce a new idea for unsupervised

domain adaptation via a remold of Prototypical Networks,

which learn an embedding space and perform classifica-

tion via a remold of the distances to the prototype of each

class. Specifically, we present Transferrable Prototypical

Networks (TPN) for adaptation such that the prototypes for

each class in source and target domains are close in the

embedding space and the score distributions predicted by

prototypes separately on source and target data are simi-

lar. Technically, TPN initially matches each target exam-

ple to the nearest prototype in the source domain and as-

signs an example a “pseudo” label. The prototype of each

class could then be computed on source-only, target-only

and source-target data, respectively. The optimization of

TPN is end-to-end trained by jointly minimizing the dis-

tance across the prototypes on three types of data and KL-

divergence of score distributions output by each pair of the

prototypes. Extensive experiments are conducted on the

transfers across MNIST, USPS and SVHN datasets, and su-

perior results are reported when comparing to state-of-the-

art approaches. More remarkably, we obtain an accuracy

of 80.4% of single model on VisDA 2017 dataset.

1. Introduction

The recent advances in deep neural networks have con-

vincingly demonstrated high capability in learning vision

models on large datasets. For instance, an ensemble of

residual nets [7] achieves 3.57% top-5 error on the Ima-

geNet test set, which is even lower than 5.1% of the reported

human-level performance. The achievements rely heavily

on the requirement to have large quantities of annotated da-

ta for deep model learning. However, performing intensive

manual labeling on a new dataset is expensive and time-

consuming. A valid question is why not recycling off-the-

shelf learnt knowledge/models in source domain for new

domain(s). The difficulty originates from the domain gap

[33] that may adversely affect the performance especially

when the source and target data distributions are very dif-

ferent. An appealing way to address this challenge would

be unsupervised domain adaptation, which aims to utilize

labeled examples or learnt models in the source domain and

the large number of unlabeled examples in the target domain

to generalize a target model.

A common practice in unsupervised domain adaptation

is to align data distributions between source and target do-

mains or build invariance across domains by minimizing do-

main shift through measures such as correlation distances

[27, 34] or maximum mean discrepancy [31]. In this pa-

per, we explore general-purpose and task-specific domain

adaptations under the framework of Prototypical Networks

[26]. The design of prototypical networks assumes the ex-

istence of an embedding space in which the projections of

samples in each class cluster around a single prototype (or

centroid). The classification is then performed by comput-

ing the distances to prototype representations of each class

in the embedding space. In this way, the general-purpose

adaptation is to represent each class distribution by a pro-

totype and match the prototypes of each class in the em-

bedding space learnt on the data from different domains.

The inspiration of task-specific adaptation is from the ratio-

nale that the target data should be classified correctly by the

task-specific model when the source and target distribution-

s are well aligned. In the context of prototypical networks,

task-specific adaptation is equivalent to adapting the score

distributions produced by prototypes in different domains.

By consolidating the idea of general-purpose adapta-

tion and task-specific adaptation into unsupervised domain

adaptation, we present a novel Transferrable Prototypical

Networks (TPN) architecture. Ideally, TPN is to learn a

non-linear mapping (a neural network) of the input exam-

ples into an embedding space, in which the representation-

s are invariant across domains. Specifically, TPN takes a

batch of labeled source and unlabeled target examples, com-

pares each target example to each of the prototypes com-

puted on source data, and assigns the label of the nearest

2239

prototype as a “pseudo” label to each target example. As

such, the general-purpose adaptation is then formulated to

minimize the distances between the prototypes measured on

source data, target data with pseudo labels, and source plus

target data. That is to alleviate domain discrepancy on class

level. In task-specific adaptation, we utilize a softmax over

distances of the embedding of each example to the proto-

types as the classifier. The KL-divergence is exploited to

model the mismatch of score distribution by classifiers on

prototypes computed in each domain or their combination.

In this case, domain discrepancy is amended on sample lev-

el. The whole TPN is end-to-end trained by minimizing the

classification loss on labeled source data plus the two adap-

tation terms, and switching the learning from batch to batch.

At inference stage, each prototype is computed as a priori.

A test target example is projected into the embedding space

to compare to each prototype and the outputs of softmax are

taken as predictions.

2. Related Work

Inspired by the recent advances in image representation

using deep convolutional neural networks (DCNNs), a few

deep architecture based methods have been proposed for

unsupervised domain adaptation. In particular, one com-

mon deep solution for unsupervised domain adaptation is to

guide the feature learning in DCNNs by minimizing the do-

main discrepancy with Maximum Mean Discrepancy (M-

MD) [6]. MMD is an effective non-parametric metric for

the comparisons between the distributions of source and tar-

get domains. [31] is one of early works that incorporates

MMD into DCNNs with regular supervised classification

loss on source domain to learn both semantically meaning-

ful and domain invariant representation. Later in [15], Long

et al. simultaneously exploit transferability of features from

multiple layers via the multiple kernel variant of MMD. The

work is further extended by adapting classifiers through a

residual transfer module in [17]. Most recently, [16] ex-

plores domain shift reduction in joint distributions of the

network activation of multiple task-specific layers.

