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Abstract

Volumetric (4D) performance capture is fundamental for

AR/VR content generation. Whereas previous work in 4D

performance capture has shown impressive results in studio

settings, the technology is still far from being accessible to

a typical consumer who, at best, might own a single RGBD

sensor. Thus, in this work, we propose a method to synthe-

size free viewpoint renderings using a single RGBD camera.

The key insight is to leverage previously seen “calibration”

images of a given user to extrapolate what should be ren-

dered in a novel viewpoint from the data available in the

sensor. Given these past observations from multiple view-

points, and the current RGBD image from a fixed view, we

propose an end-to-end framework that fuses both these data

sources to generate novel renderings of the performer. We

demonstrate that the method can produce high fidelity im-

ages, and handle extreme changes in subject pose and cam-

era viewpoints. We also show that the system generalizes to

performers not seen in the training data. We run exhaustive

experiments demonstrating the effectiveness of the proposed

semi-parametric model (i.e. calibration images available to

the neural network) compared to other state of the art ma-

chine learned solutions. Further, we compare the method

with more traditional pipelines that employ multi-view cap-

ture. We show that our framework is able to achieve com-

pelling results, with substantially less infrastructure than

previously required.

1. Introduction

The rise of Virtual and Augmented Reality has increased the

demand for high quality 3D content to create compelling

user experiences where the real and virtual world seam-

lessly blend together. Object scanning techniques are al-

ready available for mobile devices [30], and they are already

integrated within AR experiences [20]. However, neither

the industrial nor the research community have yet been

Figure 1. We propose a novel formulation to synthesize volumet-

ric renderings of human from arbitrary viewpoints. Our system

combines previously seen observations of the user (calibration im-

ages) with the current RGBD image. Given an arbitrary camera

position we can generate images of the performer handling differ-

ent user poses and generalizing to unseen subjects.

able to devise practical solutions to generate high quality

volumetric renderings of humans.

At the cost of reduced photo-realism, the industry is cur-

rently overcoming the issue by leveraging “cartoon-like”

virtual avatars. On the other end of the spectrum, complex

capture rigs [7, 39, 3] can be used to generate very high

quality volumetric reconstructions. Some of these meth-

ods [8, 18] are well established, and lie at the foundation

of special effects in many Hollywood productions. De-

spite their success, these systems rely on high-end, costly

infrastructure to process the high volume of data that they

capture. The required computational time of several min-

utes per frame make them unsuitable for real-time applica-

tions. Another way to capture humans is to extend real-time

non-rigid fusion pipelines [35, 23, 44, 45, 22] to multi-view

capture setups [12, 36, 11]. However, the results still suf-

fer from distorted geometry, poor texturing and inaccurate

lighting, making it difficult to reach the level of quality re-

quired in AR/VR applications [36]. Moreover, these meth-

ods rely on multi-view capture rigs that require several (≈
4-8) calibrated RGBD sensors.
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Conversely, our goal is to make the volumetric capture tech-

nology accessible through consumer level hardware. Thus,

in this paper, we focus on the problem of synthesizing vol-

umetric renderings of humans. Our goal is to develop a

method that leverages recent advances in machine learn-

ing to generate 4D videos using as little infrastructure as

possible – a single RGBD sensor. We show how a semi-

parametric model, where the network is provided with cal-

ibration images, can be used to render an image of a novel

viewpoint by leveraging the calibration images to extrapo-

late the partial data the sensor can provide. Combined with

a fully parametric model, this produces the desired render-

ing from an arbitrary camera viewpoint; see Fig. 1.

In summary, our contribution is a new formulation of volu-

metric capture of humans that employs a single RGBD sen-

sor, and that leverages machine learning for image render-

ing. Crucially, our pipeline does not require complex infras-

tructure typically required by 4D video capture setups.

We perform exhaustive comparisons with machine learned,

as well as traditional state-of-the-art capture solutions,

showing how the proposed system generates compelling re-

sults with minimal infrastructure requirements.

2. Related work

Capturing humans in 3D is an active research topic in the

computer vision, graphics, and machine learning communi-

ties. We categorize related work into three main areas that

are representative of the different trends in the literature:

image-based rendering, volumetric capture, and machine

learning solutions.

Image based rendering. Despite their success, most of

methods in this class do not infer a full 3D model, but

can nonetheless generate renderings from novel viewpoints.

