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Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.

Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Abstract

Computer graphics, 3D computer vision and robotics

communities have produced multiple approaches to rep-

resenting 3D geometry for rendering and reconstruction.

These provide trade-offs across fidelity, efficiency and com-

pression capabilities. In this work, we introduce DeepSDF,

a learned continuous Signed Distance Function (SDF) rep-

resentation of a class of shapes that enables high qual-

ity shape representation, interpolation and completion from

partial and noisy 3D input data. DeepSDF, like its clas-

sical counterpart, represents a shape’s surface by a con-

tinuous volumetric field: the magnitude of a point in the

field represents the distance to the surface boundary and the

sign indicates whether the region is inside (-) or outside (+)

of the shape, hence our representation implicitly encodes a

shape’s boundary as the zero-level-set of the learned func-

tion while explicitly representing the classification of space

as being part of the shapes’ interior or not. While classical

SDF’s both in analytical or discretized voxel form typically

represent the surface of a single shape, DeepSDF can repre-

sent an entire class of shapes. Furthermore, we show state-

of-the-art performance for learned 3D shape representation

and completion while reducing the model size by an order

of magnitude compared with previous work.

Work performed while Park and Florence were interns at Facebook.

1. Introduction

Deep convolutional networks which are a mainstay of

image-based approaches grow quickly in space and time

complexity when directly generalized to the 3rd spatial di-

mension, and more classical and compact surface repre-

sentations such as triangle or quad meshes pose problems

in training since we may need to deal with an unknown

number of vertices and arbitrary topology. These chal-

lenges have limited the quality, flexibility and fidelity of

deep learning approaches when attempting to either input

3D data for processing or produce 3D inferences for object

segmentation and reconstruction.

In this work, we present a novel representation and ap-

proach for generative 3D modeling that is efficient, expres-

sive, and fully continuous. Our approach uses the concept

of a SDF, but unlike common surface reconstruction tech-

niques which discretize this SDF into a regular grid for eval-

uation and measurement denoising [14], we instead learn a

generative model to produce such a continuous field.

The proposed continuous representation may be intu-

itively understood as a learned shape-conditioned classifier

for which the decision boundary is the surface of the shape

itself, as shown in Fig. 2. Our approach shares the genera-

tive aspect of other works seeking to map a latent space to

a distribution of complex shapes in 3D [52], but critically

differs in the central representation. While the notion of an
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Figure 2: Our DeepSDF representation applied to the Stanford

Bunny: (a) depiction of the underlying implicit surface SDF = 0

trained on sampled points inside SDF < 0 and outside SDF > 0

the surface, (b) 2D cross-section of the signed distance field, (c)

rendered 3D surface recovered from SDF = 0. Note that (b) and

(c) are recovered via DeepSDF.

implicit surface defined as a SDF is widely known in the

computer vision and graphics communities, to our knowl-

edge no prior works have attempted to directly learn contin-

uous, generalizable 3D generative models of SDFs.

Our contributions include: (i) the formulation of gen-

erative shape-conditioned 3D modeling with a continuous

implicit surface, (ii) a learning method for 3D shapes based

on a probabilistic auto-decoder, and (iii) the demonstration

and application of this formulation to shape modeling and

completion. Our models produce high quality continuous

surfaces with complex topologies, and obtain state-of-the-

art results in quantitative comparisons for shape reconstruc-

tion and completion. As an example of the effectiveness

of our method, our models use only 7.4 MB (megabytes)

of memory to represent entire classes of shapes (for exam-

ple, thousands of 3D chair models) – this is, for example,

less than half the memory footprint (16.8 MB) of a single

uncompressed 5123 3D bitmap.

2. Related Work

We review three main areas of related work: 3D rep-

resentations for shape learning (Sec. 2.1), techniques for

learning generative models (Sec. 2.2), and shape comple-

tion (Sec. 2.3).