Another branch of unsupervised domain adaptation in D-

CNNs is to exploit the domain confusion by learning a do-

main discriminator [4, 14, 29, 30, 35]. Here the domain dis-

criminator is designed to predict the domain (source/target)

of each input sample and is trained in an adversarial fashion,

similar to GANs [5], for learning domain invariant represen-

tation. For example, [29] devises a domain confusion loss

measured in domain discriminator for enforcing the learn-

t representation to be domain invariant. Similar in spirit,

Ganin et al. explore such domain confusion problem as a bi-

nary classification task and optimize the domain discrimina-

tor via a gradient reversal algorithm in [4]. Coupled GANs

[13] directly applies GANs into domain adaptation problem

to explicitly reduce the domain shifts by learning a joint

distribution of multi-domain images. Recently, [30] com-

bines adversarial learning with discriminative feature learn-

ing for unsupervised domain adaptation. Most recently, [32]

extends domain discriminator by learning domain-invariant

feature extractor and performing feature augmentation.

In summary, our approach belongs to domain discrepan-

cy based methods. Similar to previous approaches [16, 31],

our TPN leverages additional unlabeled target data for

learning task-specific classifiers. The novelty is on the ex-

ploitation of multi-granular domain discrepancy in Proto-

typical Networks, at class-level and sample-level, that has

not been fully explored in the literature. Class-level do-

main discrepancy is reduced by learning similar prototypes

of each class in different domains, while sample-level dis-

crepancy is by enforcing similar score distributions across

prototypes of different domains.

3. Unsupervised Domain Adaptation

Our Transferrable Prototypical Networks (TPN) is to re-

mould Prototypical Networks towards the scenario of un-

supervised domain adaptation by jointly bridging the do-

main gap via minimizing multi-granular domain discrepan-

cies, and constructing classifiers with unlabeled target da-

ta and labeled source data. The classifiers in Prototypical

Networks are typically achieved by measuring distances be-

tween the example and prototype of each class, which can

be flexibly adapted across domains by only updating pro-

totypes in a specific domain. To learn transferrable repre-

sentations in Prototypical Networks, TPN firstly utilizes the

classifiers learnt on source-only data to directly predict the

pseudo labels of unlabeled target data and thus produces an-

other two kinds of prototype-based classifiers constructed in

target-only and source-target data. The training of TPN is

then performed simultaneously by classifying each source

sample as correct class and reducing multi-granular domain

discrepancy at class level & sample level. The class-level

domain discrepancy is reduced via matching the prototypes

of each class, and the sample-level domain discrepancy is

minimized by enforcing the score distributions over classes

of each sample synchronized, across different domains. We

alternate the above two steps in each training iteration and

optimize the whole TPN in an end-to-end fashion.

3.1. Preliminary—Prototypical Networks

Prototypical Networks is preliminarily proposed in [26]

to construct an embedding space in which points clus-

ter around a single prototype representation of each class.

In particular, given a set with N labeled samples S =
{(xi, yi)}

N
i=1 belonging to C categories, where yi ∈

{1, 2, ..., C} is the class label of sample xi. The objective

is to learn an embedding function f (xi; θ) : xi → R
m for

transforming each input sample into a m-dimensional em-

bedding space through a deep architecture of Prototypical

2240

Target Domain

Source Domain

Transferrable Prototypical NetworksExisting works

Unsupervised Domain Adaptation: Before.

Unsupervised Domain Adaptation with
MMD/domain Discriminator: After.

Assign pseudo Labels for target samples;
Obtain prototypes on source, target and source-target data. General-purpose Domain Adaptation.

1
s

2
s

1
st

2
st

1
t

2
t

Unsupervised Domain Adaptation with TPN: After.Task-specific Domain Adaptation.

1
s

2
s

1
st

2
st

1
t

2
t

1
s

2
s

1
st

2
st

1
t

2
t

Embedding
Space

xi

Figure 1. The intuition behind existing unsupervised domain adaptation models with MMD [15] or domain discriminator [29] and our

Transferrable Prototypical Networks (TPN) (better viewed in color). Most of the existing models aim to reduce the domain shift by

measuring the holistic domain discrepancy/domain confusion over source and target data, while leaving the domain discrepancy of each

class or the relations between samples and classifiers unexploited. In contrast, our TPN tackles this problem from the viewpoint of both

general-purpose and task-specific adaptation to measure the multi-granular domain discrepancy at class level and sample level, respectively.

In particular, TPN initially matches each unlabeled target sample to the nearest prototype in the source domain and assigns each target

example a “pseudo” label. Next, the prototype of each class is computed on source-only, target-only and source-target data. The general-

purpose adaptation is then performed to push the prototype of each class computed in each domain to be close in the embedding space.

Meanwhile, we perform the task-specific adaptation to align the score distributions produced by prototypes obtained in different domains

for each sample. The whole TPN is trained by minimizing the supervised classification loss on labeled source data plus the general-purpose

and task-specific adaptation terms in an end-to-end manner.

Networks, where θ represents the learnable parameters. To

convey the high-level description of the class as meta-data,

the prototype of each class is defined by taking the average

of all embedded samples belonging to that class:

µc =
1

|Sc|

∑

xi∈Sc

f (xi; θ), (1)

where Sc denotes the set of samples from class c. Given

a query sample xi, Prototypical Networks directly produce

its score distribution Pi ∈ R
C over C classes via a softmax

function on distances to the prototypes, whose c-th element

is the probability of xi belonging to class c:

Pic = p (yi = c|xi) =
e−d(f(xi;θ),µc)

∑
c′ e

−d(f(xi;θ),µc′)
, (2)

where d (·) is the distance function (e.g., Euclidean distance

as in [26]) between query sample and the prototype. The

training of Prototypical Networks is performed by minimiz-

ing the negative log-likelihood probability of assigning cor-

rect class label c to this sample:

LS (xi) = − log p (yi = c|xi) . (3)

3.2. Problem Formulation

In unsupervised domain adaptation, we are given Ns la-

beled samples Ss = {(xs
i , y

s
i)}

Ns

i=1 in the source domain

and Nt unlabeled samples St = {xt
i}

Nt

i=1 in the target do-

main. Based on the widely adopted assumption of the ex-

istence of a shared feature space for source and target do-

mains in [16, 20, 29], the ultimate goal of this task is to

design an embedding function f (xi; θ) which formally re-

duces domain shifts in the shared feature space and enables

learning of both transferrable representations and classifiers

depending on Ss and St. Different from the existing trans-

fer techniques [16, 17] which are typically composed of

two cascaded networks for learning domain-invariant fea-

tures and target-discriminative classifiers respectively, we

consider unsupervised domain adaptation in the framework

of Prototypical Networks. Such framework naturally uni-

fies the learning of features and classifiers into one network

by constructing classifiers purely on the prototype of each

class. This design reflects a very simple inductive bias that

is beneficial in domain adaptation regime. Specifically, to

make Prototypical Networks transferrable across domains,

two adaptation mechanisms are devised to align distribu-

tions of source and target domains through reducing multi-

granular (i.e., class-level and sample-level) domain discrep-

ancies. In between, the general-purpose adaptation matches

the prototypes of each class and the task-specific adapta-

tion enforces similar score distributions over classes of each

sample, across different domains, as shown in Figure 1.

3.3. General­purpose Domain Adaptation

Most existing works resolve unsupervised domain adap-

tation by minimizing the domain discrepancy between

source and target data distributions with MMD [31], or

2241

maximizing the domain confusion across domains via a do-

main discriminator [29]. Both of the domain discrepan-

cy and domain confusion terms are measured over the en-

tire source and target data, irrespective of the specific class

of each sample. Moreover, the domain discrepancy has

been seldom exploited across domains for each class, possi-

bly because measuring such class-level domain discrepancy

needs the labels of both source and target samples, while in

typical unsupervised domain adaptation settings, no label is

provided for target samples.

Inspired from self-labeling [11, 24] for domain adap-

tation, we directly utilize prototype-based classifier learnt

on labeled source data for matching each target sample to

the nearest prototype in the source domain, and then assign

the target sample a “pseudo” label. As such, all the target

samples Ŝt = {(xt
i, ŷ

t
i)}

Nt

i=1 are with pseudo labels. After

obtaining the real/pseudo labels of source/target data, three

kinds of classifiers (i.e., prototypes
{
µs

c

}
,
{
µt

c

}
and

{
µst

c

}
)

could be calculated on source-only data (Ss), target-only

data (Ŝt) and source-target data (Ss ∪ Ŝt), respectively:

µs
c
= 1

|Ss
c |

∑
xs
i
∈Ss

c

f (xs
i ; θ), µ

t
c
= 1

|Ŝt
c|

∑
xt
i
∈Ŝt

c

f
(
xt
i; θ

)
,

µst
c

= 1

|Ss
c |+|Ŝt

c|


 ∑

xs
i
∈Ss

c

f (xs
i ; θ) +

∑
xt
i
∈Ŝt

c

f
(
xt
i; θ

)

 ,

(4)

where Ss
c and Ŝt

c denote the sets of source/target samples

from the same class c.

To measure the class-level domain discrepancy across

domains, we take the inspiration from MMD-based transfer

techniques [16, 17] and compute pairwise reproducing ker-

nel Hilbert space (RKHS) distance between the prototypes

of the same class from different domains. The basic idea

is that if the data distributions of source and target domain-

s are identical, the prototypes of the same class achieved

on different domains are the same. Formally, we define the

following class-level discrepancy loss as

LG

(
{µs

c
} ,

{
µt

c

}
,
{
µst

c

}) ∆
= 1

C

C∑
c=1

∥∥µ̃s
c
− µ̃t

c

∥∥2

H

+ 1
C

C∑
c=1

∥∥µ̃s
c
− µ̃st

c

∥∥2

H
+ 1

C

C∑
c=1

∥∥µ̃t
c
− µ̃st

c

∥∥2

H
,

(5)

where
{
µ̃s

c

}
,
{
µ̃t

c

}
and

{
µ̃st

c

}
denote the corresponding

prototypes in reproducing kernel Hilbert space H. By min-

imizing this term, the prototype of each class computed in

each domain will be enforced to be in close proximity in the

embedding space, leading to invariant representation distri-

bution across domains in general.

Connections with MMD. MMD [6] is a kernel two-

sample test which measures the distribution difference be-

tween source and target data by mapping them into a repro-

ducing kernel Hilbert space. The empirical estimation of

MMD is computed by

µs = 1
|Ss|

∑
xs
i
∈Ss

φ (xs
i), µ

t = 1
|St|

∑
xt
i
∈St

φ
(
xt
i

)
,

LMMD =
∥∥µs − µt

∥∥2

H
,

(6)

where φ (·) is the mapping to RKHS H. Taking a close

look on the objective of MMD and our class-level discrep-

ancy loss in Eq.(5), we can observe some interesting con-

nections. Concretely, the means of source and target data

(i.e., µs and µt) measured in MMD can be interpreted as the

holistic prototype of each domain in RKHS. MMD is then

expressed as the RKHS distance between the holistic proto-

types across domains. Our class-level domain discrepancy,

different from MMD, is computed as the RKHS distance

across the prototypes of each class from different domains.

