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Abstract

Compared with model architectures, the training pro-

cess, which is also crucial to the success of detectors, has

received relatively less attention in object detection. In this

work, we carefully revisit the standard training practice of

detectors, and find that the detection performance is often

limited by the imbalance during the training process, which

generally consists in three levels – sample level, feature

level, and objective level. To mitigate the adverse effects

caused thereby, we propose Libra R-CNN, a simple but ef-

fective framework towards balanced learning for object de-

tection. It integrates three novel components: IoU-balanced

sampling, balanced feature pyramid, and balanced L1 loss,

respectively for reducing the imbalance at sample, feature,

and objective level. Benefitted from the overall balanced de-

sign, Libra R-CNN significantly improves the detection per-

formance. Without bells and whistles, it achieves 2.5 points

and 2.0 points higher Average Precision (AP) than FPN

Faster R-CNN and RetinaNet respectively on MSCOCO. 1

1. Introduction

Along with the advances in deep convolutional networks,

recent years have seen remarkable progress in object detec-

tion. A number of detection frameworks such as Faster R-

CNN [28], RetinaNet [20], and Cascaded R-CNN [3] have

been developed, which have substantially pushed forward

the state of the art. Despite the apparent differences in the

pipeline architectures, e.g. single-stage vs. two-stage, mod-

ern detection frameworks mostly follow a common train-

ing paradigm, namely, sampling regions, extracting fea-

tures therefrom, and then jointly recognizing the categories

and refining the locations under the guidance of a standard

multi-task objective function.

1Code is available at https://github.com/OceanPang/

Libra_R-CNN.
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Figure 1: Imbalance consists in (a) sample level (b) fea-

ture level and (c) objective level, which prevents the well-

designed model architectures from being fully exploited.

Based on this paradigm, the success of the object detec-

tor training depends on three key aspects: (1) whether the

selected region samples are representative, (2) whether the

extracted visual features are fully utilized, and (3) whether

the designed objective function is optimal. However, our

study reveals that the typical training process is significantly

imbalanced in all these aspects. This imbalance issue pre-

vents the power of well-designed model architectures from

being fully exploited, thus limiting the overall performance,
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which is shown in Figure 1. Below, we describe these issues

in turn:

1) Sample level imbalance: When training an object de-

tector, hard samples are particularly valuable as they are

more effective to improve the detection performance. How-

ever, the random sampling scheme usually results in the se-

lected samples dominated by easy ones. The popularized

hard mining methods, e.g. OHEM [29], can help driving

the focus towards hard samples. However, they are often

sensitive to noise labels and incurring considerable mem-

ory and computing costs. Focal loss [20] also alleviates

this problem in single-stage detectors, but is found little im-

provement when extended to R-CNN as the majority easy

negatives are filtered by the two-stage procedure. Hence,

this issue needs to be solved more elegantly.

2) Feature level imbalance: Deep high-level features in

backbones are with more semantic meanings while the shal-

low low-level features are more content descriptive [35].

Recently, feature integration via lateral connections in

FPN [19] and PANet [22] have advanced the development

of object detection. These methods inspire us that the low-

level and high-level information are complementary for ob-

ject detection. The approach that how them are utilized to

integrate the pyramidal representations determines the de-

tection performance. However, what is the best approach

to integrate them together? Our study reveals that the in-

tegrated features should possess balanced information from

each resolution. But the sequential manner in aforemen-

tioned methods will make integrated features focus more

on adjacent resolution but less on others. The semantic in-

formation contained in non-adjacent levels would be diluted

once per fusion during the information flow.

3) Objective level imbalance: A detector needs to carry

out two tasks, i.e. classification and localization. Thus two

different goals are incorporated in the training objective. If

they are not properly balanced, one goal may be compro-

mised, leading to suboptimal performance overall [16]. The

case is the same for the involved samples during the training

process. If they are not properly balanced, the small gradi-

ents produced by the easy samples may be drowned into the

large gradients produced by the hard ones, thus limiting fur-

ther refinement. Hence, we need to rebalance the involved

tasks and samples towards the optimal convergence.