Furthermore, the underlying 3D geometry is typically a

proxy, which means they cannot be used in combination

with AR/VR where accurate, metric reconstructions can en-

able additional capabilities. For example, [9, 21], create

impressive renderings of humans and objects, but with lim-

ited viewpoint variation. Modern extensions [1, 41] pro-

duce 360◦ panoramas, but with a fixed camera position. The

method of Zitnick et al. [50] infers an underlying geomet-

ric model by predicting proxy depth maps, but with a small

30◦ coverage, and the rendering heavily degrades when the

interpolated view is far from the original. Extensions to

these methods [14, 4, 47] have attempted to circumvent

these problems by introducing an optical flow stage warping

the final renderings among different views, but with limited

success.

Volumetric capture. Commercial volumetric reconstruc-

tion pipelines employ capture studio setups to reach the

highest level of accuracy [7, 39, 12, 11, 36]. For in-

stance, the system used in [7, 39], employs more than 100
IR/RGB cameras, which they use to accurately estimate

depth, and then reconstruct 3D geometry [27]. Non-rigid

mesh alignment and further processing is then performed to

obtain a temporally consistent atlas for texturing. Roughly

28 minutes per frame are required to obtain the final 3D

mesh. Currently, this is the state-of-the-art system, and

is employed in many AR/VR productions. Other methods

[51, 35, 12, 11, 36, 13], further push this technology by us-

ing highly customized, high speed RGBD sensors. High

framerate cameras [16, 15, 46] can also help make the non-

rigid tracking problem more tractable, and compelling vol-

umetric capture can be obtained with just 8 custom RGBD

sensors rather than hundreds [28]. However these methods

still suffer from both geometric and texture aberrations, as

demonstrated by Dou et al. [11] and Du et al. [13].

Machine learning techniques. The problem of generat-

ing images of an object from novel viewpoints can also be

cast from a machine learning, as opposed to graphics, stand-

point. For instance, Dosovitskiy et al. [10] generates re-

renderings of chairs from different viewpoints, but the qual-

ity of the rendering is low, and the operation is specialized to

discrete shape classes. More recent works [25, 38, 49] try to

learn the 2D-3D mapping by employing some notion of 3D

geometry, or to encode multiview-stereo constraints directly

in the network architecture [17]. As we focus on humans,

our research is more closely related to works that attempt to

synthesize 2D images of humans [48, 2, 43, 32, 31, 34, 5].

These focus on generating people in unseen poses, but usu-

ally from a fixed camera viewpoint (typically frontal) and

scale (not metrically accurate). The coarse-to-fine GANs of

[48] synthesizes images that are still relatively blurry. Ma et

al. [31] detects pose in the input, which helps to disentan-

gle appearance from pose, resulting in improved sharpness.

Even more complex variants [32, 43] that attempt to dis-

entangle pose from appearance, and foreground from back-

ground, still suffer from multiple artifacts, especially in oc-

cluded regions. A dense UV map can also be used as a

proxy to re-render the target from a novel viewpoint [34],

but high-frequency details are still not effectively captured.

Of particular relevance is the work by Balakrishnan et al.

[2], where through the identification and transformation of

body parts results in much sharper images being generated.

Nonetheless, note how this work solely focuses on frontal

viewpoints.

Our approach. In direct contrast, our goal is to render a

subject in unseen poses and arbitrary viewpoints, mimick-

ing the behavior of volumetric capture systems. The task

at hand is much more challenging because it requires dis-

entangling pose, texture, background and viewpoint simul-

taneously. This objective has been partially achieved by

9710



Martin-Brualla et al. [33] by combining the benefits of ge-

ometrical pipelines [11] to those of convolutional architec-

tures [42]. However, their work still necessitates a complete

mesh being reconstructed from multiple viewpoints. In con-

trast, our goal is to achieve the same level of photo-realism

from a single RGBD input. To tackle this, we resort to a

semi-parametric approach [40], where a calibration phase

is used to acquire frames of the users appearance from a

few different viewpoints. These calibration images are then

merged together with the the current view of the user in an

end-to-end fashion. We show that the semi-parametric ap-

proach is the key to generating high quality, 2D renderings

of people in arbitrary poses and camera viewpoints.