2.1. Representations for 3D Shape Learning

Representations for data-driven 3D learning approaches

can be largely classified into three categories: point-based,

mesh-based, and voxel-based methods. While some appli-

cations such as 3D-point-cloud-based object classification

are well suited to these representations, we address their

limitations in expressing continuous surfaces with complex

topologies.

Point-based. A point cloud is a lightweight 3D representa-

tion that closely matches the raw data that many sensors (i.e.

LiDARs, depth cameras) provide, and hence is a natural fit

for applying 3D learning. PointNet [36], for example, uses

max-pool operations to extract global shape features, and

the technique is widely used as an encoder for point genera-

tion networks [55, 1]. There is a sizable list of related works

for learning on point clouds [37, 51, 56]. A primary limi-

tation, however, of learning with point clouds is that they

do not describe topology and are not suitable for producing

watertight surfaces.

Mesh-based. Various approaches represent classes of sim-

ilarly shaped objects, such as morphable human body parts,

with predefined template meshes and some of these models

demonstrate high fidelity shape generation results [2, 31].

Other recent works [3] use poly-cube mapping [48] for

shape optimization. While the use of template meshes is

convenient and naturally provides 3D correspondences, it

can only model shapes with fixed mesh topology.

Other mesh-based methods use existing [45, 33] or

learned [19, 20] parameterization techniques to describe 3D

surfaces by morphing 2D planes. The quality of such repre-

sentations depends on parameterization algorithms that are

often sensitive to input mesh quality and cutting strategies.

To address this, recent data-driven approaches [55, 19] learn

the parameterization task with deep networks. They report,

however, that (a) multiple planes are required to describe

complex topologies but (b) the generated surface patches

are not stitched, i.e. the produced shape is not closed. To

generate a closed mesh, sphere parameterization may be

used [19, 20], but the resulting shape is limited to the topo-

logical sphere. Other works related to learning on meshes

propose to use new convolution and pooling operations for

meshes [16, 50] or general graphs [8].

Voxel-based. Voxels, which non-parametrically describe

volumes with 3D grids of values, are perhaps the most natu-

ral extension into the 3D domain of the well-known learning

paradigms (i.e., convolution) that have excelled in the 2D

image domain. The most straightforward variant of voxel-

based learning is to use a dense occupancy grid (occupied /

not occupied). Due to the cubically growing compute and

memory requirements, however, current methods are only

able to handle low resolutions (1283 or below). As such,

voxel-based approaches do not preserve fine shape details

[54, 13], and additionally voxels visually appear signifi-

cantly different than high-fidelity shapes, since when ren-

dered their normals are not smooth. Octree-based methods

[49, 41, 22] alleviate the compute and memory limitations

of dense voxel methods, extending for example the ability to

learn at up to 5123 resolution [49], but even this resolution

is far from producing shapes that are visually compelling.

Aside from occupancy grids, and more closely related to

our approach, it is also possible to use a 3D grid of vox-

els to represent a signed distance function. This inherits
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from the success of fusion approaches that use a truncated

SDF (TSDF), pioneered in [14, 35], to combine noisy depth

maps into a single 3D model. Voxel-based SDF represen-

tations have been extensively used for 3D shape learning

[57, 15, 46], but their use of discrete voxels is expensive

in memory. As a result, these approaches generally present

low resolution shapes. Wavelet transform-based methods

[27] and dimensionality reduction techniques [27] for dis-

tance fields were reported, but they encode the SDF volume

of each individual scene rather than a dataset of shapes.

Recently, concurrently to our work, binary implicit sur-

face representations were used by [12, 34], where they train

deep networks across classes of shapes to classify 3D points

as inside or outside of a shape. Note that the binary occu-

pancy function is a special case of SDF, considering only

‘sign’ of SDF values. As DeepSDF models metric signed

distance to the surface, it can be used to raycast against sur-

faces and compute surface normals with its gradients.

