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Abstract

Single-stage object detectors have recently gained pop-

ularity due to their combined advantage of high detection

accuracy and real-time speed. However, while promising

results have been achieved by these detectors on standard-

sized objects, their performance on small objects is far from

satisfactory. To detect very small/large objects, classical

pyramid representation can be exploited, where an image

pyramid is used to build a feature pyramid (featurized image

pyramid), enabling detection across a range of scales. Ex-

isting single-stage detectors avoid such a featurized image

pyramid representation due to its memory and time com-

plexity. In this paper, we introduce a light-weight archi-

tecture to efficiently produce featurized image pyramid in a

single-stage detection framework. The resulting multi-scale

features are then injected into the prediction layers of the

detector using an attention module. The performance of our

detector is validated on two benchmarks: PASCAL VOC

and MS COCO. For a 300×300 input, our detector oper-

ates at 111 frames per second (FPS) on a Titan X GPU,

providing state-of-the-art detection accuracy on PASCAL

VOC 2007 testset. On the MS COCO testset, our detec-

tor achieves state-of-the-art results surpassing all existing

single-stage methods in the case of single-scale inference.

1. Introduction

Generic object detection is one of the fundamental prob-

lems in computer vision, with numerous real-world appli-

cations in robotics, autonomous driving and video surveil-

lance. Recent advances in generic object detection have

been largely attributed to the successful deployment of

convolutional neural networks (CNNs) in detection frame-

works. Generally, deep object detection approaches can

∗Equal contribution

be roughly divided into two categories: two-stage [13, 14,

16, 29] and single-stage detectors [19, 28, 5]. In two-stage

approaches, object proposals are first generated and later

classified and regressed. Single-stage approaches, on the

other hand, directly regress the default anchors into detec-

tion boxes by sampling grids on the input image. Single-

stage object detectors are generally computationally effi-

cient but inferior in detection accuracy compared to their

two-stage counterparts [18].

Among single-stage methods, the Single Shot Multibox

Detector (SSD) [28] has recently been shown to provide an

optimal tradeoff between speed and detection accuracy. The

standard SSD utilizes a VGG-16 architecture as the base

network and adds further convolutional (conv) feature lay-

ers to the end of the truncated base network. In SSD, inde-

pendent predictions are made by layers of varying resolu-

tions, where shallow or former layers contribute to predict-

ing small objects while deep or later layers are devoted to

detecting large objects. Despite its success, SSD struggles

to handle large scale variations across object instances. In

particular, the detection performance of SSD on small ob-

jects is far from satisfactory [18], which is likely due to the

limited information in shallow or former layers.

Multiple solutions have been proposed in the literature to

alleviate the issues stemming from scale variations. Feature

pyramid is an essential component in many recognition sys-

tems, forming the basic ground for a standard solution [1].

Building feature pyramids from image pyramids (featurized

image pyramids) has long been pursued and employed in

many classical hand-crafted methods [11, 9]. Modern deep

object detectors also typically employ some forms of pyra-

mid representation, even though the CNNs used in these

approaches are robust to scale variation.

For two-stage methods, earlier works [29, 13] advocated

the use of single scale features (see Fig. 1(c)). In contrast,

recent two-stage methods [24] have investigated feature

pyramid to obtain more accurate detection (see Fig. 1(b)).
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(a) Featurized image pyramid (b) Feature pyramid (c) Singe scale feature

(d) Feature pyramid hierarchy (e) Ours

Prediction feature mapLight-weight feature mapImage Standard feature map

Figure 1. Comparison of our approach with different architectures

for multi-scale object detection. (a) Image pyramid for building

feature pyramid where features are constructed from images of

various scales independently. (b) Feature pyramid network em-

ployed in [24] combining features in a layer by layer top-down fu-

sion scheme. (c) Single scale features for faster detection utilized

in Fast and Faster R-CNN [13, 29]. (d) Pyramidal feature hier-

archy employed in standard SSD where feature pyramid is con-

structed by a CNN [28]. (e) Our architecture is accurate like (a)

but efficient due to the proposed light-weight convolutional block

(Sec. 3.2) and integrated with (d).