3. Proposed Framework

As illustrated in Figure 1, our method receives as input:

1) an RGBD image from a single viewpoint, 2) a novel cam-

era pose with respect to the current view and 3) a collection

of a few calibration images observing the user in various

poses and viewpoints. As output, it generates a rendered

image of the user as observed from the new viewpoint. Our

proposed framework is visualized in Figure 2, and includes

the four core components outlined below.

Re-rendering & Pose Detector: from the RGBD image

Ī captured from a camera v̄, we re-render the colored

depthmap from the new camera viewpoint v to generate

an image Icloud, as well as its approximate normal map N .

Note we only re-render the foreground of the image, by

employing a fast background subtraction method based on

depth and RGB as described in [15]. We also estimate the

pose κ of the user, i.e. keypoints, in the coordinate frame of

v, as well as a scalar confidence c, measuring the divergence

between the camera viewpoints:

Icloud, κ,N, c = R(Ī , v̄, v). (1)

Calibration Image Selector: from the collection of cali-

bration RGBD images and poses {Īncalib, κ̄
n
calib}, we select

one that best resembles the target pose κ in the viewpoint v:

Īcalib, κ̄calib = S({Īncalib, κ̄
n
calib}, κ). (2)

Calibration Image Warper: given the selected calibra-

tion image Īcalib and the user’s pose κ̄calib, a neural network

W with learnable parameters ω warps this image into the

desired pose κ, while simultaneously producing the silhou-

ette mask I•warp of the subject in the new pose:

Iwarp, I
•

warp = Wω(Īcalib, κ̄calib, κ). (3)

Neural Blender: finally, we blend the information cap-

tured by the traditional re-rendering in (1) to the warped

calibration image (3) to produce our final image Iout:

Iout = Bβ(Icloud, Iwarp, I
•

warp, N, c). (4)

Note that while (1) and (2) are not learnable, they extract

quantities that express the geometric structure of the prob-

lem. Conversely, both warper (3) and (4) are differentiable

and trained end-to-end where the loss is the weighted sum

between warper Lwarper and blender Lblender losses. The

weights ωwarper and ωblender are chosen to ensure similar con-

tributions between the two. We now describe each compo-

nent in details, motivating the design choices we took.

3.1. Rerendering & Pose Detector

We assume that camera intrinsic parameters (optical cen-

ter o and focal length f ) are known and thus the function

Π−1(p, z|o, f) : R
3 7→ R

3 maps a 2D pixel p = (x, y)
with associated depth z to a 3D point in the local camera

coordinate frame.

Rendering → Icloud. Via the function Π−1, we first con-

vert the depth channel of Ī into a point cloud of size M in

matrix form as P̄∈R
4×M . We then rotate and translate this

point cloud into the novel viewpoint coordinate frame as

P = TP̄, where T∈R
4×4 is the homogeneous transforma-

tion representing the relative transformation between v̄ and

v. We render P to a 2D image Icloud in OpenGL by splatting

each point with a 3 × 3 kernel to reduce re-sampling arti-

facts. Note that when input and novel camera viewpoints

are close, i.e. v̄ ∼ v, then Iout ∼ Icloud, while when v̄ ≁ v
then Icloud would mostly contain unusable information.

Pose detection → κ. We also infer the pose of the user by

computing 2D keypoints κ̄2D = Kγ(Ī) using the method of

Papandre et al. [37] where K is a pre-trained feed-forward

network. We then lift 2D keypoints to their 3D counter-

parts κ̄ by employing the depth channel of Ī and, as before,

transform them in the camera coordinate frame v as κ. We

extrapolate missing keypoints when possible relying on the

rigidity of the limbs, torso, face, otherwise we simply dis-

card the frame. Finally, in order to feed the keypoints κ
to the networks in (3) and (4) following the strategy in [2]:

we encode each point in an image channel (for a total of

17 channels) as a Gaussian centered around the point with

a fixed variance. We tried other representations, such as the

one used in [43], but found that the selected one lead to

more stable training.