In other words, a fine-grained alignment of source and tar-

get data distributions is performed on class level, instead of

simply minimizing the distance between holistic prototypes

across domains.

3.4. Task­specific Domain Adaptation

The general-purpose domain adaptation only enforces

similarity in feature distributions, while leaving the rela-

tions between samples and task-specific classifiers (i.e., pro-

totypes) unexploited. Furthermore, we devise a new adap-

tation mechanism, i.e., task-specific adaptation, to reduce

sample-level domain discrepancy by aligning the score dis-

tributions of different classifiers (i.e., prototypes) across do-

mains for each sample. The rationale of sample-level do-

main discrepancy is that each source/target sample should

be classified correctly by the task-specific classifiers when

source and target distributions are well aligned, leading to

consistent decisions of classifiers across domains.

In particular, given each source/target sample xi, three

score distributions (Ps
i , Pt

i and P
st
i) are obtained via three

kinds of classifiers (i.e., prototypes
{
µs

c

}
,
{
µt

c

}
and

{
µst

c

}
)

learnt on source-only, target-only and source-target data, re-

spectively. To measure the sample-level domain discrepan-

cy, we utilize KL-divergence to evaluate the pairwise dis-

tance between the score distributions from different do-

mains. The sample-level discrepancy loss over the source

and target samples are defined as

LT

(

{Ps

i
} ,

{

P
t

i

}

,
{

P
st

i

}) ∆
= 1

|Ss|+|Ŝt|

∑

xi

DKL

(

P
s

i
,Pt

i

)

+ 1

|Ss|+|Ŝt|

∑

xi

DKL

(

P
s

i
,Pst

i

)

+ 1

|Ss|+|Ŝt|

∑

xi

DKL

(

P
t

i
,Pst

i

)

,

DKL

(

P
s

i
,Pt

i

)

= 1
2

(

dKL

(

P
s

i
||Pt

i

)

+ dKL

(

P
t

i
||Ps

i

))

,

dKL

(

P
s

i
||Pt

i

)

=
C
∑

c=1

P
s

ic
log

(

P
s
ic

P
t
ic

)

,

(7)

where dKL (·) is the KL-divergence factor and DKL (·) is

the symmetric pairwise KL-divergence.

Please note that different from general-purpose domain

adaptation which independently matches the prototypes of

2242

each class across different domains, task-specific adaptation

simultaneously adapts the prototypes of all classes, pursu-

ing similar score distributions over classes of each sample.

3.5. Optimization

The overall training objective of our TPN integrates the

supervised classification loss in Eq.(3) and multi-granular

discrepancy losses (i.e., class-level discrepancy loss in E-

q.(5) and sample-level discrepancy loss in Eq.(7)). Hence

we obtain the following optimization problem:

min
θ

1
|Ss|

∑
xs
i
∈Ss

LS (xs
i) + αLG

(
{µs

c
} ,

{
µt

c

}
,
{
µst

c

})

+ βLT

(
{Ps

i} ,
{
P

t
i

}
,
{
P

st
i

})
,

(8)

where α and β are tradeoff parameters. With this overall

loss objective, the crucial goal of the optimization is to learn

the deep embedding function f (xi; θ), in which the output

representations are invariant across domains.

Training Procedure. To address the optimization prob-

lem in Eq.(8), we split the training process into two steps: 1)

calculate classifier (i.e., prototypes
{
µs

c

}
) on source domain

and perform it to assign pseudo labels to target samples; 2)

calculate classifiers (i.e., prototypes
{
µt

c

}
and

{
µst

c

}
) on

target-only and source-target data, and update θ with re-

spect to the gradient descent of overall objective function.

We alternate the two steps in each training iteration and stop

the procedure until a convergence criterion is met. Note that

to remedy the error of self-labeling, we only assign pseudo

labels to the target examples whose maximized scores are

over 0.6 and resample the target examples for labeling in

each training iteration to avoid overfitting of pseudo labels.

Furthermore, the training process of our TPN is also resis-

tant to the noise of pseudo labels since we iteratively utilize

both labeled source examples and pseudo-labeled target ex-

amples for learning the embedding function. This proce-

dure not only ensures the accuracy in source domain, but

also effectively minimizes class-level and sample-level dis-

crepancy. Such cycle will gradually improve the accuracy

in target domain.

Inference. After training TPN, we can obtain the deep

embedding function f (xi; θ). With this, all the three sets

of prototypes (
{
µs

c

}
,
{
µt

c

}
and

{
µst

c

}
) are calculated over

the whole training set in advance and stored in memory.

Any one of the three prototype sets can be utilized as the

final classifier for classifying test target sample at the test-

ing stage. We empirically verified that the performance is

not sensitive to the selection of prototypes1, which implic-

itly reveals the domain invariant characteristic of the learnt

feature representation. Hence, given a test target sample,

we compute its embedding representation via f (xi; θ) and

compare the distances to prototypes of each class to output

the final prediction scores.

1The accuracy constantly fluctuates within 0.002 when using d-

ifferent set of prototypes for four domain shifts in our experiments.

3.6. Theoretical Analysis

We formalize the error bound of TPN by an extension of

the theory in [1]. As TPN performs training on a mixture

of labeled source examples and target samples with pseudo

labels, the classification error is naturally considered as the

linear weighted sum of errors in source and target domain.