Here, the objective is to leverage high-level semantics by

up-sampling low-resolution feature maps and fusing them

with high-resolution feature maps. However, such an ap-

proach is still sub-optimal for very small and large sized ob-

jects [32]. For very small objects, even a large up-sampling

factor cannot match the typical resolution (224 × 224) of

pre-trained networks. Consequently, the high-level seman-

tic features generated by the feature pyramid network will

still not be adequate for very small object detection and vice

versa. Further, such an approach is computationally expen-

sive due to the layer-by-layer fusion of many layers.

In the case of single-stage methods, SSD exploits multi-

ple CNN layers in a pyramidal feature hierarchy, producing

feature maps of varying spatial resolutions (see Fig. 1(d)).

However, trading spatial resolution at the cost of high-level

semantic information can affect the performance. In this

work, we aim to improve the accuracy of SSD without sac-

rificing its hallmark speed. We re-visit the classical image

pyramid approach (see Fig. 1(a)), where feature maps of

varying scales are generated by applying a CNN on each

of the image scales separately, in a single-stage detection

framework. However, the standard image pyramid based

feature representation (featurized image pyramids) is slow

since each image scale is passed through a deep CNN to ex-

tract scale-specific feature maps, thereby making its usage

impractical for a high-speed SSD.

Contributions: We introduce a light-weight featurized

image pyramid network (LFIP) to produce a multi-scale

feature representation. Within the LFIP network (see

Fig. 1(e)), an input image is first iteratively downsampled to

construct an image pyramid hierarchy, which is then fed to

a shallow convolutional block, resulting in a feature pyra-

mid where each level of an image pyramid is featurized.

Multi-scale features from the feature pyramid are then com-

bined with the standard SSD features, in an attention mod-

ule, in order to boost the discriminative power. Further-

more, we introduce a forward fusion module to integrate

features from both the former and current layers.

We perform extensive experiments on two benchmarks:

PASCAL VOC and MS COCO. Our detector provides su-

perior results on both datasets compared to existing single-

stage methods. Further, our approach provides significantly

improved results on small objects achieving an absolute

gain of 7.4% in average precision (AP) on MS COCO small

set, compared with the baseline SSD.

2. Baseline Detector: SSD

We base our approach on the SSD [28] which employs

a VGG-16 architecture as the backbone network. Given an

input image I of size 300×300, the SSD uses conv4 3 layer

with feature size 38×38 and FC 7 (converted into a conv

layer) with feature size 19×19 from the original VGG-16

architecture. It truncates the last fully connected layer of

the VGG-16 network and further adds a series of progres-

sively smaller conv layers: conv8 2, conv9 2, conv10 2
and conv11 2, with feature size 10×10, 5×5, 3×3 and

1×1, respectively, at the end for detection. The detec-

tor adopts a pyramidal hierarchical structure where shallow

layers (i.e. conv4 3) predict small object instances and deep

layers (i.e. conv8 2) detect large object instances. In this

way, each of the aforementioned layers are used for score

predictions and offsets, over a predefined set of bounding

boxes. The score predictions are performed by 3×3×N fil-

ter dimensions, where N is the number of channels. Con-

sequently, non-maximum suppression (NMS) is applied to

obtain final detection scores. We refer to [28] for details.

As mentioned above, the standard SSD localizes objects

in a pyramidal hierarchy by exploiting multiple CNN lay-

ers, with each layer designated to detect objects of a spe-

cific scale. This implies that small object instances are de-

tected using former layers with small receptive fields, while

deep layers with large receptive fields are used to localize

large object instances. However, the SSD struggles to accu-

rately detect small object instances due to limited informa-

tion in shallow layers, compared to deep layers [18]. Fu et

al. [12] proposed to use deconvolution layers to introduce

large-scale context and a better feature extraction network

(ResNet) to improve the accuracy. Cao et al. [4] also in-

vestigated the problem of small object detection and intro-

duced contextual information to the SSD. However, these

approaches improve SSD at the cost of reduction in speed.