2.2. Representation Learning Techniques

Modern representation learning techniques aim at auto-

matically discovering a set of features that compactly but

expressively describe data. For a more extensive review of

the field, we refer to Bengio et al. [4].

Generative Adversial Networks. GANs [18] and their

variants [11, 39, 26, 28] learn deep embeddings of target

data, from which realistic images are sampled, by training

discriminators adversarially against generators. In the 3D

domain, Wu et al. [52] trains a GAN to generate objects in a

voxel form, while Hamu et al. [20] uses multiple parameter-

ization planes to generate shapes of topological spheres. On

the downside, training for GANs is known to be unstable.

Auto-encoders. The ability of auto-encoders as a represen-

tation learning tool has been evidenced by the vast variety of

3D shape learning works in the literature [15, 46, 2, 19, 53]

who adopt auto-encoders for representation learning. Re-

cent 3D vision works [5, 2, 31] often adopt a variational

auto-encoder (VAE) learning scheme, in which bottleneck

features are perturbed with Gaussian noise to encourage

smooth and complete latent spaces. The regularization on

the latent vectors enables exploring the embedding space

with gradient descent or random sampling.

Optimizing Latent Vectors. Instead of using the full auto-

encoder, an alternative is to learn compact data represen-

tations by training decoder-only networks. This idea goes

back to at least the work of Tan et al. [47] which simulta-

neously optimizes the latent vectors assigned to each data

point and the decoder weights through back-propagation.

For inference, an optimal latent vector is searched to match

the new observation with fixed decoder parameters. Similar

approaches have been extensively studied in [40, 7, 38], for

applications including noise reduction, missing measure-

ment completions, and fault detections. Recent approaches

[6, 17] extend the technique by applying deep architectures.

Throughout the paper we refer to this class of networks as

auto-decoders, for they are trained with self-reconstruction

loss on decoder-only architectures.

2.3. Shape Completion

3D shape completion related works aim to infer unseen

parts of the original shape given sparse or partial input ob-

servations. This task is analogous to image-inpainting in 2D

computer vision.

Classical surface reconstruction methods complete a

point cloud into a dense surface by fitting radial basis func-

tion (RBF) [9] to approximate implicit surface functions, or

by casting the reconstruction from oriented point clouds as

a Poisson problem [29]. These methods only model a single

shape rather than a dataset.

Various recent methods use data-driven approaches for

the 3D completion task. Most of these methods adopt

encoder-decoder architectures to reduce partial inputs of oc-

cupancy voxels [54], discrete SDF voxels [15], depth maps

[42], RGB images [13, 53] or point clouds [46] into a la-

tent vector and subsequently generate a prediction of full

volumetric shape based on learned priors.

3. Modeling SDFs with Neural Networks

In this section we present DeepSDF, our continuous

shape learning approach. We describe modeling shapes

as the zero iso-surface decision boundaries of feed-forward

networks trained to represent SDFs. A signed distance func-

tion is a continuous function that, for a given spatial point,

outputs the point’s distance to the closest surface, whose

sign encodes whether the point is inside (negative) or out-

side (positive) of the watertight surface:

SDF (x) = s : x ∈ R
3, s ∈ R . (1)

The underlying surface is implicitly represented by the iso-

surface of SDF (·) = 0. A view of this implicit surface can

be rendered through raycasting or rasterization of a mesh

obtained with, for example, Marching Cubes [32].

Our key idea is to directly regress the continuous SDF

from point samples using deep neural networks. The result-

ing trained network is able to predict the SDF value of a

given query position, from which we can extract the zero

level-set surface by evaluating spatial samples. Such sur-

face representation can be intuitively understood as a spa-

tial classifier for which the decision boundary is the surface

of the shape itself (Fig. 2). As a universal function approxi-

mator [24], deep feed-forward networks in theory can learn

continuous SDFs with arbitrary precision. Yet, the preci-

sion of the approximation in practice is limited by the finite

number of point samples that guide the decision boundaries

and the finite capacity of the network due to restricted com-

pute power.
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Figure 3: DeepSDF network outputs SDF value at a 3D query lo-

cation. While (a) the network can memorize a single shape, (b)

conditioning the network with a code vector allows DeepSDF to

model a large space of shapes, where the shape information is con-

tained in the code vector that is concatenated with the query point.