Denote ys and ŷt as the ground truth labels of source exam-

ples and the pseudo labels of target samples, respectively,

and h as a hypothesis. The error is then formally written as

ǫγ(h) = γǫt(h, ŷ
t) + (1− γ)ǫs(h, y

s) , (9)

where γ is the tradeoff parameter. The term ǫt(h, ŷ
t) =

Ex∼Dt [|h(x) − ŷt|] and ǫs(h, y
s) = Ex∼Ds [|h(x) − ys|]

represents the expected error over the sample distribution

of target domain Dt and source domain Ds with respect to

pseudo labels and ground truth labels, respectively.

Next, a valid question is how close the error ǫγ(h) is to

an oracle error ǫt(h, y
t) that evaluates the classifier learnt on

the ground truth labels yt of the target examples. The closer

the two losses are, the more desirable the domain adaptation

performs. The following Lemma proves that the difference

between the two losses could be bounded for our TPN.

Lemma 1. Let h be a hypothesis in class H. Then

∣∣ǫγ(h)− ǫt(h, y
t)
∣∣ ≤ (1− γ)(

1

2
dH∆H(Ds

,Dt) + λ) + γρ,

(10)

where dH∆H(Ds,Dt) = 2 suph,h′∈H |ǫt(h, h
′)−ǫs(h, h

′)|
measures the domain discrepancy in the hypothesis space

H. ρ denotes the ratio of target examples with false pseudo

labels. λ = ǫs(h
∗, ys)+ ǫt(h

∗, yt) is the combined error in

two domains of the joint ideal hypothesis h∗, which is the

optimal hypothesis by minimizing the combined error:

h
∗ = argmin ǫs(h, y

s) + ǫt(h, y
t). (11)

Lemma 1 decomposes the bound into three terms: do-

main discrepancy dH∆H(Ds,Dt) measured by the dis-

agreement of hypothesis in the space H, the error λ of the

ideal joint hypothesis and the ratio ρ of the noise in pseu-

do labels. In TPN, the first term is assessed through quan-

tifying class-level discrepancy of prototypes and sample-

level discrepancy over score distributions across different

domains. As stated in [1], when the combined error λ of the

joint ideal hypothesis is large, there is no classifier that per-

forms well on both domains. Instead, in the most relevant

cases for domain adaptation, λ is usually considered to be

negligibly small and thus the second term can be disregard-

ed. Furthermore, in each iteration, TPN searches for the

optimal hypothesis and improves the accuracy of pseudo-

label prediction on target examples. The increase of correct

pseudo labels in turn benefits the reduction of domain dis-

crepancy. We will empirically verify that the third term ρ of

the noise in pseudo labels is iteratively decreased in Section

4.3. As such, TPN constantly tightens the bound in Eq.(10).

2243

4. Experiments

We conduct extensive evaluations of TPN for unsuper-

vised domain adaptation from four domain shifts, including

three Digits image transfer across three Digits datasets (i.e.,

MNIST [10], USPS [3] and SVHN [19]) and one synthetic-

to-real image transfer on VisDA 2017 dataset [21].

4.1. Datasets and Experimental Settings

Datasets. The MNIST (M) and USPS (U) image dataset-

s are both handwritten Digits datasets containing 10 class-

es of digits. The MNIST dataset consists of 70k images

and the USPS dataset includes 9.3k images. Unlike the t-

wo, the SVHN (S) dataset is a real-world Digits dataset of

house numbers in Google street view images and contains

100k cropped Digits images. The VisDA 2017 dataset is

the largest synthetic-to-real object classification dataset to

date with over 280k images in the training, validation and

testing splits (domains). All the three domains share the

same 12 object categories. The training domain consists of

152k synthetic images which are generated by rendering 3D

models of the same object categories from different angles

and under different lighting conditions. The validation do-

main includes 55k images by cropping object in real images

from COCO [12]. The testing domain contains 72k images

cropped from video frames in YT-BB [22].

Digits Image Transfer. Following [30], we consider

three directions: M → U, U → M and S → M, for unsu-

pervised domain adaptation among Digits datasets. For the

transfer between MNIST and USPS, we sample 2k images

from MNIST and 1.8k images from USPS as in [30]. For S

→ M, the two training sets are fully utilized. In addition, the

CNN architecture for the three Digits image transfer tasks

is a simple modified version of [10] (2 conv-layer LeNet),

which is also exploited in [30].

Synthetic-to-Real Image Transfer. The second experi-

ment was conducted over the most challenging synthetic-to-

real image transfer task in VisDA 2017. As the annotations

of the testing data in VisDA are not publicly available, we

take the training data (i.e., synthetic images) as source do-

main and the validation data (i.e., cropped COCO images)

as target domain. Moreover, we adopt 50-layer ResNet [7]

pre-trained on ImageNet [23] as our basic CNN structure.

Implementation Details. The two tradeoff parameters

α and β in Eq.(8) are simply set as 1. A common practice

in unsupervised domain adaption is the lack of annotations

in target domain, making the parameters unable to be well

estimated. As such, we directly fix the tradeoff parameter-

s in all the experiments. We strictly follow [2, 30] and set

the embedding size m as 10/512 for Digits/synthetic-to-real

image transfer. We mainly implement TPN based on Caffe

[8]. Specifically, the network weights are trained by ADAM

[9] with 0.0005 weight decay and 0.9/0.999 momentum for

Digits/synthetic-to-real image transfer. The learning rate

and mini-batch size are set as 0.0002/0.00001 and 128/60

for Digits/synthetic-to-real image transfer. The maximum

training iteration is set as 70k for all the experiments. More-

over, following [30], we pre-train TPN on labeled source

data. For Digits image transfer tasks, we adopt the clas-

sification accuracy on target domain as evaluation metric.