Confidence and normal map → c,N . In order for (4)

to determine whether a pixel in image Icloud contains ap-

propriate information for rendering from viewpoint v we

provide two sources of information: a normal map and a

confidence score. The normal map N , processed in a way

analogous to Icloud, can be used to decide whether a pixel

in Ī has been well observed from the input measurement

v̄ (e.g. the network should learn to discard measurements

taken at low-grazing angles). Conversely, the relationship

between v̄ and v, encoded by c, can be used to infer whether
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Figure 2. Proposed framework – We take in input the current RGBD image, a novel viewpoint and a collection of images acquired in a

calibration stage, which depict the users in different poses observed from several viewpoints. The Re-rendering & pose-detector projects

the texture using depth information and re-project back to the final viewpoint, together with the target pose. We also compute a confidence

score of the current observations with respect to the novel viewpoint. This score is encoded in the normal map N and the confidence c. The

Calibration Image Selector picks the closest image (in terms of viewpoint) from a previously recorded calibration bank. The Calibration

Image Warper tries to align the selected calibration image with the current pose, it also produces a silhouette mask. The Neural Blender

combines the information from the warped RGB image, aligned calibration image, silhouette image and viewpoint confidence to recover

the final, highly detailed RGB image.

a novel viewpoint is back-facing (i.e. c < 0) or front-facing

it (i.e. c > 0). We compute this quantity as the dot product

between the cameras view vectors: c = [0, 0, 1] · rz/‖rz‖,

where v̄ is always assumed to be the origin and rz is the

third column of the rotation matrix for the novel camera

viewpoint v. An example of input and output of this mod-

ule can be observed in Figure 2, top row.

3.2. Calibration Image Selector

In a pre-processing stage, we collect a set of calibration im-

ages {Īncalib} from the user with associated poses {κ̄n
calib} .

For example, one could ask the user to rotate in front of the

camera before the system starts; an example of calibration

set is visualized in the second row of Figure 2. While it is

unreasonable to expect this collection to contain the user in

the desired pose, and observed exactly from the viewpoint

v, it is assumed the calibration set will contain enough in-

formation to extrapolate the appearance of the user from the

novel viewpoint v. Therefore, in this stage we select a rea-

sonable image from the calibration set that, when warped

by (3) will provide sufficient information to (4) to produce

the final output. We compute a score for all the calibration

images, and the calibration image with the highest score is

selected. A few examples of the selection process are shown

in the supplementary material. Our selection score is com-

posed of three terms:

Sn = ωheadS
n
head + ωtorsoS

n
torso + ωsimS

n
sim (5)

From the current 3D keypoints κ, we compute a 3D unit

vector representing the forward looking direction of the

user’s head. The vector is computed by creating a local co-

ordinate system from the keypoints of the eyes and nose.

Analogously, we compute 3D unit vectors {dncalib} from the

calibration images keypoints {κ̄n
calib}. The head score is

then simply the dot product Sn
head = d · dncalib, and a similar

process is adopted for Sn
torso, where the coordinate system

is created from the left/right shoulder and the left hip key-

points. These two scores are already sufficient to accurately

select a calibration image from the desired novel viewpoint,

however they do not take into account the configuration of

the limbs. Therefore we introduce a third term, Sn
sim, that

computes a similarity score between the keypoints κ̄n
calib in

the calibration images to those in the target pose κ. To sim-
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Figure 3. The Calibration Warper takes as input the selected cal-

ibration the selected calibration image Īcalib and pose κ̄calib and

aligns it to the target pose κ. It also produces a foreground mask

I
•

warp. For visualization purposes multiple channels are collapsed

into a single image. See text for details.

plify the notation, we refer to κ̂ and κ̂n
calib as the image-space

2D coordinates of keypoints in homogeneous coordinates.

We can compute a similarity transformation (rotation, trans-

lation, scale) Tn ∈R
3×3 that aligns the two sets. Note that

at least 2 points are needed to estimate our 4 DOF trans-

formation (one for rotation, two for translation, and one for

scale), therefore we group arm keypoints (elbow, wrist) and

leg keypoints (knee, foot) together. For instance, for all the

keypoints belonging to the left arm group (LA) we calcu-

late:

argmin
TLA

n

∑

LA

‖κ̂LA −TLA
n κ̂n,LA

calib ‖2 (6)

We then define the similarity score as:

SLA = exp(−σ‖κ̂−TLA
n κ̂n,LA

calib ‖) (7)

The final Sn
sim is the sum of the scores for the 4 limbs (in-

dexed by j). The weights ωj are tuned to give more impor-

tance to head and torso directions, which define the desired

target viewpoint. The calibration image Īcalib with the re-

spective pose κ̄calib with the highest score S̄ is returned from

this stage. All the details regarding the chosen parameters

can be found in the supplementary material.