To mitigate the adverse effects caused by these issues,

we propose Libra R-CNN, a simple but effective frame-

work for object detection that explicitly enforces the bal-

ance at all three levels discussed above. This framework

integrates three novel components: (1) IoU-balanced sam-

pling, which mines hard samples according to their IoU

with assigned ground-truth. (2) balanced feature pyramid,

which strengthens the multi-level features using the same

deeply integrated balanced semantic features. (3) balanced

L1 loss, which promotes crucial gradients, to rebalance the

involved classification, overall localization and accurate lo-

calization.

Without bells and whistles, Libra R-CNN achieves 2.5

points and 2.0 points higher Average Precision (AP) than

FPN Faster R-CNN and RetinaNet respectively on MS

COCO [21]. With the 1× schedule in [9], Libra R-CNN can

obtain 38.7 and 43.0 AP with FPN Faster R-CNN based on

ResNet-50 and ResNeXt-101-64x4d respectively.

Here, we summarize our main contributions: (1) We sys-

tematically revisit the training process of detectors. Our

study reveals the imbalance problems at three levels that

limit the detection performance. (2) We propose Libra R-

CNN, a framework that rebalances the training process by

combining three new components: IoU-balanced sampling,

balanced feature pyramid, and balanced L1 loss. (3) We test

the proposed framework on MS COCO, consistently obtain-

ing significant improvements over state-of-the-art detectors,

including both single-stage and two-stage ones.

2. Related Work

Model architectures for object detection. Recently, ob-

ject detection are popularized by both two-stage and single-

stage detectors. Two-stage detectors were first introduced

by R-CNN [8]. Gradually derived SPP [11], Fast R-

CNN [7] and Faster R-CNN [28] promoted the develop-

ments furthermore. Faster R-CNN proposed region pro-

posal network to improve the efficiency of detectors and al-

low the detectors to be trained end-to-end. After this mean-

ingful milestone, lots of methods were introduced to en-

hance Faster R-CNN from different points. For example,

FPN [19] tackled the scale variance via pyramidal predic-

tions. Cascade R-CNN [3] extended Faster R-CNN to a

multi-stage detector through the classic yet powerful cas-

cade architecture. Mask R-CNN [10] extended Faster R-

CNN by adding a mask branch that refines the detection

results under the help of multi-task learning. HTC [4] fur-

ther improved the mask information flow in Mask R-CNN

through a new cascade architecture. On the other hand,

single-stage detectors are popularized by YOLO [26, 27]

and SSD [23]. They are simpler and faster than two-stage

detectors but have trailed the accuracy until the introduction

of RetinaNet [20]. CornerNet [18] introduced an insight

that the bounding boxes can be predicted as a pair of key

points. Other methods focus on cascade procedures [24],

duplicate removal [14, 13], multi-scales [2, 1, 31, 30], ad-

versarial learning [37] and more contextual [36]. All of

them made significant progress from different concerns.

Balanced learning for object detection. Alleviating im-

balance in the training process of object detection is crucial

to achieve an optimal training and fully exploit the potential

of model architectures.

Sample level imbalance. OHEM [29] and focal loss [20]

are primary existing solutions for sample level imbalance
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Figure 2: Overview of the proposed Libra R-CNN: an overall balanced design for object detection which integrated three

novel components (a) IoU-balanced sampling (b) balanced feature pyramid and (c) balanced L1 loss, respectively for reducing

the imbalance at sample, feature, and objective level.

in object detection. The commonly used OHEM automat-

ically selects hard samples according to their confidences.

However, this procedure causes extra memory and speed

costs, making the training process bloated. Moreover, the

OHEM also suffers from noise labels so that it cannot work

well in all cases. Focal loss solved the extra foreground-

background class imbalance in single-stage detectors with

an elegant loss formulation, but it generally brings little

or no gain to two-stage detectors because of the different

imbalanced situation. Compared with these methods, our

method is substantially lower cost, and tackles the problem

elegantly.

Feature level imbalance. Utilizing multi-level features to

generate discriminative pyramidal representations is crucial

to detection performance. FPN [19] proposed lateral con-

nections to enrich the semantic information of shallow lay-

ers through a top-down pathway. After that, PANet [22]

brought in a bottom-up pathway to further increase the low-

level information in deep layers. Kong et al. [17] proposed

a novel efficient pyramid based on SSD that integrates the

features in a highly-nonlinear yet efficient way. Different

from these methods, our approach relies on integrated bal-

anced semantic features to strengthen original features. In

this manner, each resolution in the pyramid obtains equal in-

formation from others, thus balancing the information flow

and leading the features more discriminative.