The most direct application of this approach is to train a

single deep network for a given target shape as depicted in

Fig. 3a. Given a target shape, we prepare a set of pairs X
composed of 3D point samples and their SDF values:

X := {(x, s) : SDF (x) = s} . (2)

We train the parameters θ of a multi-layer fully-connected

neural network fθ on the training set S to make fθ a good

approximator of the given SDF in the target domain Ω:

fθ(x) ≈ SDF (x), ∀x ∈ Ω . (3)

The training is done by minimizing the sum over losses

between the predicted and real SDF values of points in X
under the following L1 loss function:

L(fθ(x), s) = | clamp(fθ(x), δ)− clamp(s, δ) |, (4)

where clamp(x, δ) := min(δ,max(−δ, x)) introduces the

parameter δ to control the distance from the surface over

which we expect to maintain a metric SDF. Larger values

of δ allow for fast ray-tracing since each sample gives in-

formation of safe step sizes [23]. Smaller δ can be used

to concentrate network capacity on details near the surface.

We used δ = 0.1 in practice. (see supplementary for details)

Once trained, the surface is implicitly represented as the

zero iso-surface of fθ(x), which can be visualized through

raycasting or marching cubes. Another nice property of this

approach is that accurate normals can be analytically com-

puted by calculating the spatial derivative ∂fθ(x)/∂x via

back-propogation through the network.

4. Learning the Latent Space of Shapes

Training a specific neural network for each shape is nei-

ther feasible nor very useful. Instead, we want a model that

can represent a wide variety of shapes, discover their com-

mon properties, and embed them in a low dimensional latent

space. To this end, we introduce a latent vector z, which can

be thought of as encoding the desired shape, as a second in-

put to the neural network as depicted in Fig. 3b. Concep-

tually, we map this latent vector to a 3D shape represented

Code

Input Output

(a) Auto-encoder

Codes

Output
Backprogate

(b) Auto-decoder

Figure 4: Different from an auto-encoder whose latent code is

produced by the encoder, an auto-decoder directly accepts a la-

tent vector as an input. A randomly initialized latent vector is

assigned to each data point in the beginning of training, and the la-

tent vectors are optimized along with the decoder weights through

standard backpropagation. During inference, decoder weights are

fixed, and an optimal latent vector is estimated.

by a continuous SDF. Formally, for some shape indexed by

i, fθ is now a function of a latent code zi and a query 3D

location x, which outputs the shape’s approximate SDF:

fθ(zi,x) ≈ SDF i(x). (5)

By conditioning the network output on a latent vector, this

formulation allows modeling multiple SDFs with a single

neural network. Given the decoding model fθ, the contin-

uous surface associated with a latent vector z is similarly

represented with the zero iso-surface of fθ(z,x), and the

shape can again be discretized for visualization by, for ex-

ample, raycasting or Marching Cubes.

Throughout the paper we use the coded shape DeepSDF

model of Fig. 3b whose decoder is a feed-forward network

composed of eight fully connected layers, each of them ap-

plied with dropouts. All internal layers are 512-dimensional

and have ReLU non-linearities. The output non-linearity

regressing the SDF value is tanh. We found training with

batch-normalization [25] to be unstable and applied the

weight-normalization technique instead [43]. For training,

we use the Adam optimizer [30].

In the next section we explain training the decoding

model fθ(z,x) and introduce the ‘auto-decoder’ formula-

tion for encoder-less training of shape-coded DeepSDF.