Further, the additional contextual information may intro-

duce unnecessary background noise, resulting in a deterio-

ration of accuracy in some cases. Zhang et al. [34] extended
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Figure 2. (a) Overall architecture of our single-stage object detector. Our approach extends the SSD with a light-weight featurized image

pyramid network (LFIP) whose architecture is shown in (d). Within the LFIP network, an input image is first iteratively downsampled

to construct an image pyramid hierarchy. The image pyramid hierarchy is then input to a shallow convolutional block which produces

a feature pyramid by featurizing each level of the image pyramid. The resulting feature pyramid is then injected into the standard SSD

prediction layers using an attention module shown in (b). We also introduce a forward fusion module to integrate the modulated features

from both the former and current layers, shown in (c).

the standard SSD by integrating a semantic segmentation

branch. Instead, we re-visit the classic approach of building

feature pyramid from image pyramid without sacrificing the

hallmark speed of the SSD.

3. Method

Here, we first describe the overall architecture of our ap-

proach and introduce an alternative feature extraction strat-

egy, utilized in our light-weight featurized image pyramid

network module. Afterwards, we introduce feature atten-

tion and forward fusion modules. The overall architecture

of our detector, named LFIP-SSD, is illustrated in Fig. 2(a).

LFIP-SSD comprises of two main parts: the standard SSD

network and the proposed light-weight featurized image

pyramid network (LFIP) to produce a feature pyramid rep-

resentation. As in [28], we employ VGG-16 as the back-

bone and add a series of progressively smaller conv layers.

Different to the standard SSD, LFIP contains an iterative

downsampling and a light-weight convolutional block. Fea-

tures from the LFIP are then injected into the standard SSD

layers using an attention module. The resulting features of

the current layer are then fused with their former layer coun-

terpart in a forward fusion module.

3.1. Feature Extraction Strategy

Conventional object detection frameworks typically ex-

tract features either from a VGG-16 or ResNet-50, in a re-

peated stack of convolutional blocks and max-pooling op-

erations (see Fig. 3(a)). Though the resulting features are

Image

Conv Block + Pooling X8 features

(a) Standard Feature Extraction

(b) Proposed Light-weight Feature Extraction

Conv Block + Pooling

Image Downsampling X8 featuresShallow Conv Block

Figure 3. Comparison of our feature extraction strategy, employed

in the LFIP network, with its standard SSD counterpart. (a) Stan-

dard SSD feature extraction: convolution block together with re-

peated stride and max-pooling operations to generate features.

Here, ”X8” shows that downsmapling is performed with a stride

of 8. (b) proposed Feature Extraction in LFIP: the input image is

first downsampled to the target size and then a shallow convolution

block is used to extract features.

semantically strong, they tend to lose discriminative infor-

mation that likely contributes towards accurate object clas-

sification. As an alternative, we introduce an efficient fea-

ture extraction strategy (see Fig. 3(b)). In our strategy, an

input image is first downsampled, either by interpolation

or a pooling operation, to the desired target size of different

SSD prediction layers. These downsampled images are then

passed through a shallow convolutional block. Compared

to the deep CNNs in the traditional image pyramid network,

our shallow convolutional block provides the computational

efficiency required for high-speed detection, while enhanc-

ing discriminative information for multi-scale detection.

3.2. Light­weight Featurized Image Pyramid

As discussed earlier, standard featurized image pyramids

are inefficient since each image scale is passed through a
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deep CNN to extract scale-specific feature maps. High-

speed single-stage detectors therefore tend to avoid such

a featurized image pyramid representation. Here, we pro-

pose a simple, yet effective solution to efficiently construct

a light-weight featurized image pyramid (LFIP) representa-

tion. As shown in Fig. 2(d), the LFIP network comprises of

an iterative downsampling part and a light-weight convolu-

tional block. Given an input image I , an image pyramid Ip
is first constructed through iterative downsapling:

Ip = {i1, i2, . . . , in} (1)

where n denotes the number of image pyramid levels.

Image scales in the pyramid are selected to match the sizes

of standard SSD prediction layer maps, such as conv4 3.

