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Abstract

Can performance on the task of action quality assess-
ment (AQA) be improved by exploiting a description of the
action and its quality? Current AQA and skills assessment
approaches propose to learn features that serve only one
task - estimating the final score. In this paper, we pro-
pose to learn spatio-temporal features that explain three
related tasks - fine-grained action recognition, commen-
tary generation, and estimating the AQA score. A new
multitask-AQA dataset, the largest to date, comprising of
1412 diving samples was collected to evaluate our ap-
proach (http://rtis.oit.unlv.edu/datasets.
html). We show that our MTL approach outperforms
STL approach using two different kinds of architectures:
C3D-AVG and MSCADC. The C3D-AVG-MTL approach
achieves the new state-of-the-art performance with a rank
correlation of 90.44%. Detailed experiments were per-
formed to show that MTL offers better generalization than
STL, and representations from action recognition models
are not sufficient for the AQA task and instead should be
learned.

1. Introduction

What score should an athlete receive on her
dive/gymvault/skating/etc? Which med student has
the highest surgical skill level? How well can he paint or
draw? How is a patient progressing in their physical reha-
bilitation program? Answering these questions involves the
quantification of the quality of the action — determining how
well the action was carried out, also known as action quality
assessment (AQA). Existing AQA [18, 16, 26, 13, 25] and
skills assessment [4, 10, 31, 32, 33] approaches use a
single label, known as a final score or skill-level, to train
the system using some kind of regression or ranking loss
function. However, the performance of these systems is
limited and it seems that a single score is not sufficient
to characterize a complicated action. In AQA, the final
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Figure 1: Multitask AQA concept. Recognizing an action
instance in detail and verbally describing its good and bad
points can be helpful in the process of quantifying the qual-
ity of that action instance. We propose to learn a model that
delineates an action besides measuring its quality. 7o see
the videos play, please download the manuscript and view
in an Adobe Reader.

score is dependent on what was done (this determines the
difficulty level) and how was that done (this determines
the quality of execution). We pose the following question:
can learning to describe and commentate on the action
instances help improve the performance on the AQA task?

We hypothesize that by forcing the network to learn to
do so will help better characterize the action, and hence aid
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in AQA. So, rather than using just a single encompassing
quality label to train the network, we introduce a multitask
learning (MTL) approach (Fig. 1) to assess the quality of
an action. Specifically, we propose to utilize 3D CNN’s to
learn spatio-temporal representations of salient motion and
appearance; optimize those using loss functions which ac-
count for 1) the action quality score, ii) factorized (detailed)
action classification, and iii) generate a verbal commentary
of performance; and are trained end-to-end. Note that the
architectures are multitask and not multi-modal since the in-
put does not use captions or action classification to produce
the AQA score. Besides straight forward utility for AQA
and action classification, automatic commentary or sports
narrative generation has been viewed valuable and greatly
applicable in a recent work by Yu et al. [29].

For AQA tasks, domain experts can provide detailed
analysis of performance. In the professional sports setting,
ground truth annotations for detailed action classification
and commentary by former athletes are readily available in
broadcast footage facilitating extraction of labels and de-
scriptive captions. As such, to evaluate our approach, we
introduce the first multitask AQA dataset with 1412 sam-
ples of diving which is also the largest AQA dataset to date.

Experimental evaluation show that performance of both
the architectures improved as more tasks were added and
the C3D-AVG-MTL variant outperforms all existing AQA
approaches in literature. MTL was shown to outperform
STL across various training set sizes. Further experiments
explore the AQA-orientedness of the feature representations
learned by our networks and find they outperform action-
recognition representations on unseen actions indicating
that better generalized concepts of quality were learned.