4.1. Motivating Encoderless Learning

Auto-encoders and encoder-decoder networks are

widely used for representation learning as their bottleneck

features tend to form natural latent variable representations.

Recently, in applications such as modeling depth maps

[5], faces [2], and body shapes [31] a full encoder-decoder

network is trained but only the decoder is retained for infer-

ence, where they search for an optimal latent vector given

some input observation. Since the trained encoder is unused

at test time, it is unclear whether (1) training encoder is an

effective use of computational resources and (2) it is neces-
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sary for researchers to design encoders for various 3D input

representations (e.g. points, meshes, octrees, etc).

This motivates us to use an auto-decoder for learning a

shape embedding without an encoder as depicted in Fig. 4b.

We show that learning continuous SDFs with auto-decoder

leads to high quality 3D generative models. Further, we

develop a probabilistic formulation for training and test-

ing the auto-decoder that naturally introduces latent space

regularization for improved generalization. To the best of

our knowledge, this work is the first to introduce the auto-

decoder learning method to the 3D learning community.

4.2. Autodecoderbased DeepSDF Formulation

To derive the auto-decoder-based shape-coded DeepSDF

formulation we adopt a probabilistic perspective. Given a

dataset of N shapes represented with signed distance func-

tion SDF iN

i=1, we prepare a set of K point samples and

their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent

code zi is paired with training shape Xi. The posterior over

shape code zi given the shape SDF samples Xi can be de-

composed as:

pθ(zi|Xi) = p(zi)
∏

(xj ,sj)∈Xi
pθ(sj |zi;xj) , (7)

where θ parameterizes the SDF likelihood. In the latent

shape-code space, we assume the prior distribution over

codes p(zi) to be a zero-mean multivariate-Gaussian with

a spherical covariance σ2I . This prior encapsulates the no-

tion that the shape codes should be concentrated and we

empirically found it was needed to infer a compact shape

manifold and to help converge to good solutions.

In the auto-decoder-based DeepSDF formulation we ex-

press the SDF likelihood via a deep feed-forward network

fθ(zi,xj) and, without loss of generality, assume that the

likelihood takes the form:

pθ(sj |zi;xj) = exp(−L(fθ(zi,xj), sj)) . (8)

The SDF prediction s̃j = fθ(zi,xj) is represented using a

fully-connected network. L(s̃j , sj) is a loss function penal-

izing the deviation of the network prediction from the actual

SDF value sj . One example for the cost function is the stan-

dard L2 loss function which amounts to assuming Gaussian

noise on the SDF values. In practice we use the clamped L1

cost from Eq. 4 for reasons outlined previously.

At training time we maximize the joint log posterior over

all training shapes with respect to the individual shape codes

{zi}
N
i=1 and the network parameters θ:

argmin
θ,{zi}N

i=1

N
∑

i=1





K
∑

j=1

L(fθ(zi,xj), sj) +
1

σ2
||zi||

2
2



 . (9)

Figure 5: Compared to car shapes memorized using OGN [49]

(right), our models (left) preserve details and render visually pleas-

ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing θ, a shape

code zi for shape Xi can be estimated via Maximum-a-

Posterior (MAP) estimation as:

ẑ = argmin
z

∑

(xj ,sj)∈X

L(fθ(z,xj), sj) +
1

σ2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the

loss with respect to z can be computed separately for each

SDF sample. This implies that DeepSDF can handle any

form of partial observations such as depth maps. This is

a major advantage over the auto-encoder framework whose

encoder expects a test input similar to the training data, e.g.

shape completion networks of [15, 56] require preparing

training data of partial shapes.

To incorporate the latent shape code, we stack the code

vector and the sample location as depicted in Fig. 3b and

feed it into the same fully-connected NN described previ-

ously at the input layer and additionally at the 4th layer. We

again use the Adam optimizer [30]. The latent vector z is

initialized randomly from N (0, 0.012).
Note that while both VAE and the proposed auto-decoder

formulation share the zero-mean Gaussian prior on the la-

tent codes, we found that the the stochastic nature of the

VAE optimization did not lead to good training results.