Afterwards, each of the image scales is passed through

a shallow convolutional block to generate the multi-scale

light-weight feature maps:

Sp = {s1, s2, . . . , sn} (2)

where s1 denotes the light-weight features for the

conv4 3 layer of standard SSD network and sn represents

the last features generated for the conv9 2 layer of the SSD

network. The shallow convolutional block includes one

3×3 convolution layer and a bottleneck block, as in [17],

but without the identity shortcut. The identity shortcut has

been skipped due to the shallow nature of our convolu-

tional block. The conv layers in our shallow convolutional

block vary in the number of channels to match the resulting

light-weight featurized image pyramids with that of stan-

dard SSD feature maps.

3.3. Feature Attention Module

Here, we describe how the light-weight featurized im-

age pyramid, generated from our LFIP network, is injected

into the standard SSD prediction layers. We introduce a

feature attention module (FAM), as shown in Fig. 2(b).

First, both the light-weight featurized image pyramid and

standard SSD feature maps are passed through a Batch-

Norm (BN) layer for normalization. We consider differ-

ent ways to fuse the normalized feature set: concatenation,

element-wise sum and element-wise product. We found

that element-wise product provides the best performance.

Consequently, we employ a ReLU activation and a 3×3

conv layer to generate modulated features. For an input im-

age I , standard SSD features fk from the kth SSD predic-

tion layer are combined with the corresponding light-weight

LFIP features sk as:

mk = ϕk(β(fk)⊗ β(sk)) (3)

where mk are the modulated features after fusion, ϕk(.)
denotes the operation including the serial ReLU and 3×3

conv layer, and β(.) denotes the BN operation. As shown

(a) Input image (b) SSD feature (c) Modulated feature

Figure 4. Comparison of feature maps obtained from the conv4 3

layer in standard SSD and our modulated features after feature

attention module.

in Fig. 4, our modulated features enhance the discriminative

power of standard SSD features.

3.4. Forward Fusion Module

To further enhance the spatial information, we intro-

duce a simple forward fusion module (FFM) to integrate

modulated features from both the former and current lay-

ers (Fig. 2(c)). We employ the FFM module for layers

from FC 7 to conv9 2. Within FFM, each previous layer

is first pass through a 3×3 conv layer to achieve the same

size as the current layer. Afterwards, former mk−1 and cur-

rent mk modulated features are passed through BatchNorm

(BN) and combined using an element-wise sum operation.

This is followed by a ReLU operation to produce the final

prediction dk as:

dk = γ(φk(mk−1)⊕ β(mk)) (4)

where φk(.) denotes the operation including the serial

3x3 conv and BN layers, β(.) is the BN operation, and γ is

the ReLU activation.

4. Experiments

We validate our approach by conducting experiments on

two datasets: PASCAL VOC and MS COCO. We first intro-

duce the two datasets and then discuss the implementation

details of our proposed detector. We compare our detector

with state-of-the-art object detection methods from the lit-

erature and also provide a comprehensive ablation study on

the PASCAL VOC 2007 dataset.
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4.1. Datasets

PASCAL VOC [10]: The PASCAL VOC dataset consists

of 20 different object categories. For this dataset, the train-

ing is performed on a union of the VOC 2007 trainval set

with 5k images and the VOC 2012 trainval set with 11k im-

ages. Evaluation is carried out on the PASCAL VOC 2007

test with 5k images. Object detection accuracy is measured

in terms of mean Average Precision mAP.

MS COCO [26]: The MS COCO dataset consists of 160k

images with 80 object categories. The dataset contains

80k training, 40k validation and 40k test-dev images. For

MS COCO, training is performed on 120k images from the

trainval set and evaluation is carried out on the test-dev set.

We follow the standard MS COCO protocol for evaluation,

where the overall performance, average precision AP, is

measured by averaging over multiple IOU thresholds, rang-

ing from 0.5 to 0.95.