Objective level imbalance. Kendall et al. [16] had proved

that the performance of models based on multi-task learn-

ing is strongly dependent on the relative weight between

the loss of each task. But previous approaches [28, 19, 20]

mainly focus on how to enhance the recognition ability

of model architectures. Recently, UnitBox [34] and IoU-

Net [15] introduced some new objective functions related

to IoU, to promote the localization accuracy. Different to

them, our method rebalances the involved tasks and sam-

ples to achieve a better convergence.
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Figure 3: IoU distribution of random selected samples, IoU-

balanced selected samples, and hard negatives.

3. Methodology

The overall pipeline of Libra R-CNN is shown in Fig-

ure 2. Our goal is to alleviate the imbalance exists in the

training process of detectors using an overall balanced de-

sign, thus exploiting the potential of model architectures as

much as possible. All components will be detailed in the

following sections.

3.1. IoU­balanced Sampling

Let us start with the basic question: is the overlap be-

tween a training sample and its corresponding ground truth

associated with its difficulty? To answer this question, we

conduct experiments to find the truth behind. Results are

shown in Figure 3. We mainly consider hard negative sam-

ples, which are known to be the main problem. We find

that more than 60% hard negatives have an overlap greater

than 0.05, but random sampling only provides us 30% train-
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Figure 4: Pipeline and heatmap visualization of balanced feature pyramid.

ing samples that are greater than the same threshold. This

extreme sample imbalance buries many hard samples into

thousands of easy samples.

Motivated by this observation, we propose IoU-balanced

sampling: a simple but effective hard mining method with-

out extra cost. Suppose we need to sample N negative sam-

ples from M corresponding candidates. The selected prob-

ability for each sample under random sampling is

p =
N

M
. (1)

To raise the selected probability of hard negatives, we

evenly split the sampling interval into K bins according

to IoU. N demanded negative samples are equally dis-

tributed to each bin. Then we select samples from them

uniformly. Therefore, we get the selected probability under

IoU-balanced sampling

pk =
N

K
∗

1

Mk

, k ∈ [0,K), (2)

where Mk is the number of sampling candidates in the cor-

responding interval denoted by k. K is set to 3 by default in

our experiments.

The sampled histogram with IoU-balanced sampling is

shown by green color in Figure 3. It can be seen that our

IoU-balanced sampling can guide the distribution of train-

ing samples close to the one of hard negatives. Experiments

also show that the performance is not sensitive to K, as long

as the samples with higher IoU are more likely selected.

Besides, it is also worth noting that the method is also

suitable for hard positive samples. However, in most cases,

there are not enough sampling candidates to extend this pro-

cedure into positive samples. To make the balanced sam-

pling procedure more comprehensive, we sample equal pos-

itive samples for each ground truth as an alternative method.

3.2. Balanced Feature Pyramid

Different from former approaches[19, 22] that integrate

multi-level features using lateral connections, our key idea

is to strengthen the multi-level features using the same

deeply integrated balanced semantic features. The pipeline

is shown in Figure 4. It consists of four steps, rescaling,

integrating, refining and strengthening.

Obtaining balanced semantic features. Features at res-

olution level l are denoted as Cl. The number of multi-level

features is denoted as L. The indexes of involved lowest and

highest levels are denoted as lmin and lmax. In Figure 4,

C2 has the highest resolution. To integrate multi-level fea-

tures and preserve their semantic hierarchy at the same time,

we first resize the multi-level features {C2, C3, C4, C5} to

an intermediate size, i.e., the same size as C4, with inter-

polation and max-pooling respectively. Once the features

are rescaled, the balanced semantic features are obtained

by simple averaging as

C =
1

L

lmax
∑

l=lmin

Cl. (3)

The obtained features are then rescaled using the same but

reverse procedure to strengthen the original features. Each

resolution obtains equal information from others in this pro-

cedure. Note that this procedure does not contain any pa-

rameter. We observe improvement with this nonparametric

method, proving the effectiveness of the information flow.