3.3. Calibration Warper

The selected calibration image Īcalib should have a similar

viewpoint to v, but the pose κ̄calib could still be different

from the desired κ, as the calibration set is small. There-

fore, we warp Īcalib to obtain an image Iwarp, as well as its

silhouette I•warp. The architecture we designed is inspired by

Balakrishnan et al. [2], which uses U-NET modules [42];

see Figure 3 for an overview.

The calibration pose κ̄calib tensor (17 channels, one per key-

point) and calibration image Īcalib go through a U-NET

module that produces as output part masks {I•part,p} plus a

background mask I•bg. These masks select which regions of

the body should be warped according to a similarity trans-

formation. Similarly to [2], the warping transformations

are not learned, but computed via (6) on keypoint groups

of at least two 2D points; we have 10 groups of keypoints

(see supplementary material for details). The warped tex-

ture Īwarp,p has 3 RGB channels for each keypoints group

p (30 channels in total). However, in contrast to [2], we

do not use the masks just to select pixels to be warped, but

also warp the body part masks themselves to the target pose

κ. We then take the maximum across all the channels and

supervise the synthesis of the resulting warped silhouette

Ī•part warp. We noticed that this is crucial to avoid overfit-

ting, and to teach the network to transfer the texture from

the calibration image to the target view and keeping high

frequency details. We also differ from [2] in that we do

not synthesize the background, as we are only interested in

the performer, but we do additionally predict a background

mask I•bg.

Finally, the 10 channels encoding the per-part texture Īwarp,p

and the warped silhouette mask Ī•part warp go through another

U-NET module that merges the per-part textures and refines

the final foreground mask. Please see additional details in

the supplementary material.

The Calibration Warper is training minimizing multiple

losses:

Lwarp = wW

recL
W

rec + wW

fg LW

fg + wW

bg L
W

bg +

+ wW

fgrefL
W

fgref + wW

GANL
W

GAN,
(8)

where all the weights wW
∗ are empirically chosen such that

all the losses are approximately in the same dynamic range.

Warp reconstruction loss LW
rec. Our perceptual recon-

struction loss LW
rec = ‖VGG(Iwarp)−VGG(Igt)‖2 measures

the difference in VGG feature-space between the predicted

image Iwarp, and the corresponding groundtruth image Igt.

Given the nature of calibration images, Iwarp may lack high

frequency details such as facial expressions. Therefore, we

compute the loss selecting features from conv2 up to conv5

layers of the VGG network.

Warp background loss LW
bg . In order to remove the back-

ground component of [2], we have a loss LW
bg = ‖I•bg −

I•bg,gt‖1 between the predicted mask I•bg and the groundtruth

mask I•bg,gt = 1 − I•gt. We considered other losses (e.g. lo-

gistic) but they all produced very similar results.

Warp foreground loss LW
fg . Each part mask is warped into

target pose κ by the corresponding similarity transforma-

tion. We then merge all the channels with a max-pooling op-

erator, and retrieve a foreground mask Ī•part warp, over which

we impose our loss LW
fg = ‖Ī•part warp − I•gt‖1. This loss is

crucial to push the network towards learning transformation

rather than memorizing the solution (i.e. overfitting).

Warp foreground refinement loss LW
fgref . The warped

part masks I•part,p may not match the silhouette precisely due
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to the assumption of similarity transformation among the

body parts, therefore we also refine the mask producing a

final binary image I•warp. This is trained by minimizing the

loss LW
fgref = ‖I•warp − I•gt‖1.

Warp GAN loss LW
GAN . We finally add a GAN component

that helps hallucinating realistic high frequency details as

shown in [2]. Following the original paper [19] we found

more stable results when used the following GAN compo-

nent: LW
GAN = − log(D(I•warp)), where the discriminator

D consists of 5 conv layers with 256 filters, with max pool-

ing layers to downsample the feature maps. Finally we add

2 fully connected layers with 256 features and a sigmoid

activation to produce the discriminator label.