5. Data Preparation

To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D

points and their SDF values. While SDF can be computed

through a distance transform for any watertight shapes from

real or synthetic data, we train with synthetic objects, (e.g.

ShapeNet [10]), for which we are provided complete 3D

shape meshes. To prepare data, we start by normalizing

each mesh to a unit sphere and sampling 500,000 spatial

points x’s: we sample more aggressively near the surface

of the object as we want to capture a more detailed SDF

near the surface. For an ideal oriented watertight mesh,

computing the signed distance value of x would only in-

volve finding the closest triangle, but we find that human

designed meshes are commonly not watertight and con-

tain undesired internal structures. To obtain the shell of a
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Complex Closed Surface Model Inf. Eval.

Method Type Discretization topologies surfaces normals size (GB) time (s) tasks

3D-EPN [15] Voxel SDF 32
3 voxels X X X 0.42 - C

OGN [49] Octree 256
3 voxels X X 0.54 0.32 K

AtlasNet Parametric 1 patch X 0.015 0.01 K, U

-Sphere [19] mesh

AtlasNet Parametric 25 patches X 0.172 0.32 K, U

-25 [19] mesh

DeepSDF Continuous none X X X 0.0074 9.72 K, U, C

(ours) SDF

Table 1: Overview of the benchmarked methods. AtlasNet-Sphere can only describe topological-spheres, voxel/octree occupancy methods

(i.e. OGN) only provide 8 directions for normals, and AtlasNet does not provide oriented normals. Our tasks evaluated are: (K) representing

known shapes, (U) representing unknown shapes, and (C) shape completion.

mesh with proper orientation, we set up equally spaced vir-

tual cameras around the object, and densely sample surface

points, denoted Ps, with surface normals oriented towards

the camera. Double sided triangles visible from both orien-

tations (indicating that the shape is not closed) cause prob-

lems in this case, so we discard mesh objects containing too

many of such faces. Then, for each x, we find the closest

point in Ps, from which the SDF (x) can be computed. We

refer readers to supplementary material for further details.

6. Results

We conduct a number of experiments to show the repre-

sentational power of DeepSDF, both in terms of its ability

to describe geometric details and its generalization capabil-

ity to learn a desirable shape embedding space. Largely, we

propose four main experiments designed to test its ability to

1) represent training data, 2) use learned feature representa-

tion to reconstruct unseen shapes, 3) apply shape priors to

complete partial shapes, and 4) learn smooth and complete

shape embedding space from which we can sample new

shapes. For all experiments we use the popular ShapeNet

[10] dataset.

We select a representative set of 3D learning approaches

to comparatively evaluate aforementioned criteria: a recent

octree-based method (OGN) [49], a mesh-based method

(AtlasNet) [19], and a volumetric SDF-based shape comple-

tion method (3D-EPN) [15] (Table 1). These works show

state-of-the-art performance in their respective representa-

tions and tasks, so we omit comparisons with the works

that have already been compared: e.g. OGN’s octree model

outperforms regular voxel approaches, while AtlasNet com-

pares itself with various points, mesh, or voxel based meth-

ods and 3D-EPN with various completion methods.

6.1. Representing Known 3D Shapes

First, we evaluate the capacity of the model to represent

known shapes, i.e. shapes that were in the training set, from

only a restricted-size latent code — testing the limit of ex-

pressive capability of the representations.

CD, CD, EMD, EMD,

Method \metric mean median mean median

OGN 0.167 0.127 0.043 0.042

AtlasNet-Sph. 0.210 0.185 0.046 0.045

AtlasNet-25 0.157 0.140 0.060 0.060

DeepSDF 0.084 0.058 0.043 0.042

Table 2: Comparison for representing known shapes (K) for cars

trained on ShapeNet. CD = Chamfer Distance (30, 000 points)

multiplied by 10
3, EMD = Earth Mover’s Distance (500 points).