For synthetic-to-real image transfer, we measure the per-

category classification accuracy on target domain. The final

metric is the average of accuracy over all categories.

Compared Methods. To empirically verify the mer-

it of our TPN, we compare the following approaches:

(1) Source-only directly exploits the classification model

trained on source domain to classify target samples. (2)

RevGrad [4] treats domain confusion as a binary classifi-

cation task and trains the domain discriminator via gradient

reversal. (3) DC [29] explores a Domain Confusion loss

measured in domain discriminator for unsupervised domain

adaptation. (4) DAN [15] utilizes multiple kernel variant of

MMD to align feature representations from multiple layers.

(5) RTN [17] extends DAN by adapting classifiers through

a residual transfer module. (6) ADDA [30] designs an u-

nified unsupervised domain adaptation model based on ad-

versarial learning objectives. (7) JAN [16] learns a transfer

model by aligning joint distributions of the network activa-

tion of multiple layers across domains. (8) MCD [25] align-

s distributions of source and target domains by utilizing the

task-specific decision boundaries. (9) S-En [2] explores the

mean teacher variant of temporal ensembling [28] for un-

supervised domain adaptation. (10) TPN is the proposal in

this paper. Moreover, two slightly different settings of TPN

are named as TPNgen and TPNtask which are trained with

only general-purpose and task-specific adaptation, respec-

tively. (11) Train-on-target is an oracle run that trains the

classifier on all labeled target samples.

4.2. Performance Comparison

Digits Image Transfer. Table 1(a) shows the perfor-

mance comparisons on three transfer directions among Dig-

its datasets. Overall, the results across three adaptations

consistently indicate that our proposed TPN achieves supe-

rior performances against other state-of-the-art techniques

including MMD based models (DAN, RTN, JAN) and do-

main discriminator based approaches (RevGrad, DC, AD-

DA, MCD). In particular, the accuracy of TPN can achieve

92.1% and 94.1% on the adaptation of M → U and U →
M, making the absolute improvement over the best com-

petitor ADDA by 2.7% and 4%, respectively, which is gen-

erally considered as a significant progress on the adapta-

tion between MNIST and USPS. It is noteworthy that com-

pared to JAN, our TPN also promotes the classification ac-

curacy evidently on the harder transfer S → M, where the

source and target domains are substantially different. The

results in general highlight the key importance of exploring

2244

Table 1. Classification accuracy (%) of different methods for (a) Digits image transfer across MNIST (M), USPS (U) and SVHN (S), and

(b) Synthetic-to-real image transfer on VisDA 2017 dataset. For digits image transfer, ∗ indicates the results are directly drawn from [30].

For synthetic-to-real image transfer, † indicates the results are directly drawn from [25] and [2], respectively.

(a) Digits image transfer.

Method M → UU → MS → M

Source-only∗ 75.2 57.1 60.1

RevGrad [4]∗ 77.1 73.0 73.9

DC [29]∗ 79.1 66.5 68.1

DAN [15] 80.3 77.8 73.5

RTN [17] 82.0 81.2 75.3

ADDA [30]∗ 89.4 90.1 76.0

JAN [16] 84.4 83.4 78.4

MCD [25] 90.0 88.5 83.3

TPNgen 91.3 93.5 90.2

TPNtask 88.1 88.0 88.8

TPN 92.1 94.1 93.0

Train-on-target 92.3 96.8 96.8

(b) Synthetic-to-real image transfer.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Source-only 70.6 51.8 55.8 68.9 77.9 7.6 93.3 34.5 81.1 27.9 88.6 5.6 55.3

RevGrad [4] 75.9 70.5 65.3 17.3 72.8 38.6 58.0 77.2 72.5 40.4 70.4 44.7 58.6

DC [29] 63.6 38.4 71.2 61.4 71.4 10.9 86.6 43.5 70.2 47.7 79.8 21.6 55.5

DAN [15] 61.7 54.8 77.7 32.2 75.0 80.8 78.3 46.9 66.9 34.5 79.6 29.1 59.8

RTN [17] 79.5 59.6 78.0 47.4 82.7 82.0 84.7 54.7 81.6 34.5 74.2 6.6 63.8

JAN [16] 92.1 66.4 81.4 39.6 72.5 70.5 81.5 70.5 79.7 44.6 74.2 24.6 66.5

MCD [25]† 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

TPNgen 94.5 86.8 76.8 49.7 92.1 12.5 84.7 75.2 92.1 86.8 84.1 47.4 73.6

TPNtask 89.2 62.8 71.7 83.5 90.6 24.6 88.8 91.1 89.8 74.7 69.1 36.1 72.7

TPN 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4

S-En+Mini-aug [2]† 92.9 84.9 71.6 41.2 88.8 92.4 67.5 63.5 84.5 71.8 83.2 48.1 74.2

S-En+Test-aug [2]† 96.3 87.9 84.7 55.7 95.9 95.2 88.6 77.4 93.3 92.8 87.5 38.2 82.8

Train-on-target 99.5 91.9 97.3 96.8 98.3 98.5 94.1 96.2 99.0 98.2 97.9 82.3 95.8

both class-level and sample-level domain discrepancy vi-

a general-purpose and task-specific adaptation in unsuper-

vised domain adaptation, leading to more domain-invariant

feature representations.