Refining balanced semantic features. The balanced se-

mantic features can be further refined to be more discrim-

inative. We found both the refinements with convolutions

directly and the non-local module [32] work well. But the

non-local module works more stable. Therefore, we use the

embedded Gaussian non-local attention as default in this pa-

per. The refining step helps us enhance the integrated fea-

tures and further improve the results.
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Figure 5: We show curves for (a) gradient and (b) loss of our balanced L1 loss here. Smooth L1 loss is also shown in dashed

lines. γ is set default as 1.0.

With this method, features from low-level to high-

level are aggregated at the same time. The outputs

{P2, P3, P4, P5} are used for object detection following the

same pipeline in FPN. It is also worth mentioning that our

balanced feature pyramid can work as complementary with

recent solutions such as FPN and PAFPN without any con-

flict.

3.3. Balanced L1 Loss

Classification and localization problems are solved si-

multaneously under the guidance of a multi-task loss since

Fast R-CNN [7], which is defined as

Lp,u,tu,v = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v). (4)

Lcls and Lloc are objective functions corresponding to

recognition and localization respectively. Predictions and

targets in Lcls are denoted as p and u. tu is the correspond-

ing regression results with class u. v is the regression target.

λ is used for tuning the loss weight under multi-task learn-

ing. We call samples with a loss greater than or equal to 1.0

outliers. The other samples are called inliers.

A natural solution for balancing the involved tasks is to

tune the loss weights of them. However, owing to the un-

bounded regression targets, directly raising the weight of

localization loss will make the model more sensitive to out-

liers. These outliers, which can be regarded as hard sam-

ples, will produce excessively large gradients that are harm-

ful to the training process. The inliers, which can be re-

garded as the easy samples, contribute little gradient to the

overall gradients compared with the outliers. To be more

specific, inliers only contribute 30% gradients average per

sample compared with outliers. Considering these issues,

we propose balanced L1 loss, which is denoted as Lb.

Balanced L1 loss is derived from the conventional

smooth L1 loss, in which an inflection point is set to sep-

arate inliers from outliners, and clip the large gradients pro-

duced by outliers with a maximum value of 1.0, as shown

by the dashed lines in Figure 5-(a). The key idea of bal-

anced L1 loss is promoting the crucial regression gradients,

i.e. gradients from inliers (accurate samples), to rebalance

the involved samples and tasks, thus achieving a more bal-

anced training within classification, overall localization and

accurate localization. Localization loss Lloc uses balanced

L1 loss is defined as

Lloc =
∑

i∈{x,y,w,h}

Lb(t
u
i − vi), (5)

and its corresponding formulation of gradients follows

∂Lloc

∂w
∝

∂Lb

∂tui
∝

∂Lb

∂x
, (6)

Based on the formulation above, we design a promoted gra-

dient formulation as

∂Lb

∂x
=

{

αln(b|x|+ 1) if |x| < 1

γ otherwise,
(7)

Figure 5-(a) shows that our balanced L1 loss increases

the gradients of inliers under the control of a factor denoted

as α. A small α increases more gradient for inliers, but the

gradients of outliers are not influenced. Besides, an overall

promotion magnification controlled by γ is also brought in

for tuning the upper bound of regression errors, which can

help the objective function better balancing involved tasks.

The two factors that control different aspects are mutually

enhanced to reach a more balanced training. b is used to
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Table 1: Comparisons with state-of-the-art methods on COCO test-dev. The symbol “*” means our re-implemented results.

The “1×”, “2×” training schedules follow the settings explained in Detectron [9].

Method Backbone Schedule AP AP50 AP75 APS APM APL

YOLOv2 [27] DarkNet-19 - 21.6 44.0 19.2 5.0 22.4 35.5

SSD512 [23] ResNet-101 - 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet [20] ResNet-101-FPN - 39.1 59.1 42.3 21.8 42.7 50.2

Faster R-CNN [19] ResNet-101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN [6] Inception-ResNet-v2 - 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN [10] ResNet-101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2