Contributions: primary novelty of this works lies in the
problem formulation — to learn spatio-temporal represen-
tations by optimizing networks end-to-end jointly for fine-
grained action description and AQA scoring. Task selec-
tion is intuitive. No previous work has done this; not
just for AQA, but even action recognition and captioning
tasks. We release a novel MTL-AQA dataset which is the
largest AQA dataset so far, much more diverse, challeng-
ing, and richly annotated with factorized fine-grained action
class and AQA-oriented captions. Our dataset can help re-
searchers in the field to examine new ideas for AQA and
auxiliary tasks. We show that our MTL approach works
across different architectures. Our approach is applicable to
a wide range of problems. Our proposed models are simple,
yet intuitive, and effective in carrying out central of learning
representations in a MTL setting by optimizing networks
end-to-end. Our C3D-AVG-MTL surpasses all the existing
approaches.

2. Related Work

AQA: Pirsiavash et al. [18] proposed the use of
DFT/DCT of body pose as features for a support vector
regressor (SVR) to map to a final action quality score.
They introduced an action quality dataset containing two
actions: Diving and Figure Skating. However, since
their method relied solely on pose features, it neglected
important visual quality cues, like splash in the case of
Diving. Since accurate pose is especially difficult in sports
scenarios where athletes undergo extremely convoluted
poses, Venkataraman et al. [25] better encoded using the
approximate entropy of the poses to improve the results.

More recently, spatio-temporal features from 3D convo-
lutional neural networks (C3D) [24] proved to be very suc-
cessful on a related task of action recognition since they
captured appearance and salient motion. Seeing this as
a desirable property that would help to take into account
visual cues, Parmar and Morris [16] proposed using C3D
features for AQA. They proposed three frameworks, C3D-
SVR, C3D-LSTM, and C3D-LSTM-SVR, which differed
in their feature aggregation and regression scheme. All
the frameworks worked better than previous models prov-
ing the efficacy of C3D features for AQA. Xiang ef al. [26]
proposed breaking video clips into action specific segments
and fusing segment-averaged features instead of over full
videos. By adding finer segment labels to data samples per-
formance was improved. Li et al. [13] divide a sample into
9 clips and use 9 different C3D networks dedicated to differ-
ent stags of Diving. Features are concatenated and further
processed through conv and fc layers to produce a final
AQA score using a ranking loss along with the more typ-
ical L2 loss. Xu et al. [27] tackle AQA for longer action
sequences using self-attentive and multiscale convolutional
skip LSTM.

Skills assessment: Zia et al. [33] extract spatio-temporal
interest points (STIP’s) in the frequency domain to classify
a sample into novice, intermediate or expert skills level. In-
stead of using handcrafted STIP’s Doughty et al. [4] learn
and use convolutional features with ranking loss as their
objective function to evaluate surgical, drawing, chopstick
use and dough rolling skills. In their subsequent work [5],
they use temporal attention. Li et al. [ 14], make use of spa-
tial attention in the assessment of hand manipulation skills.
Bertasius et al. [1] focus on measuring basketball skills but
rely only on assessment of a single basketball coach making
their dataset subjective to a particular evaluator.

All of the existing AQA and SA frameworks are single
task models and only give the final AQA score. Our pro-
posed framework is a multitask model to recognize the ac-
tion, measures its quality and also generates captions (or
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View Variation/

Dataset Events Height Genders # Samples Events Labels
Background
MIT Dive [18] ‘ Individual 10m Platform Male 159 1 No/Same AQA score
UNLYV Dive [16] ‘ Individual 10m Platform Male 370 1 No/Same AQA score
.. . AQA score,
Ours MTL-AQA Individual, 3m Springboard, Male, 1412 16 Yes/Different Action class,
Synchronous 10m Platform Female
Commentary

Table 1: Details of our newly introduced dataset, and its comparison with the existing AQA datasets.

Position Armstand Rotation type #SS #TW

Inward
Free No Reverse
Tuck Oto45 O0to3.5
. Yes Backward
Pike
Forward

Table 2: Classification of dives. Each combination of the
presented sub-fields produces a different kind of maneuver.

commentary).