The performances of Source-only which trains the clas-

sifier only on labeled source data could be regarded as a

lower bound without domain adaptation. By additionally

incorporating the domain adaptation term (MMD/domain

discriminator), RevGrad, DC, DAN, RTN, ADDA, JAN

and MCD lead to a large performance boost over Source-

only, which basically indicates the advantage of measuring

the domain discrepancy/domain confusion over the source

and target data. Furthermore, the performances of them on

harder transfer S → M are much lower than our TPNgen

and TPNtask which exploits the class-level/sample-level

domain discrepancy in Prototypical Networks by matching

the prototypes across domains for each class and score dis-

tributions of different classifiers (i.e., prototypes) for each

sample, respectively. This confirms the effectiveness of

leveraging class-level and sample-level domain discrepancy

in general-purpose and task-specific adaptation, especially

between more distinct domains. For the two easy trans-

fer tasks between MNIST and USPS, TPNtask is inferior

to ADDA, MCD and TPNgen, which indicates that sole-

ly matching score distributions of each sample might inject

noise more easier than domain discriminator/class-level do-

main discrepancy on transfer task across similar domain-

s. In addition, by simultaneously utilizing both general-

purpose and task-specific adaptation, our TPN consistent-

ly boosts up the performances on all the three Digits im-

age transfer tasks. The results demonstrate the advantage

of jointly leveraging multi-granular domain discrepancy at

class level and sample level for unsupervised domain adap-

tation. Note that we exclude the published results of S-En

in this comparison as S-En is originally built with deeper

CNNs (i.e., 9 conv layers) on Digits image datasets and our

TPN is based on 2 conv-layer LeNet. When equipped with

the same CNNs in S-En, the accuracy of our TPN is boosted

up to 98.6% on M → U which is higher than 98.3% of S-En.

Synthetic-to-Real Image Transfer. The performance

comparisons for synthetic-to-real image transfer task on

VisDA 2017 dataset are summarized in Table 1(b). Here

the results of S-En are all reported on the setting with mul-

tiple data augmentations (DA). Our TPN performs consis-

tently better than other runs without any DA involved. In

particular, the mean accuracy across all the 12 categories

can reach 80.4%, making the absolute improvement over

JAN by 13.9%. Similar to the observations on the hard

Digits image transfer S → M, TPNgen and TPNtask ex-

hibit better performance than JAN by taking class-level and

sample-level domain discrepancy into account for unsuper-

vised domain adaptation. In addition, TPNgen performs

better than TPNtask and a larger degree of improvemen-

t is attained when exploiting both general-purpose and task-

specific adaptation by TPN. Please note that the highest ac-

curacy 82.8% of S-En is equipped with the test-time aug-

mentation (Test-aug), i.e., averaged predictions of 16 differ-

ent augmentations of each image, while the accuracy 80.4%

of our TPN is on single model without any DA. When re-

lying on one kind of DA (Mini-aug), S-En only achieves

74.2% which is still lower than ours.

4.3. Experimental Analysis

Feature Visualization. Figure 2(a)-(b) depict the t-SNE

[18] visualizations of features learnt by Source-only and our

TPN on VisDA 2017 dataset (10k samples in each domain).

We can see that the distribution of target sample is far from

that of source samples for Source-only run without domain

adaptation. Through domain adaptation by TPN, the two

distributions are brought closer, making the target distribu-

2245

(a) t-SNE: Source-only (b) t-SNE: TPN (c) CM: Source-only (d) CM: JAN (e) CM: TPN (f) CM: Train-on-target

Figure 2. (a)-(b): The t-SNE visualization of features generated by Source-only and TPN (gray: source, blue: target). (c)-(f): The Confusion

Matrix (CM) visualization for Source-only, JAN, TPN and Train-on-target.

(i) Accuracy & Losses vs. Iterations
1kNumber of Iterations ()

Source TargetSSourceSource TTTargetTarget

(a) Iteration: 0

Source TargetSSource TTTargetTarget

(b) Iteration: 2k

Source TargetSSource TTTargetg

(c) Iteration: 5k

(d) Iteration: 10k

(a) Iteration: 0

(d) Iteration: 10k

Source Target

(d) Iteration: 10k

SSource TTargetg

(e) Iteration: 15k

(b) Iteration: 2k

(e) Iteration: 15k

Source Target

(e) Iteration: 15k

SSource TTargetg

(h) Iteration: 50k

(e) Iteration: 15k

(h) Iteration: 50k

Source Target

(h) It ti 50k

SSSource TTargetg
(d) Iteration: 10k

Source TargetSSSource TTargetg

(g) Iteration: 30k

(c) Iteration: 5k
Source TargetSSource TTargetg

(f) Iteration: 20k

0.55
0.6
0.65
0.7
0.75
0.8

0

1

2

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Class-level domain discrepancy loss
Sample-level domain discrepancy loss
Accuracy

Figure 3. (a)-(h): The t-SNE visualizations of features generated by TPN with the increase of the iteration on VisDA. (i): Accuracy &

Class-level and sample-level domain discrepancy losses with the increase of the iteration on VisDA (better viewed in color).

tion indistinguishable from the source one.