4.2. Implementation Details

All experiments are conducted using VGG-16 [31], pre-

trained on ImageNet [30], as the backbone. Our full train-

ing and testing code is built on Pytorch and will be publicly

available. We follow the similar settings as the baseline

SSD [28] for model initialization and optimization. The

warm-up strategy is adopted for the first six epochs. The

learning rate is first set to 2× 10−3 and gradually decreases

to 10−4 and 10−5 at 150 and 200 epochs, respectively for

the PASCAL VOC dataset. In the case of MS COCO, the

same learning rate values (used in the PASCAL VOC) de-

creases at 90 and 120 epochs. Following [28], we use the

same loss function, scales and aspect ratios of the defaults

boxes and the data augmentation method. We set the weight

decay to 0.0005 and the momentum to 0.9. The batch-size

is set to 32 for both datasets. A total number of 250 and

160 epochs are performed for the PASCAL VOC and MS

COCO datasets, respectively. The FLOPs of VGG back-

bone and LFIP are 1.6G and 0.9G, respectively. The FLOPs

of LFIP mainly come from convolution operations followed

by element-wise multiplication and addition.

4.3. Pascal VOC 2007

We first compare our detector with the baseline SSD and

other existing single-stage detectors. For a fair comparison,

we use the same settings for both our detector and the base-

line SSD. Tab. 1 shows the comparison, in terms of speed

and detection accuracy, of our detector with both the base-

line SSD and several other single-stage detection methods.

The baseline SSD achieves a detection mAP score of 77.2

while running at 120 FPS. Among existing single-stage de-

tectors, RefineDet [33] and DES [34] provide detection ac-

curacies of 80.0 and 79.7 mAP while running at 40 and 77

FPS, respectively. Our detector provides an optimal trade-

off between detection accuracy and speed by providing a

Methods Backbone input size mAP FPS

SSD [28] VGG-16 300× 300 77.2 120

R-SSD [20] VGG-16 300× 300 78.5 35

RUN [23] VGG-16 300× 300 79.2 40

ESSD [35] VGG-16 300× 300 79.4 25

DSSD [12] ResNet-101 321× 321 78.6 9.5

DES [34] VGG-16 300× 300 79.7 76.8

WeaveNet [6] VGG-16 320× 320 79.7 50

RefineDet [33] VGG-16 320× 320 80.0 40.3

Ours VGG-16 300× 300 80.4 111

Table 1. Speed and performance comparisons of our method with

existing single-stage detectors on PASCAL VOC 2007 test set. For

all detectors, the input image size is approximately ∼ 300x300.

For a fair comparison, the speed for all detectors is measured on a

single Titan X GPU (Maxwell architecture). The best two results

are shown in red and blue. Our detector improves the detection

accuracy by 3.2% in mAP over the baseline SSD. Further, our de-

tector provides an optimal trade-off between detection accuracy

and speed compared to existing single-stage detectors.

detection accuracy of 80.4 mAP while running at 111 FPS.

State-of-the-art Comparison: Here, we compare our de-

tector with state-of-the-art single and two-stage detection

methods. Tab. 2 shows a per-class comparison for vary-

ing input image sizes. Generally, two-stage object detection

methods [29, 7] take a large image as input (∼ 1000× 600)

compared to their single-stage counterparts. Among two-

stage object detectors, CoupleNet [36] with multi-scale test-

ing provides improved performance with 82.7 mAP. Among

single-stage methods, RefineDet [33] achieves a detection

accuracy of 81.8 when using an input image of size (∼
512 × 512). With the same input image size, our detec-

tor achieves similar detection accuracy while providing a

2.7-fold speedup compared to RefineDet [33].

Runtime Analysis: Fig. 5 shows the accuracy vs speed

comparison of our detector with state-of-the-art single and

two-stage methods, on the VOC 2007 test set. All detection

speeds are measured on a single Titan X GPU (Maxwell ar-

chitecture). Our detector processes an image at 111 FPS

whereas the baseline SSD runs at 120 FPS. Among existing

methods, the two-stage CoupleNet [36] provides superior

detection results with a speed of 8 FPS. Our detector pro-

vides a 13-fold speedup compared to CoupleNet [36].

4.4. Ablation Study on PASCAL VOC 2007

We conduct an ablation study to validate the effective-

ness of different modules proposed in our detector. We ana-

lyze the impact on detection performance of different down-

sampling strategies, various convolutional block depths and

the light-weight multi-scale features.