Multi-modal approaches and captioning: Images and
videos (especially sports) are often accompanied by a cap-
tion or commentary which can themselves serve as labels
yet to be exploited for AQA or skill assessment. Quattoni
et al. [19] use large quantities of unlabeled images, with
associated captions, to learn image representations. They
found that this sort of pre-training with extra information
could speed up the learning on a target task. Rather than
using captions as groundtruth labels, Sonal et al. [6] treated
captions as a “view” and use them along with images to
learn a classifier using co-training. They again used com-
mentary as a “view” for action recognition with success. To
train an activity classifier in an automated fashion, without
the requirement of any manual labeling, Sonal and Mooney
[7] make use of broadcast closed captions and used the sys-
tem for video retrieval. There are a few works which fo-
cus on captioning in sports settings. Yu et al. [29] address
the task of generating fine-grained video descriptions for
basketball and evaluate performance using their novel met-
ric. Commentary generation in cricket has been addressed
in [20, 21], while Sukhwani addressed the problem of de-
scribing tennis videos in [23]. While these works focus on
captioning or improving captioning, we integrate a caption-
ing task with an AQA task to provide stronger supervision
as commentary is a verbal description of AQA.

3. Multitask AQA Dataset

In order to facilitate research in the area of AQA, we re-
lease a new dataset. This is the first of a kind multitask

AQA dataset. With 1412 samples, it is the largest AQA
dataset to date. This particular dataset focuses only on Div-
ing as it has seen the most usage recently. Data was com-
piled from 16 different events unlike the single main event
(2012 Olympics Men’s 10m Platform Diving competition)
used for previous datasets [18, 16] to provide significantly
more variation. Diving samples in the new dataset were col-
lected from various International competitions and include
the 10m Platform as well as 3m Springboard, include both
male and female athletes, individual or pairs of synchro-
nized divers, and different views. A comparison of our new
dataset with existing Diving AQA sets is provided in Table
1.

Since data was collected from televised international
events, before the athletes perform their routines, informa-
tion regarding their routine is displayed. This information
includes the difficulty of the dive and a description of the
dive. The AQA score is extracted from the judges’ scores
after the dive completion. The dataset uses the same dive
classification strategy as Nibali et al. [15], where instead of
using dive number (equivalent to an action class in action
recognition) directly, we factorize a dive into its compo-
nents such as the position of the dive, the number of somer-
saults (SS), and number of twists (TW). Full details for the
dive classification is in Table 2.

Further, during and after a diving routine, television an-
alysts provide commentary. These analysts are often retired
athletes and have deep understanding of the sport. This ver-
bal account of the athlete’s performance is recorded for the
third type of action label. The commentary was consid-
ered an important indicator for performance since it was the
only way to “watch” an event before telecast was available.
Commentators say what the athlete performed, what was
correct with the athlete’s performance, and where and how
athletes made mistakes. This provides deeper insight into
the athlete’s performance and can help an average person
better understand the sport. We used Google’s Speech-To-
Text API to convert commentary audio to text.
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4. Multitask Approach to AQA

MTL is a machine learning paradigm in which a single
model caters to more than a single task. An example is to
recognize road signs, roads, and vehicles together while an
STL approach would require separate models for each ob-
ject type. MTL tasks are generally chosen such that they
are related to one another and their networks have a com-
mon body that branches into task-specific heads. The total
network loss is the sum of individual task losses. When
optimized end-to-end, the network is able to learn richer
representation in the common body section since it must be
able to serve/explain all tasks. With the use of related aux-
iliary tasks, which are complementary to the main task, the
richer representation tends to help improve performance on
the main task.

In general, not just for diving, action quality is a func-
tion of what action was carried out and iow well that action
was executed. This makes the choice of auxiliary tasks nat-
ural: detailed action recognition is the answer to the ‘what’
part and commentary, being a verbal description containing
good and bad points about action execution, is an answer
to the ‘how well’ part. AQA can be thought of as finding
a function that maps input video to the AQA scores. Caru-
ana in [2] views supervision signals from auxiliary tasks
as an inductive bias (assumptions). Inductive bias can be
thought of as constraints that restrict the hypothesis/search
space when finding the AQA function. Through inductive
biases, MTL provides improved generalization as compared
STL [2].