Confusion Matrix Visualization. Figure 2(c)-(f) show

the visualizations of confusion matrix for the classifier

learnt by Source-only, JAN, our TPN and Train-on-target

on VisDA. Examining the confusion matrix of Source-only

reveals that the domain shift is relatively large and the ma-

jority of the confusion are observed between objects with

similar 3D structures, e.g., knife & skateboard (sktbrd) and

truck & car. Through domain adaptation by JAN and TPN,

the confusion is reduced for most classes. In particular, a-

mong all the 12 categories, TPN achieves higher accuracies

than JAN for 10 categories, demonstrating that the features

learnt by our TPN are more discriminative on target domain.

Convergence Analysis. To illustrate the convergence of

our TPN, we visualize the evolution of the embedded repre-

sentation of a subset on VisDA 2017 dataset (10k samples

for each domain) with t-SNE during training. Figure 3(a)-

(h) illustrate that the target classes are becoming increas-

ingly well discriminated by TPN source classifier. Figure

3(i) further depicts that the accuracy constantly increases

(i.e., the noise of the pseudo labels ρ decreases) and the t-

wo adaptation losses decrease when iterating more steps.

Specifically, at the initial time, the ratio ρ of target exam-

ples with false pseudo labels is 44.7%, i.e., only 55.3% of

target samples are assigned with the correct labels. With

the increase of training iterations of our TPN, such noise of

pseudo labels ρ is gradually decreased and the final accu-

racy will be boosted up to 80.4% after model convergence.

This again verifies that minimizing class-level and sample-

level domain discrepancy will lead to better adaptation.

5. Conclusions

We have presented Transferrable Prototypical Networks

(TPN), which explores domain adaptation in an unsuper-

vised manner. Particularly, we study the problem from the

viewpoint of both general-purpose and task-specific adap-

tation. To verify our claim, we have devised the measure of

each adaptation in the framework of prototypical network-

s. The general-purpose adaptation is to push the prototype

of each class computed in each domain to be close in the

embedding space, resulting in invariant representation dis-

tribution across domains in general. The task-specific adap-

tation further takes the decisions of classifiers into account

when aligning feature distributions, which ideally leads to

domain-invariant representations. Experiments conducted

on the transfers across MNIST, USPS and SVHN dataset-

s validate our proposal and analysis. More remarkably, we

achieve new state-of-the-art performance of single model on

synthetic-to-real image transfer in VisDA 2017 challenge.

2246

References

[1] Shai Ben-David, John Blitzer, Koby Crammer, Alex

Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.

A theory of learning from different domains. Machine learn-

ing, 2010.

[2] Geoffrey French, Michal Mackiewicz, and Mark Fisher.

Self-ensembling for domain adaptation. In ICLR, 2018.

[3] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The

elements of statistical learning. Springer series in statistics

New York, 2001.

[4] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In ICML, 2015.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing X-

u, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[6] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-

hard Schölkopf, and Alexander Smola. A kernel two-sample

test. Journal of Machine Learning Research, 2012.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[8] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarra-

ma, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In ACM MM, 2014.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for s-

tochastic optimization. In ICLR, 2015.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 1998.

[11] Dong-Hyun Lee. Pseudo-label: The simple and efficient

semi-supervised learning method for deep neural network-

s. In Workshop on Challenges in Representation Learning,

ICML, 2013.

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[13] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversar-

ial networks. In NIPS, 2016.

[14] Fuchen Long, Ting Yao, Qi Dai, Xinmei Tian, Jiebo Luo, and

Tao Mei. Deep domain adaptation hashing with adversarial

learning. In SIGIR, 2018.

[15] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-

dan. Learning transferable features with deep adaptation net-

works. In ICML, 2015.

[16] Mingsheng Long, Jianmin Wang, and Michael I Jordan.

Deep transfer learning with joint adaptation networks. In

ICML, 2017.

[17] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Unsupervised domain adaptation with residual trans-

fer networks. In NIPS, 2016.

[18] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. JMLR, 2008.

[19] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissac-

co, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. In Workshop on

Deep Learning and Unsupervised Feature Learning, NIPS,

2011.

[20] Sinno Jialin Pan, James T Kwok, and Qiang Yang. Transfer

learning via dimensionality reduction. In AAAI, 2008.

[21] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,

Dequan Wang, and Kate Saenko. VisDA: The visual domain

adaptation challenge. arXiv preprint arXiv:1710.06924,

2017.

[22] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. Youtube-boundingboxes: A large

high-precision human-annotated data set for object detection

in video. In CVPR, 2017.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 2015.

[24] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.

Asymmetric tri-training for unsupervised domain adaptation.

In ICML, 2017.

[25] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In CVPR, 2018.

[26] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical

networks for few-shot learning. In NIPS, 2017.

[27] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frus-

tratingly easy domain adaptation. In AAAI, 2016.

[28] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In NIPS, 2017.

[29] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In IC-

CV, 2015.

[30] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrel-

l. Adversarial discriminative domain adaptation. In CVPR,

2017.

[31] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[32] Riccardo Volpi, Pietro Morerio, Silvio Savarese, and Vittorio

Murino. Adversarial feature augmentation for unsupervised

domain adaptation. In CVPR, 2018.

[33] Ting Yao, Chong-Wah Ngo, and Shiai Zhu. Predicting do-

main adaptivity: redo or recycle? In ACM MM, 2012.

[34] Ting Yao, Yingwei Pan, Chong-Wah Ngo, Houqiang Li, and

Tao Mei. Semi-supervised domain adaptation with subspace

learning for visual recognition. In CVPR, 2015.

[35] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao

Mei. Fully convolutional adaptation networks for semantic

segmentation. In CVPR, 2018.

2247