Downsampling Strategies: We investigate three com-

monly used downsampling strategies to construct the image

pyramid: bilinear interpolation, max pooling and average

pooling. Tab. 3 (left) shows the comparison when using
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Methods Backbone input size mAP speed aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Two-Stage Detector:

Faster-RCNN [29] VGG-16 1000 × 600 73.2 7.0 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Faster-RCNN [17] ResNet-101 1000 × 600 76.4 5.0 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

ION [2] VGG-16 1000 × 600 76.5 1.2 79.2 79.2 77.4 69.8 55.7 85.2 84.2 89.8 57.5 78.5 73.8 87.8 85.9 81.3 75.3 49.7 76.9 74.6 85.2 82.1

HyperNet [22] VGG-16 1000 × 600 76.3 0.9 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5

R-FCN [7] ResNet-101 1000 × 600 80.5 9.0 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

CoupleNet MS [36] ResNet-101 1000 × 600 82.7 8.2 85.7 87.0 84.8 75.5 73.3 88.8 89.2 89.6 69.8 87.5 76.1 88.9 89.0 87.2 86.2 59.1 83.6 83.4 87.6 80.7

Single-Stage Detector:

SSD [28] VGG-16 300 × 300 77.5 120.0 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8

RON [21] VGG-16 384 × 384 75.4 15.0 86.5 82.9 76.6 60.9 55.8 81.7 80.2 91.1 57.3 81.1 60.4 87.2 84.8 84.9 81.7 51.9 79.1 68.6 84.1 70.3

DSSD [12] ResNet-101 321 × 321 78.6 9.5 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

RefineDet [33] VGG-16 320 × 320 80.0 40.3 83.9 85.4 81.4 75.5 60.2 86.4 88.1 89.1 62.7 83.9 77.0 85.4 87.1 86.7 82.6 55.3 82.7 78.5 88.1 79.4

Ours VGG-16 300 × 300 80.4 111.0 84.0 85.8 78.2 75.3 60.8 88.6 87.6 87.9 63.3 83.8 78.9 86.0 87.7 88.6 81.9 56.8 80.8 80.5 88.2 79.1

SSD [28] VGG-16 512 × 512 79.5 60.0 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

DES [34] VGG-16 512 × 512 81.7 31.7 87.7 86.7 85.2 76.3 60.6 88.7 89.0 88.0 67.0 86.9 78.0 87.2 87.9 87.4 84.4 59.2 86.1 79.2 88.1 80.5

DSSD [12] ResNet-101 513 × 513 81.5 5.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7

RefineDet [33] VGG-16 512 × 512 81.8 20.1 88.7 87.0 83.2 76.5 68.0 88.5 88.7 89.2 66.5 87.9 75.0 86.8 89.2 87.8 84.7 56.2 83.2 78.7 88.1 82.3

Ours VGG-16 512 × 512 81.8 53.0 86.6 88.2 81.7 76.1 66.6 89.0 89.2 86.1 66.5 87.3 79.2 85.3 88.7 87.5 84.2 57.9 83.7 79.8 87.4 82.9

Table 2. Per-class state-of-the-art comparison on the PASCAL VOC 2007 dataset. All detection methods are trained on the union of

VOC2007 and VOC2012 trainval and tested on VOC2007 test. When comparing with single-stage detectors, our number is marked in red

and blue if it is the best two in the column. Our two detection methods have exactly the same settings except having different input sizes

(300× 300 and 512× 512). Our detector achieves promising results and provides a good trade-off between detection accuracy and speed,

compared to state-of-the-art approaches in literature.
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Figure 5. Accuracy vs speed comparison on the PASCAL VOC

2007 test set. For fair comparison, all detectors are trained on the

VOC 2007+2012 trainval and the speed is measured on a single

Titan X GPU. For two-stage detectors, an input image size of ∼
1000×600 is used. All single-stage detectors use an input image

size of ∼ 300×300 except YOLOv2 (544×544). Our detector

achieves a 9-fold speedup compared to the two-stage CoupleNet.

different downsampling strategies. The results show that

changing the downsampling strategies has negligible effect

on the overall detection results, though max pooling pro-

vides the best performance of 80.0 mAP.