Faster R-CNN∗ ResNet-50-FPN 1× 36.2 58.5 38.9 21.0 38.9 45.3

Faster R-CNN∗ ResNet-101-FPN 1× 38.8 60.9 42.1 22.6 42.4 48.5

Faster R-CNN∗ ResNet-101-FPN 2× 39.7 61.3 43.4 22.1 43.1 50.3

Faster R-CNN∗ ResNeXt-101-FPN 1× 41.9 63.9 45.9 25.0 45.3 52.3

RetinaNet∗ ResNet-50-FPN 1× 35.8 55.3 38.6 20.0 39.0 45.1

Libra R-CNN (ours) ResNet-50-FPN 1× 38.7 59.9 42.0 22.5 41.1 48.7

Libra R-CNN (ours) ResNet-101-FPN 1× 40.3 61.3 43.9 22.9 43.1 51.0

Libra R-CNN (ours) ResNet-101-FPN 2× 41.1 62.1 44.7 23.4 43.7 52.5

Libra R-CNN (ours) ResNeXt-101-FPN 1× 43.0 64.0 47.0 25.3 45.6 54.6

Libra RetinaNet (ours) ResNet-50-FPN 1× 37.8 56.9 40.5 21.2 40.9 47.7

ensure Lb(x = 1) has the same value for both formulations

in Eq. (8).

By integrating the gradient formulation above, we can

get the balanced L1 loss

Lb(x) =

{

α
b
(b|x|+ 1)ln(b|x|+ 1)− α|x| if |x| < 1

γ|x|+ C otherwise,

(8)

in which the parameters γ, α, and b are constrained by

αln(b+ 1) = γ. (9)

The default parameters are set as α = 0.5 and γ = 1.5 in

our experiments.

4. Experiments

4.1. Dataset and Evaluation Metrics

All experiments are implemented on the challenging MS

COCO [21] dataset. It consists of 115k images for training

(train-2017) and 5k images for validation (val-2017). There

are also 20k images in test-dev that have no disclosed labels.

We train models on train-2017, and report ablation stud-

ies and final results on val-2017 and test-dev respectively.

All reported results follow standard COCO-style Average

Precision (AP) metrics that include AP (averaged over IoU

thresholds), AP50 (AP for IoU threshold 50%), AP75 (AP

for IoU threshold 75%). We also include APS , APM , APL,

which correspond to the results on small, medium and large

scales respectively. The COCO-style Average Recall (AR)

with AR100, AR300, AR1000 correspond to the average re-

call when there are 100, 300 and 1000 proposals per image

respectively.

4.2. Implementation Details

For fair comparisons, all experiments are implemented

on PyTorch [25] and mmdetection [5]. The backbones used

in our experiments are publicly available. We train detectors

with 8 GPUs (2 images per GPU) for 12 epochs with an

initial learning rate of 0.02, and decrease it by 0.1 after 8 and

11 epochs respectively if not specifically noted. All other

hyper-parameters follow the settings in mmdetection [5] if

not specifically noted.

4.3. Main Results

We compare Libra R-CNN with the state-of-the-art ob-

ject detection approaches on the COCO test-dev in Tabel 1.

For fair comparisons with corresponding baselines, we re-

port our re-implemented results of them, which are gen-

erally higher than that were reported in papers. Through

the overall balanced design, Libra R-CNN achieves 38.7

AP with ResNet-50 [12], which is 2.5 points higher AP

than FPN Faster R-CNN. With ResNeXt-101-64x4d [33],

a much more powerful feature extractor, Libra R-CNN

achieves 43.0 AP.

Apart from the two-stage frameworks, we further ex-

tend our Libra R-CNN to single stage detectors and report

the results of Libra RetinaNet. Considering that there is

no sampling procedure in RetinaNet [20], Libra RetinaNet

only integrates balanced feature pyramid and balanced L1

loss. Without bells and whistles, Libra RetinaNet brings

2.0 points higher AP with ResNet-50 and achieves 37.8 AP.

826



Table 2: Effects of each component in our Libra R-CNN. Results are reported on COCO val-2017.

IoU-balanced Sampling Balanced Feature Pyramid Balanced L1 Loss AP AP50 AP75 APS APM APL

35.9 58.0 38.4 21.2 39.5 46.4

X 36.8 58.0 40.0 21.1 40.3 48.2

X X 37.7 59.4 40.9 22.4 41.3 49.3

X X X 38.5 59.3 42.0 22.9 42.1 50.5

Table 3: Comparisons between Libra RPN and RPN. The

symbol “*” means our re-implements.