In this work, the main task is to assess the action quality
(AQA score) and the auxiliary tasks are to recognize the
action (dive type classification) and to generate descriptive
captions/commentary. Action recognition in turn consists
of five fine-grained dive sub-recognition tasks: recognizing
position and rotation type, detecting armstand, and counting
somersaults and twists.

First, let us formalize the settings and objective func-
tions. AQA is a regression problem where, generally, the
Euclidean distance between the predicted quality score and
the ground truth is used as the objective function to be mini-
mized [16, 26, 13]. Initial experimentation found that using
L1 distance in addition to L2 yielded better results on the
AQA task

N
Laga=—— Z P tlei—yl D

where z; is the predicted score and y; is the ground truth
score for each of the N samples. For action recognition,
we use cross-entropy loss between the predicted labels and

ground truth label

Lcois = — y; Glog(x 2
~ Z ) Z

=1 sa j=1

where kg, is the number of categories in sub-action class sa
(as in Table 2). Negative log likelihood is used as the loss
function for the captioning task

Lo =~ Z > in(a P year) 3)

=1 sl

with sl is the sentence length. The overall objective func-
tion to be minimized is the summation of all the losses

Lyrr = oLaga + BLar +vLCap- 4)

where «, 3,7y are loss the weights. Now, we will introduce
two different architectures for MTL-AQA.

MTL-AQA architectures Unlike action recognition that
may be accomplished by looking at as little evidence as just
a single frame [ 1], for AQA the complete action sequence
needs to be considered because the athlete can make or lose
points at any point during the whole sequence.

While spatio-temporal representations learnt using 3D
CNN’s capture appearance and salient motion patterns [24],
which makes them one of the best candidates for action
recognition [24, 8] and also for AQA [16, 26, 13], 3D
CNN’s require large memories which limits their applica-
tion to small clips. We tackle this bottleneck in two ways:

1. divide the video (96 frames) into small clips (16
frames), and then aggregate clip-level representations
to obtain video-level description (Sec. 4.1)

2. downsample the video into a small clip (Sec. 4.2)

Networks designed for multitask learning generally two
segments: common network backbone and task-specific
heads. Common network backbone learns shared repre-
sentations, which are then further processed through task-
specific heads to obtain more task-oriented features and out-
puts.

4.1. Averaging as aggregation (C3D-AVG)

The first network we present is C3D-AVG (Fig. 2).
Network backbone: Backbone consists of C3D network
[24] upto the fifth pooling layer.

Aggregation scheme: An athlete gathering (or losing)
points throughout the action can be seen as an addition op-
eration. Combining this perspective with a good rule of
thumb that when good representations are learned, linear
operations on them become meaningful, we propose to en-
force a linear combination of representations to be mean-
ingful, in order to learn good representations. Specifically,
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Figure 2: C3D-AVG-MTL network.

we propose to use averaging as the linear combination. The
network is optimized end-to-end for all three tasks.
C3D-AVG network up to Average layer can be
considered as an encoder, which encodes input video-clips
into representations that when averaged (in feature space)
would correspond to the total AQA points gathered by the
athlete. Subsequent layers can be thought of decoders for
individual tasks.
Task-specific heads: For action-recognition and AQA
tasks, clip-level pool-5 features are averaged element-
wise to yield a video-level representation. Since captioning
is a sequence-to-sequence task, the individual clip-level
features are input to the captioning branch before averaging
(individual clip-level features worked better in practice
than averaged clip-level features for captioning).

4.2. Multiscale Context Aggregation with Dilated
Convolutions (MSCADC)

Multiscale context aggregation with dilated convolutions
(MSCADC) [28] has been shown to improve the classifica-
tion of dives in the work of Nibali ef al. [15]. Given its
strong performance on an auxiliary task MSCADC was se-
lected for MTL. Our MTL variant network has a backbone
and multiple heads as illustrated in Table 3.