Shallow Convolutional Block Depth: Here, we analyze

different depths of the shallow convolutional block. We

consider three different strategies: constant depth, progres-

sive incrementation and progressive decrementation. For

constant depth, same number of convolution layers are used

for different levels in the shallow convolutional block. In

progressive incrementation, we progressively increase the

Methods mAP Methods mAP

Bilinear interpolation 79.8 Progressive decrement 79.6

Average pooling 79.9 Constant depth 80.0

Max pooling 80.0 Progressive increment 80.2

Table 3. Analyzing the impact of different downsampling strate-

gies when constructing the image pyramid (left). Here, we con-

sider bilinear interpolation, average pooling and max pooling

downsampling strategies. We also analyze the impact of network

depth on the shallow convolutional block (right).

Add-on SSD Ours

conv 4 3 X X X X X

conv 7 X X X X

conv 8 2 X X X

conv 9 2 X

with FFM X

mAP 77.2 79.4 79.9 80.2 79.9 80.4

Table 4. Ablation results on PASCAL VOC 2007 dataset with

multi-scale Light-Weight Feature fusion at convolutional features

at different stages of SSD model.

depth of the shallow convolutional block for the correspond-

ing deeper prediction layers. In progressive decrementation,

we progressively decrease the depth of the shallow convo-

lutional block for the corresponding deeper prediction lay-

ers. Tab. 3 (right) shows the impact of using different depth

strategies for the shallow convolutional block. The progres-

sive incrementation provides the best results.

Impact of LFIP on SSD Prediction Layers: Here, we an-

alyze the impact of our LFIP representation on the standard

SSD. We perform an experiment by systematically inject-

ing the LFIP representation at different stages of the stan-
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Methods Backbone Input size Time(ms) AP AP50 AP75 APs APm APl

Two-Stage Detector:

Faster [29] VGG-16 ∼ 1000× 600 147 24.2 45.3 23.5 7.7 26.4 37.1

Faster-FPN [24] ResNet-101-FPN ∼ 1000× 600 240 36.2 59.1 39.0 18.2 39.0 48.2

R-FCN [7] ResNet-101 ∼ 1000× 600 110 29.9 51.9 - 10.8 32.8 45.0

Deformable R-FCN [8] ResNet-101 ∼ 1000× 600 125 34.5 55.0 - 14.0 37.7 50.3

Mask-RCNN [15] ResNeXt-101-FPN ∼ 1280× 800 210 39.8 62.3 43.4 22.1 43.2 51.2

Cascade R-CNN [3] ResNet-101-FPN ∼ 1280× 800 141 42.8 62.1 46.3 23.7 45.5 55.2

Single-Stage Detector:

SSD [28] VGG-16 300× 300 12 25.1 43.1 25.8 6.6 25.9 41.4

DSSD [12] ResNet-101 321× 321 - 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet [33] VGG-16 320× 320 24.8 29.4 49.2 31.3 10.0 32.0 44.4

RFBNet [27] VGG-16 300× 300 15 30.3 49.3 31.8 11.8 31.9 45.9

Ours VGG-16 300× 300 14 30.0 48.8 31.7 10.9 32.8 46.3

SSD [28] VGG-16 512× 512 28 28.8 48.5 30.3 10.9 31.8 43.5

DSSD [12] ResNet-101 513× 513 182 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet [33] VGG-16 512× 512 41.5 33.0 54.5 35.5 16.3 36.3 44.3

RetinaNet [25] ResNet-101-FPN ∼ 832× 500 90 34.4 53.1 36.8 14.7 38.5 49.1

RFBNet [27] VGG-16 512× 512 33 34.4 55.7 36.4 17.6 37.0 47.6

Ours VGG-16 512× 512 29 34.6 55.8 36.8 18.3 38.2 47.1

Table 5. State-of-the-art comparison on MS COCO test-dev set. When using 300 × 300 and 512 × 512 input image sizes, our detector

improves the overall detection performance by 4.9% and 5.8% in AP, respectively, compared to the baseline SSD.