3.4. Neural Blender

The re-rendered image Icloud can be enhanced by the con-

tent in the warped calibration Iwarp via a neural blending

operation consisting of another U-NET module: please see

the supplementary material for more details regarding the

architecture. By design, this module should always favor

details from Icloud if the novel camera view v is close to

the original v̄, while it should leverage the texture in Iwarp

for back-facing views. To guide the network towards this,

we pass as input the normal map N , and the confidence c,
which is passed as an extra channel to each pixel. These

additional channels contain all the information needed to

disambiguate frontal from back views. The mask I•warp acts

as an additional feature to guide the network towards un-

derstanding where it should hallucinate image content not

visible in the re-rendered image Icloud.

The neural blender is supervised by the following loss:

Lblender = wB

recL
B

rec + wB

GANL
B

GAN (9)

Blender reconstruction loss LB
rec. The reconstruction loss

computes the difference between the final image output

Iout and the target view Igt . This loss is defined LB
rec =

‖VGG(Iout) − VGG(Igt)‖2 + wℓ1‖Iout − Igt‖1. A small

(wℓ1 = 0.01) photometric (ℓ1) loss is needed to ensure

faster color convergence.

Blender GAN loss LB
GAN. This loss follows the same de-

sign of the one described for the calibration warper network.

4. Evaluation

We now evaluate our method and compare with representa-

tive state-of-the-art algorithms. We then perform an abla-

tion study on the main components of the system. All the

results here are shown on test sequences not used during

Figure 4. Examples of input RGBD and groundtruth novel views

with associated masks. Note that in our dataset we have access to

8 novel views for each input frame.

training; additional exhaustive evaluations can be found in

the supplementary material.

4.1. Training Data Collection

The training procedure requires input views from an RGBD

sensor and multiple groundtruth target views. Recent multi-

view datasets of humans, such as Human 3.6M [24], only

provides 4 RGB views and a single low-resolution depth

(TOF) sensor, which is insufficient for the task at hand;

therefore we collected our own dataset with 20 subjects.

Similarly to [33], we used a multi-camera setup with 8
high resolution RGB views coupled with a custom active

depth sensor [46]. All the cameras were synchronized at

at 30Hz by an external trigger. The raw RGB resolution is

4000× 3000, whereas the depth resolution is 1280× 1024.

Due to memory limitations during the training, we down-

sampled also the RGB images to 1280× 1024 pixels.

Each performer was free to perform any arbitrary movement

in the capture space (e.g. walking, jogging, dancing, etc.)

while simultaneously performing facial movements and ex-

pressions. For each subject we recorded 10 sequences of

500 frames. For each participant in the training set, we left 2
sequences out during training. One sequence is used as cal-

ibration, where we randomly pick 10 frames at each train-

ing iteration as calibration images. The second sequence

is used as test to evaluate the performance of a seen actor

but unseen actions. Finally, we left 5 subjects out from the

training datasets to assess the performances of the algorithm

on unseen people.

Silhouette masks generation. As described in Sec. 3.3 and

Sec. 3.4, our training procedure relies on groundtruth fore-

ground and background masks (I•gt and I•bg,gt = 1 − I•gt).

Thus, we use the state-of-the-art body semantic segmenta-
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Figure 5. Comparisons with state of the art methods. Notice how the proposed framework favorably compares with traditional volumetric

capture rigs that use many (8) cameras from multiple viewpoints. Notice that due to its real-time nature, Motion2Fusion [11] can afford

only low resolution (1280× 1024) RGB images for the texturing phase, whereas FVV [7] accepts as input 4000× 3000 images.

tion algorithm by Chen et al. [6] to generate these masks I•gt

which are then refined by a pairwise CRF [29] to improve

the segmentation boundaries. We do not explicit make use

of the semantic information extracted by this algorithm such

as in [33], leaving this for future work. Note that at test

time, the segmentation is not required input, but nonethe-

less we predict a silhouette as a by product as to remove the

dependency on the background structure. Examples of our

training data can be observed in Figure 4. No manual anno-

tation is required hence data collection is fully automatic.

4.2. Comparison with State of the Art

We now compare the method with representative state of

the art approaches: we selected algorithms for compari-

son representative of the different strategies they use. The

very recent method by Balakrishnan et al. [2] was se-

lected as a state of the art machine learning based approach

due to its high quality results. We also re-implemented

traditional capture rig solutions such as FVV [7] and

Motion2Fusion [11]. Finally we compare with Lookin-

Good [33], a hybrid pipeline that combines geometric

pipelines with deep networks. Notice, that these systems

use all the available views (8 cameras in our dataset) as in-

put, whereas our framework relies on a single RGBD view.