Network backbone: The MSCADC network is based on
C3D network [24] and incorporates improvements like us-
ing Batch Normalization [9] to provide better regularization
which is needed in AQA where data is quite limited. Addi-
tionally, pooling is removed from the last two convolutional
groups of C3D and instead a dilation rate of 2 is used. This
backbone structure is shared among all the MTL tasks.
Task-specific heads: We use separate heads, one for each
task. Heads consist of a context net followed by a few addi-
tional layers. The context net is where the feature maps are
aggregated at multiple scales.

Dilated convolutions and multi-scale aggregation have
shown improvements in the tasks involving dense predic-
tions [28]. We believe that removing pooling layers and
using dilated convolutions better maintains the structure of
the diving athlete without losing resolution. This helps in
better assessment of the athlete’s pose which is critical for
AQA. For example, pose can identify when legs are aligned
or split which is useful not only for diving but also other
sports such as gymnastic vault, figure skating, skiing, snow-
boarding, etc.

Unlike the C3D-AVG network, we downsample the com-
plete action into a short sequence of only 16 frames (some-
thing like key action snapshots) as done by Nibali et al. [15].
This reduces our 96-frames videos into key action snapshots
which helps in processing the complete action sequence in
a single pass. Processing an action sequence using this net-
work can be thought of as distilling information from the
input frames and putting it into feature maps, with different
feature maps containing different kinds of pose information.
A natural benefit of downsampling the sequence is that there
is a significant reduction in the the number of network pa-
rameters and memory which can be used instead to increase
spatial resolution.

5. Experiments

Implementation: PyTorch [17] is used to implement all
the networks; common network backbones were pretrained
on the UCF101 [22] action recognition dataset. The cap-
tioning module utilized a GRU [3] cell and a dropout rate of
0.2 in the encoder and decoder. Maximum caption length
is set to 100 words. Full vocabulary size is 5779. The pa-
rameters «, 3, and «y in Eq. 4 are set to 1, 1, and 0.01. All
networks used the Adam optimizer [12] and were trained for
100 epochs with initial learning rate of le-4. Data augmen-
tation is performed through center cropping with temporal
augmentation and random horizontal flipping. The center
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(Common network body)
C3(32); BN
MP(1,2,2)
C3(64); BN
MP(2,2,2)
{C3(128); BN} x2
MP(2,2,2)
{C3(256); BN} x2
{C3(d=2,256); BN} x2

Dropout(0.5)
(Task-specific heads)

(AQA Score (Action (Captioning
Head) recognition Head) Head)
C1(12) C1(12) C1(12)

{Cntxt net} {Cntxt net} {Cntxt net}

MP(2,2,2) MP(2,2,2) MP(2,2,2)

C3(12); BN C3(12); BN C3(12); BN
C3(1) (Action Enc. GRU

AP(2,11,11) recognition sub-heads) Dec. GRU

Table 3: MSCADC-MTL architecture. C3(d,ch): 3D
convolutions, ch-no. of channels, d-dilation rate. C1: 1x1x1
convolutions. BN: batch normalization. MP(kr): max
pooling operation, kr-kernel size. Cntxt net: context net
for multi-scale context aggregation. AP: average pooling
across (2x11x11) volume.

crop was found to reliably capture both the athlete and other
prominent visual cues such as splash. Batch-size was set to
three samples. Additional architecture-specific implemen-
tation details are as follows:

C3D-AVG: The model is trained end-to-end with a 112 x
112 center crop from the 171 x 128 pixel input video. Each
dive sample was temporally normalized to a length of 96
frames.

MSCADC: Since this architecture does not contain fully-
connected layers and all videos are downsampled to 16
frames, there are fewer model parameters allowing the use
of higher resolution video input. Frames are resized to
640 x 360 pixels and 180 x 180 center cropping is used.
Evaluation metrics: AQA is assessed using Spearman’s
rank correlation, dive classification uses accuracy, and com-
mentary uses captioning metrics of Bleu, Meteor, Rouge,
and CIDEr.