Figure 6. Qualitative results of our detector on the PASCAL VOC 2007 test set (corresponding to 81.8 mAP). The model was trained on

all the train and validation datasets in VOC 2007 and VOC 2012. Each color is related to an object category.

dard SSD. Tab. 4 shows the detection results when injecting

the LFIP representation at different stages of the standard

SSD. A large gain (2.2%) in mAP is achieved when inte-

grating the LFIP representation at the conv4 3 level. Fur-

ther improvements in detection performance are achieved

up to conv8 2 level. The performance slightly deteriorates

when further an additional LFIP representation is inserted at

the conv9 2 level, which is likely due to the low-resolution

of the conv9 2 features. The overall performance is fur-

ther improved when integrating the forward fusion module,

leading to an accuracy of 80.4 mAP. We further validate our

approach with ResNet-50 backbone. For a 300× 300 input,

our approach achieves an absolute gain of 2.8% mAP over

the baseline SSD. Fig. 6 shows example detections on the

VOC 2007 test set with our detector.

4.5. MS COCO

Here, we evaluate the performance of our detector on

the MS COCO dataset. Tab. 5 shows the performance of

our detector on MS COCO test-dev set. When using a

300 × 300 input image, our detector improves the over-

all detection performance by 4.9% in AP compared to the

baseline SSD. While two-stage detectors provide better de-

tection accuracy, they are slow and generally require more
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Figure 7. Qualitative results, especially on images with small objects, of our detector on the COCO test-dev (corresponding to 34.6 mAP).

Figure 8. Error analysis for the performance of the baseline SSD

(top row) and our detector (bottom row) across all categories, on

the overall and the small sized objects subsets. The plots in each

sub-image describe a series of precision recall curves using dif-

ferent evaluation settings [26] and the area under each curve is

shown in brackets in the legend. Our detector provides consistent

improvements over the baseline SSD.

than 100ms to process an image. For a 512 × 512 input,

we follow a similar strategy as in [27] by up-sampling the

conv7 feature maps and concatenating with conv4 3 after

applying our LFIP module. Both RetinaNet [25] and RFB-

Net [27] obtain an AP score of 34.4. Our detector (512×512
input size) achieves an AP of 34.6% while being relatively

faster (29 ms), compared to RFBNet (33 ms). Further, our

approach provides a 3-fold speedup over RetinaNet [25].

Qualitative Analysis: The MS COCO dataset is especially

suitable to evaluate the performance on small sized objects

since approximately 41% of its objects are small (area <

322) [26]. The dataset can be further divided into large,

medium, and small sized objects. We analyze the perfor-

mance of our detector using the error analysis provided by

[26]. Fig. 8 shows the error analysis plots of the baseline

SSD (top row) and our detector (bottom row) for overall and

small sized objects. The plots in each sub-image describe

a series of precision recall curves using different evaluation

settings, as outlined in [26]. We show the area under each

curve in brackets in the legend. For the baseline SSD (top

row), the overall AP at IoU=.75 is .295 and perfect localiza-

tion is likely to increase the AP to .566. Eliminating back-

ground false positives would increase the performance to

.789 AP. In the case of our detector (bottom row), the over-

all AP at IoU=.75 is .371 and perfect localization is likely

to increase the AP to .638. Further, eliminating background

false positives would increase the performance to .848 AP.

When analyzing the performance on small sized objects, the

improvement achieved by our detector is more prominent.

Our detector increases the overall AP at IoU=.75 from .089
to .199 and eliminating background false positives would

increase the performance from .531 to .704. Fig. 7 shows

example detections with our detector on the COCO test-dev.

5. Conclusion

We introduced a light-weight architecture to efficiently

construct featurized image pyramids. We introduced a shal-

low convolutional block that takes as input the image pyra-

mid and produces feature pyramid. Multi-scale features

from the feature pyramid are then combined with standard

SSD features, in an attention module. We further introduced

a forward fusion module to integrate the modulated features

from both former and current prediction layers. Experi-

ments on two benchmarks clearly demonstrated that our ap-

proach provides superior detection accuracy at high speed.
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