Quantitative comparison in Table 2 shows that the pro-

posed DeepSDF significantly beats OGN and AtlasNet in

Chamfer distance against the true shape computed with a

large number of points (30,000). The difference in earth

mover distance (EMD) is smaller because 500 points do not

well capture the additional precision. Figure 5 shows a qual-

itative comparison of DeepSDF to OGN.

6.2. Representing Test 3D Shapes (autoencoding)

For encoding unknown shapes, i.e. shapes in the held-out

test set, DeepSDF again significantly outperforms AtlasNet

on a wide variety of shape classes and metrics as shown

in Table 3. Note that AtlasNet performs reasonably well

at classes of shapes that have mostly consistent topology

without holes (like planes) but struggles more on classes

that commonly have holes, like chairs. This is shown in

Fig. 6 where AtlasNet fails to represent the fine detail of the

back of the chair. Figure 7 shows more examples of detailed

reconstructions on test data from DeepSDF as well as two

example failure cases.

6.3. Shape Completion

A major advantage of the proposed DeepSDF approach

for representation learning is that inference can be per-

formed from an arbitrary number of SDF samples. In the

DeepSDF framework, shape completion amounts to solving

for the shape code that best explains a partial shape obser-

vation via Eq. 10. Given the shape-code a complete shape

can be rendered using the priors encoded in the decoder.
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(a) Ground-truth (b) Our Result (c) [19]-25 patch (d) [19]-sphere (e) Our Result (f) [19]-25 patch

Figure 6: Reconstruction comparison between DeepSDF and AtlasNet [19] (with 25-plane and sphere parameterization) for test shapes.

Note that AtlasNet fails to capture the fine details of the chair, and that (f) shows holes on the surface of sofa and the plane.

Figure 7: Reconstruction of test shapes. From left to right alternating: ground truth shape and our reconstruction. The two right most

columns show failure modes of DeepSDF. These failures are likely due to lack of training data and failure of minimization convergence.

CD, mean chair plane table lamp sofa

AtlasNet-Sph. 0.752 0.188 0.725 2.381 0.445

AtlasNet-25 0.368 0.216 0.328 1.182 0.411

DeepSDF 0.204 0.143 0.553 0.832 0.132

CD, median

AtlasNet-Sph. 0.511 0.079 0.389 2.180 0.330

AtlasNet-25 0.276 0.065 0.195 0.993 0.311

DeepSDF 0.072 0.036 0.068 0.219 0.088

EMD, mean

AtlasNet-Sph. 0.071 0.038 0.060 0.085 0.050

AtlasNet-25 0.064 0.041 0.073 0.062 0.063

DeepSDF 0.049 0.033 0.050 0.059 0.047

Mesh acc., mean

AtlasNet-Sph. 0.033 0.013 0.032 0.054 0.017

AtlasNet-25 0.018 0.013 0.014 0.042 0.017

DeepSDF 0.009 0.004 0.012 0.013 0.004

Table 3: Comparison for representing unknown shapes (U) for

various classes of ShapeNet. Mesh accuracy as defined in [44]

is the minimum distance d such that 90% of generated points are

within d of the ground truth mesh. Lower is better for all metrics.

We test our completion scheme using single view depth

observations which is a common use-case and maps well

to our architecture without modification. Note that we cur-

rently require the depth observations in the canonical shape

frame of reference.