5.1. Single-task vs. Multi-task approach

We carry out an experiment to compare the performance
of STL against that of MTL. We have a total of 3 tasks:
AQA, detailed action recognition, and commentary genera-
tion. This experiment first considered the STL approach to
AQA task and then measured the effect of including auxil-
iary tasks. The evaluation is summarized in Table 4. We
observe that MTL approaches perform better than STL ap-
proach for both the networks, which shows that our MTL

Tasks | C3D-AVG | MSCADC
AQA | 8960 | 8472
+Cls 89.62 85.76
+ Caps 88.78 85.47
+ Cls + Caps 90.44 86.12

Table 4: STL vs. MTL across different architectures.
Cls - classifiction, Caps - captioning. First row shows STL
results, while the remaining rows show MTL results.

Nibali Ours-MTL
etal. [15] | MSCADC | C3D-AVG
Position 74.79 78.47 96.32
Amstand 98.30 97.45 99.72
Rotation type 78.75 84.70 97.45
# Somersaults 77.34 76.20 96.88
# Twists 79.89 82.72 93.20
Model | B B2 B3 B4 M R C

C3D-AVG | 026 0.10 0.04 0.02 0.11 0.14 0.06
MSCADC | 025 0.09 0.03 001 0.11 0.13 0.05

Table 5: Performance on auxiliary tasks.

approach is not limited to a network but is generalizable
across networks. Other thing to note here is that MTL per-
formance improves as we incorporate more tasks. Com-
paring both the architectures, we find that our C3D-AVG
outperforms our MSCADC for both STL and MTL, while
MSCADC has the advantage of being fast and lower mem-
ory requirement than C3D-AVG. For qualitative results, re-
fer to Table 6 and supplementary material.

Performance on the auxiliary tasks is presented in Table
5. To the best of our knowledge there is only one work
(by Nibali et al. [15]) on detailed dive classification. Our
C3D-AVG-MTL performed best on the classification task as
well. We also give captioning metrics for the two networks
though there is no baseline for comparison in literature.

Secondly, we compare our models with the existing
methods in Table 7. We obtain the results for all of the
existing methods on our dataset. C3D-SVR was the best
performing method in [16] but it does not seem to ben-
efit from the increased number of training samples. In
[16], C3D-LSTM was reported to be performing worse than
C3D-SVR due to insufficient amount of training data and
does outperform C3D-SVR with the expanded training data.
Our MSCADC-STL works better than most of the existing
methods, whereas our C3D-AVG-STL is better performing
than all the existing methods. Furthermore, C3D-AVG-
MTL with 90.44 correlation achieves new state-of-the-art
results.
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True labels: 89.08; [Tuck, No, Backwards, 3.5, 0] C3D-AVG labels: 80.41; [Tuck, No, Backwards, 3.5, 0]

C3D-AVG: that’s good she will certainly keep that with a dive that we can certainly do it in that field very impressive it is
very good but it was a good dive here playing a little bit low water which is a strong start one look at that closes vertical
position it’s gonna get seven and a half’s I think super slow-motion just throwing up a little bit too much splash but she’ll get
over 60s mid sixties probably and that will be good enough to keep her middle of the pack which is where she needs to be to

True labels: 63.07; [Free, Yes, Backwards, 2, 2.5] C3D-AVG labels: 65.79; [Free, Yes, Backwards, 2, 1.5]

C3D-AVG: well it’s okay and the entry into the water not quite 100% vertical but he’s just a little bit overcooked on the end
obviously there’s a few of the divers have you use themselves so if you’re getting your hands out there we are rocking and
rolling a little bit of a splash with technically a little bit of splash that’s not the splash means that the judges will penalize him
or only got to 17 from the two and a half somersaults before he goes into the water now that was a

True labels: 84.15; [Tuck, No, Backwards, 3.5, 0] C3D-AVG labels: 81.94; [Tuck, No, Backwards, 3.5, 0]