Method Backbone AR100 AR300 AR1000

RPN∗ ResNet-50-FPN 42.5 51.2 57.1

RPN∗ ResNet-101-FPN 45.4 53.2 58.7

RPN∗ ResNeXt-101-FPN 47.8 55.0 59.8

Libra RPN (ours) ResNet-50-FPN 52.1 58.3 62.5

Table 4: Ablation studies of IoU-balanced sampling on

COCO val-2017.

Settings AP AP50 AP75 APS APM APL

Baseline 35.9 58.0 38.4 21.2 39.5 46.4

Pos Balance 36.1 58.2 38.2 21.3 40.2 47.3

K = 2 36.7 57.8 39.9 20.5 39.9 48.9

K = 3 36.8 57.9 39.8 21.4 39.9 48.7

K = 5 36.7 57.7 39.9 19.9 40.1 48.7

Our method can also enhance the average recall of pro-

posal generation. As shown in Table 3, Libra RPN brings

9.2 points higher AR100, 6.9 points higher AR300 and 5.4
points higher AR1000 compared with RPN with ResNet-

50 respectively. Note that larger backbones only bring lit-

tle gain to RPN. Libra RPN can achieve 4.3 points higher

AR100 than ResNeXt-101-64x4d only with a ResNet-50

backbone. The significant improvements from Libra RPN

validate that the potential of RPN is much more exploited

with the effective balanced training.

4.4. Ablation Experiments

Overall Ablation Studies. To analyze the importance

of each proposed component, we report the overall abla-

tion studies in Table 2. We gradually add IoU-balanced

sampling, balanced feature pyramid and balanced L1 loss

on ResNet-50 FPN Faster R-CNN baseline. Experiments

for ablation studies are implemented with the same pre-

computed proposals for fair comparisons.

1) IoU-balanced Sampling. IoU-balanced sampling

brings 0.9 points higher box AP than the ResNet-50 FPN

Faster R-CNN baseline, validating the effectiveness of this

Random Sampling IoU-Balanced Sampling

Figure 6: Visualization of training samples under random

sampling and IoU-balanced sampling respectively.

cheap hard mining method. We also visualize the train-

ing samples under random sampling and IoU-balanced sam-

pling in Figure 6. It can be seen that the selected samples

are gathered to the regions where we are more interested in

instead of randomly appearing around the target.

2) Balanced Feature Pyramid. Balanced feature pyra-

mid improves the box AP from 36.8 to 37.7. Results in

small, medium and large scales are consistently improved,

which validate that the balanced semantic features balanced

low-level and high-level information in each level and yield

consistent improvements.

3) Balanced L1 Loss. Balanced L1 loss improves the box

AP from 37.7 to 38.5. To be more specific, most of the im-

provements are from AP75, which yields 1.1 points higher

AP compared with corresponding baseline. This result val-

idates that the localization accuracy is much improved.

Ablation Studies on IoU-balanced Sampling. Exper-

imental results with different implementations of IoU-

balanced sampling are shown in Table 4. We first verify the

effectiveness of the complementary part, i.e. sampling equal

number of positive samples for each ground truth, which is

stated in Section 3.1 and denoted by Pos Balance in Ta-

ble 4. Since there are too little positive samples to explore

the potential of this method, this sampling method provides

only small improvements (0.2 points higher AP) compared

to ResNet-50 FPN Faster R-CNN baseline.
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Table 5: Ablation studies of balanced semantic pyramid on

COCO val-2017.

Settings AP AP50 AP75 APS APM APL

Baseline 35.9 58.0 38.4 21.2 39.5 46.4

Integration 36.3 58.8 38.8 21.2 40.1 46.3

Refinement 36.8 59.5 39.5 22.3 40.6 46.5

PAFPN[22] 36.3 58.4 39.0 21.7 39.9 46.3

Balanced PAFPN 37.2 60.0 39.8 22.7 40.8 47.4

Then we evaluate the effectiveness of IoU-balanced sam-

pling for negative samples with different hyper-parameters

K, which denotes the number of intervals. Experiments in

Table 4 show that the results are very close to each other

when the parameter K is set as 2, 3 or 5. Therefore, the

number of sampling interval is not much crucial in our IoU-

balanced sampling, as long as the hard negatives are more

likely selected.