To generate SDF point samples from the depth image ob-

servation, we sample two points for each depth observation,

each of them located η distance away from the measured

lower is better higher is better

Method CD, CD, Mesh Mesh Cos

\Metric med. mean EMD acc. comp. sim.

chair

3D-EPN 2.25 2.83 0.084 0.059 0.209 0.752

DeepSDF 1.28 2.11 0.071 0.049 0.500 0.766

plane

3D-EPN 1.63 2.19 0.063 0.040 0.165 0.710

DeepSDF 0.37 1.16 0.049 0.032 0.722 0.823

sofa

3D-EPN 2.03 2.18 0.071 0.049 0.254 0.742

DeepSDF 0.82 1.59 0.059 0.041 0.541 0.810

Table 4: Comparison for shape completion (C) from partial range

scans of unknown shapes from ShapeNet.

surface point (along surface normal estimate). With small

η we approximate the signed distance value of those points

to be η and −η, respectively. We solve for Eq. 10 with

loss function of Eq. 4 using clamp value of η. Additionally,

we incorporate free-space observations, (i.e. empty-space

between surface and camera), by sampling points along

the freespace-direction and enforce larger-than-zero con-

straints. The freespace loss is |fθ(z,xj)| if fθ(z,xj) < 0
and 0 otherwise.

Given the SDF point samples and empty space points,

we similarly optimize the latent vector using MAP estima-

tion. Tab. 4 and Figs. (8, 9) respectively shows quantitative

and qualitative shape completion results. Compared to one

of the most recent completion approaches [15] using volu-
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(a) Input Depth (b) Completion (ours) (c) Second View (ours) (d) Ground truth (e) 3D-EPN

Figure 8: For a given depth image visualized as a green point cloud, we show a comparison of shape completions from our DeepSDF

approach against the true shape and 3D-EPN.

(a) Noisy Input Point Cloud (b) Shape Completion

Figure 9: Demonstration of DeepSDF shape completion from a

partial noisy point cloud. Input here is generated by perturbing the

3D point cloud positions generated by the ground truth depth map

by 1.5% of the plane length. We provide a comprehensive analysis

of robustness to noise in the supplementary material.

metric shape representation, our continuous SDF approach

produces more visually pleasing and accurate shape recon-

structions. While a few recent shape completion methods

were presented [21, 53], we could not find the code to run

the comparisons, and their underlying 3D representation is

voxel grid which we extensively compare against.

6.4. Latent Space Shape Interpolation

To show that our learned shape embedding is complete

and continuous, we render the results of the decoder when

a pair of shapes are interpolated in the latent vector space

(Fig. 1). The results suggests that the embedded continuous

SDF’s are of meaningful shapes and that our representation

extracts common interpretable shape features, such as the

arms of a chair, that interpolate linearly in the latent space.

7. Conclusion & Future Work

DeepSDF significantly outperforms the applicable

benchmarked methods across shape representation and

completion tasks and simultaneously addresses the goals

of representing complex topologies, closed surfaces, while

providing high quality surface normals of the shape. How-

ever, while point-wise forward sampling of a shape’s SDF is

efficient, shape completion (auto-decoding) takes consider-

ably more time during inference due to the need for explicit

optimization over the latent vector. We look to increase per-

formance by replacing ADAM optimization with more ef-

ficient Gauss-Newton or similar methods that make use of

the analytic derivatives of the model.

DeepSDF models enable representation of more com-

plex shapes without discretization errors with significantly

less memory than previous state-of-the-art results as shown

in Table 1, demonstrating an exciting route ahead for 3D

shape learning. The clear ability to produce quality latent

shape space interpolation opens the door to reconstruction

algorithms operating over scenes built up of such efficient

encodings. However, DeepSDF currently assumes models

are in a canonical pose and as such completion in-the-wild

requires explicit optimization over a SE(3) transformation

space increasing inference time. Finally, to represent the

true space-of-possible-scenes including dynamics and tex-

tures in a single embedding remains a major challenge, one

which we continue to explore.

8172



References

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3d point

clouds. 2018.

[2] T. Bagautdinov, C. Wu, J. Saragih, P. Fua, and Y. Sheikh.

Modeling facial geometry using compositional vaes. 1:1.
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