C3D-AVG: excellent excellent dive if you might he’s got a lot of divers here with their hands together for him a lot of them
here and take a little bit of an angle on the entry that does good through that would not quite a way over a vertical look at that
perfect angle so much better judges will like that that angle so not too many

True labels: 47.77; [Pike, No, Forwards, 2.5, 1] C3D-AVG labels: 53.04; [Pike, No, Forwards, 2.5, 1]

C3D-AVG: nice nice entry because the execution was fine and then just suggesting she went surfing over the end of the diving
board anyway she’s a safe distance from the diving board so that’s a good dive in the prelims you can see the splash moving
away from the diving board six and a half’s sevens at best moving further away from the podium dive after dive star with a

58 and it with a 64 this

Table 6: Qualitative results. Labels are ordered as follows: AQA score; [Position, Armstand?, Rotation type, #SS, #TW].
Due to space constraints only generated captions are shown here; please refer to supplementary material for groundtruth.

Method ‘ Sp. Corr.
Pose+DCT [ 18] 26.82
C3D-SVR [16] 77.16
C3D-LSTM [16] 84.89
Ours MSCADC-STL 84.72
Ours C3D-AVG-STL 89.60
Ours MSCADC-MTL 86.12
Ours C3D-AVG-MTL 90.44

Segment-specific methods (train/test on UNLV Dive [16])

S3D (best performing in [26]) 86.00
Lietal [13] 80.09
Ours MSCADC-STL 79.79
Ours C3D-AVG-STL 83.83
Ours MSCADC-MTL 80.60
Ours C3D-AVG-MTL 88.08

Table 7: Performance comparison with the existing AQA
approaches.

Method proposed by Xiang et al. [26] requires manual
annotation to mark end points of all the segments which is
not available in the new Diving-MTL data. Xiang et al. [26]
used the UNLV-Dive dataset [16] so for a fair comparison
with [26] we train and test our models on UNLV-Dive [16].
The results are enumerated in Table 7. Our C3D-AVG-STL
does not perform as well S3D [26]. However, our C3D-
AVG-MTL outperforms the S3D model. An important thing
to note here is that UNLV-Dive dataset is quite a bit smaller
than our newly introduced MTL-AQA dataset which should

# samples ‘ 1059 450 280 140

STL 89.60 77.27 69.63 64.17
MTL 90.44 8352 72.09 68.16

Table 8: STL vs. MTL generalization. Training using
increasingly reduced no. of training samples.

limit MTL performance. However, as pointed out in Section
4, MTL provides better generalization than STL, which al-
lows C3D-AVG-MTL to learn effectively from fewer train-
ing samples.

Generalization provided by MTL: To ascertain that
MTL is providing more generalization, we train our C3D-
AVG-STL and C3D-AVG-MTL models using fewer num-
ber of datapoints. Train set size and the corresponding
STL/MTL performances are detailed in Table 8. We see
that MTL consistently outperforms STL, and also the gap
seems to widen with fewer training samples.

5.2. AQA-orientedness of the learned
representations

We trained our networks end-to-end to learn AQA-
specific feature representation rather than relying on pre-
trained action-recognition oriented features (as done in
[16]). However, we question if there is a utility in
learning AQA-specific feature representation or are action-
recognition oriented features equally good? To answer
this, we follow an evaluation scheme similar to Zhang et
al. [30], where we train linear regressors on top of all
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cl c2 c3 c4 c5

Baseline-1 71.01 7139 73.13 76.34 73.69
Baseline-2 7243 70.15 7035 57.20 37.63
C3D-AVG-MTL | 74.26 77.95 82.78 86.18 85.75

Table 9: Performance of fitting linear regressors on the
activations of all the convolutional layers.