Ablation Studies on Balanced Feature Pyramid. Abla-

tion studies of balanced feature pyramid are shown in Ta-

ble 5. We also report the experiments with PAFPN [22]. We

first implement balanced feature pyramid only with integra-

tion. Results show that the naive feature integration brings

0.4 points higher box AP than the corresponding baseline.

Note there is no refinement and no parameter added in this

procedure. With this simple method, each resolution ob-

tains equal information from others. Although this result is

comparable with the one of PAFPN [22], we reach the fea-

ture level balance without extra convolutions, validating the

effectiveness of this simple method.

Along with the embedded Gaussian non-local atten-

tion [32], balanced feature pyramid can be further enhanced

and improve the final results. Our balanced feature pyra-

mid is able to achieve 36.8 AP on COCO dataset, which is

0.9 points higher AP than ResNet-50 FPN Faster R-CNN

baseline. More importantly, the balanced semantic features

have no conflict with PAFPN. Based on the PAFPN, we in-

clude our feature balancing scheme and denote this imple-

mentation by Balanced PAFPN in Table 5. Results show

that the Balanced PAFPN is able to achieve 37.2 box AP on

COCO dataset, with 0.9 points higher AP compared with

the PAFPN.

Ablation Studies on Balanced L1 Loss. Ablation studies

of balanced L1 loss are shown in Table 6. We observe that

the localization loss is mostly half of the recognition loss.

Therefore, we first verify the performance when raising loss

weight directly. Results show that tuning loss weight only

improves the result by 0.5 points. And the result with a

loss weight of 2.0 starts to drop down. These results show

that the outliers bring negative influence on the training pro-

cess, and leave the potential of model architecture from be-

ing fully exploited. We also conduct experiments with L1

Table 6: Ablation studies of balanced L1 loss on COCO

val-2017. The numbers in the parentheses indicate the loss

weight.

Settings AP AP50 AP75 APS APM APL

Baseline 35.9 58.0 38.4 21.2 39.5 46.4

loss weight = 1.5 36.4 58.0 39.7 20.8 39.9 47.5

loss weight = 2.0 36.2 57.3 39.5 20.2 40.0 47.5

L1 Loss (1.0) 36.4 57.4 39.1 21.0 39.7 47.9

L1 Loss (1.5) 36.6 57.2 39.8 20.2 40.0 48.2

L1 Loss (2.0) 36.4 56.5 39.6 20.1 39.8 48.2

α = 0.2, γ = 1.0 36.7 58.1 39.5 21.4 40.4 47.4

α = 0.3, γ = 1.0 36.5 58.2 39.2 21.6 40.2 47.2

α = 0.5, γ = 1.0 36.5 58.2 39.2 21.5 39.9 47.2

α = 0.5, γ = 1.5 37.2 58.0 40.0 21.3 40.9 47.9

α = 0.5, γ = 2.0 37.0 58.0 40.0 21.2 40.8 47.6

loss for comparisons. Experiments show that the results are

inferior to ours. Although the overall results are improved,

the AP50 and APS drop obviously.

In order to compare with tuning loss weight directly, we

first validate the effectiveness of balanced L1 loss when

γ = 1. Balanced L1 loss is able to bring 0.8 points higher

AP than baseline. With our best setting, balanced L1 loss

finally achieves 37.2 AP, which is 1.3 points higher than

the ResNet-50 FPN Faster R-CNN baseline. These experi-

mental results validate that our balanced L1 achieves a more

balanced training and makes the model better converged.

5. Conclusion

In this paper, we systematically revisit the training pro-

cess of detectors, and find the potential of model architec-

tures is not fully exploited due to the imbalance issues ex-

isting in the training process. Based on the observation, we

propose Libra R-CNN to balance the imbalance through an

overall balanced design. With the help of the simple but ef-

fective components, i.e. IoU-balanced sampling, balanced

feature pyramid and balanced L1 loss, Libra R-CNN brings

significant improvements on the challenging MS COCO

dataset. Extensive experiments show that Libra R-CNN

well generalizes to various backbones for both two-stage

detectors and single-stage detectors.
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