Qualitative Results. We show qualitative results on Fig-

ure 5. Notice how our algorithm, using only a single RGBD

Figure 6. Results of the various stage of the pipeline. Notice how

each stage of the system contributes to achieve the final high qual-

ity results, proving the effectivness of our design choices. Finally,

thanks to the semi-parametric model, the algorithm generalizes

well across unseen subjects.

input, outperforms the method of Balakrishnan et al. [2]:

we synthesize sharper results and also handle viewpoint

and scale changes correctly. Additionally, the proposed

framework generates compelling results, often compara-

ble to multiview methods such as LookinGood [33], Mo-
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Proposed Icloud Īcalib Iwarp Balakrishnan et al. [2] LookinGood [33] M2F [11] FVV [7]

1 view 1 view 1 view 1 view 1 view 8 views 8 views 8 views

ℓ1 Loss 17.40 27.27 20.02 18.70 18.01 38.80 33.72 7.39
PSNR 28.43 22.35 21.10 27.32 22.93 29.93 28.21 32.60
MS-SSIM 0.92 0.84 0.87 0.91 0.86 0.92 0.96 0.96
VGG Loss 12.50 21.20 21.41 13.96 20.16 10.65 5.34 6.51

Table 1. Quantitative evaluations on test sequences. We computed multiple metrics such as Photometric Error (ℓ1 loss), PSNR, MS-SSIM

and Perceptual Loss. We compared the method with the output of the rendering stage Icloud, the output of the calibration selector Īcalib and

the output of the calibration warper Iwarp. We also show how our method outperforms on multiple metrics the state of the art method of

Balakrishna et al. [2]. We also favorably compare with full capture rig solutions such as Motion2Fusion [11], FVV [7] and the LookinGood

system [33].

Figure 7. Comparison of the proposed system with the fully para-

metric model. Notice how the semi-parametric part is crucial to

get the highest level of quality.

tion2Fusion [11] or FVV [7].

Quantitative Comparisons. To quantitatively assess and

compare the method with the state of the art, we computed

multiple metrics using the available groundtruth images.

The results are shown in Table 1. Our system clearly out-

performs the multiple baselines and compares favorably to

state of the art volumetric capture systems that use multiple

input views.

4.3. Ablation Study

We now quantitatively and qualitatively analyze each each

stage of the pipeline. In Figure 6 notice how each stage

of the pipeline contributes to achieve the final high quality

result. This proves that each component was carefully de-

signed and needed. Notice also how we can also generalize

to unseen subjects thanks to the semi-parametric approach

we proposed. These excellent results are also confirmed in

the quantitative evaluation we reported in Table 1: note how

the output of the full system consistently outperforms the

one from the re-rendering (Icloud), the calibration image se-

lector (Īcalib), and the calibration image warper (Iwarp). We

refer the reader to the supplementary material for more de-

tailed examples.

Comparison with fully parametric model. In this exper-

iment we removed the semi-parametric part of our frame-

Figure 8. Predictions for viewpoints not in the training set. The

method correctly infers views where no groundtruth is available.

work, i.e. the calibration selector and the calibration warper,

and train the neural blender on the output of the re-renderer

(i.e. a fully parametric model). This is similar to the ap-

proach presented in [33], applied to a single RGBD image.

We show the results in Figure 7: notice how the proposed

semi-parametric model is crucial to properly handle large

viewpoint changes.

Viewpoint generalization. We finally show in Figure 8

qualitative examples for viewpoints not present in the train-

ing set. Notice how we are able to robustly handle those

cases. Please see supplementary materials for more exam-

ples.

5. Conclusions

We proposed a novel formulation to tackle the problem of

volumetric capture of humans with machine learning. Our

pipeline elegantly combines traditional geometry to semi-

parametric learning. We exhaustively tested the framework

and compared it with multiple state of the art methods,

showing unprecedented results for a single RGBD camera

system. Currently, our main limitations are due to sparse

keypoints, which we plan to address by adding additional

discriminative priors such as in [26]. In future work, we

will also investigate performing end to end training of the

entire pipeline, including the calibration keyframe selection

and warping.
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