‘ cl c2 c3 c4 c5

Train/Test events overlapping
Baseline-1 41.10 32.06 36.53 46.86 44.78
Baseline-2 37.76 42.02 3798 44.28 38.56
C3D-AVG-MTL | 38.32 42.68 45.53 49.18 38.47

Train/Test events non-overlapping
(requires more generalization)
Baseline-1 -02.68 00.75 -03.91 -02.22 03.17
Baseline-2 -07.52 -02.44 05.07 24.09 25.80
C3D-AVG-MTL | -07.75 -02.77 23.51 29.56 -03.25

Table 10: Performance of fitting linear regressors on the
activations of all the convolutional layers for a novel ac-
tion class, Gymnastic vault. Top rows: Within-dataset
evaluation, bottom rows: Out-of-dataset evaluation.

the convolutional layers, and compare the performance ob-
tained for AQA and action-recognition models. In partic-
ular, we consider two action-recognition baselines: C3D
model trained on UCF-101 dataset [22] (Baseline-1), and
our model trained on our MTL-AQA dataset, but for factor-
ized action recognition task (Baseline-2).

In the primary evaluation, we compare the representa-
tions for measuring the quality of diving action. Compari-
son is detailed in Table 9. In comparison to both the base-
lines, we find that our C3D-AVG-MTL learns better repre-
sentations at all the intermediate layers.

Further we compare the representations for measuring
the quality of an unseen action class — Gymnastic vault
[16]. This helps in estimating the generalizability of the
representations. We hypothesize that if our AQA network
has learned better representations that actually capture the
concept of quality in an action, then it should be able to
measure the quality of an unseen action better than action-
recognition specific networks. We carry out 2 different
evaluations: 1) Within-dataset evaluation and 2) Out-
of-dataset evaluation. In Within-dataset evaluation we
randomly divide the samples into train set and test set,
whereas in Out-of-dataset evaluation, train and test sam-
ples are drawn from different athletic competitions. Out-
of-dataset evaluation is more challenging and requires fea-
ture representations to be more generalizable and not suffer
from dataset-bias. Like the previous experiment, to com-

pare learned representations, we train linear regressors on
top of all the convolutional layers. Train and test sets con-
sist of 125 and 56 samples respectively. Results from both
evaluations are presented in Table 10.

In the Within-dataset evaluation, the representations
learned by all the models seem to be working well, although
C3D-AVG-MTL performs best. The difference in perfor-
mance becomes clearer in the Out-of-dataset evaluation. As
expected, Out-of-dataset evaluation is more challenging and
performances of all the models drop. However, the perfor-
mances of Baseline-2 and our model drop more gracefully.

6. Discussion

We introduced a multitask learning approach to AQA
and showed that MTL performs better than STL because of
better generalization which is especially important in AQA
and skill assessment since datasets are small. We showed
that the representations learned by our MTL models are
better able to capture the inherent concept of quality of ac-
tions. Our approach is scalable since the supervision re-
quired for the auxiliary tasks is readily available from the
existing video footage with minimal extra effort compared
to just AQA labeling. In addition, state-of-the-art perfor-
mance was achieved without any finetuning of hyperpa-
rameters. Our best performing and recommended model,
C3D-AVG-MTL, achieved 90.44% correlation with judged
scores which still leaves a small gap to achieve human-
experts-level performance (96% [18]).

Extension to other actions and skills assessment: Al-
though this paper is geared specifically toward multitask
diving AQA, the approach is general in nature. No de-
sign decisions were biased towards or specific to the diving
tasks. Experiments even showed that the models trained on
diving do work reasonably well for another action, gymnas-
tic vault. This encouraging result hints at the direct appli-
cation of our MTL approach on other actions and everyday
skills assessment. Commentary and action class details are
available almost all the of time in the sport footages. For
non-sport skills assessment, such as surgery, needle pass-
ing, drawing, or painting, experts could be used to gener-
ate comments and definition of sub-actions for classifica-
tion. Note that existing datasets can simply be augmented
to include additional labels, instead of building new datasets
from scratch. Also, our MTL approach is complementary to
the existing AQA and skills assessment approaches.

Acknowledgements: Thank you Andy (Squadra), Mark
(Wilbourne), Josh (Rana) for helping us with the dataset
collection!
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