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Abstract

Can performance on the task of action quality assess-

ment (AQA) be improved by exploiting a description of the

action and its quality? Current AQA and skills assessment

approaches propose to learn features that serve only one

task - estimating the final score. In this paper, we pro-

pose to learn spatio-temporal features that explain three

related tasks - fine-grained action recognition, commen-

tary generation, and estimating the AQA score. A new

multitask-AQA dataset, the largest to date, comprising of

1412 diving samples was collected to evaluate our ap-

proach (http://rtis.oit.unlv.edu/datasets.

html). We show that our MTL approach outperforms

STL approach using two different kinds of architectures:

C3D-AVG and MSCADC. The C3D-AVG-MTL approach

achieves the new state-of-the-art performance with a rank

correlation of 90.44%. Detailed experiments were per-

formed to show that MTL offers better generalization than

STL, and representations from action recognition models

are not sufficient for the AQA task and instead should be

learned.

1. Introduction

What score should an athlete receive on her

dive/gymvault/skating/etc? Which med student has

the highest surgical skill level? How well can he paint or

draw? How is a patient progressing in their physical reha-

bilitation program? Answering these questions involves the

quantification of the quality of the action – determining how

well the action was carried out, also known as action quality

assessment (AQA). Existing AQA [18, 16, 26, 13, 25] and

skills assessment [4, 10, 31, 32, 33] approaches use a

single label, known as a final score or skill-level, to train

the system using some kind of regression or ranking loss

function. However, the performance of these systems is

limited and it seems that a single score is not sufficient

to characterize a complicated action. In AQA, the final
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Figure 1: Multitask AQA concept. Recognizing an action

instance in detail and verbally describing its good and bad

points can be helpful in the process of quantifying the qual-

ity of that action instance. We propose to learn a model that

delineates an action besides measuring its quality. To see

the videos play, please download the manuscript and view

in an Adobe Reader.

score is dependent on what was done (this determines the

difficulty level) and how was that done (this determines

the quality of execution). We pose the following question:

can learning to describe and commentate on the action

instances help improve the performance on the AQA task?

We hypothesize that by forcing the network to learn to

do so will help better characterize the action, and hence aid
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in AQA. So, rather than using just a single encompassing

quality label to train the network, we introduce a multitask

learning (MTL) approach (Fig. 1) to assess the quality of

an action. Specifically, we propose to utilize 3D CNN’s to

learn spatio-temporal representations of salient motion and

appearance; optimize those using loss functions which ac-

count for i) the action quality score, ii) factorized (detailed)

action classification, and iii) generate a verbal commentary

of performance; and are trained end-to-end. Note that the

architectures are multitask and not multi-modal since the in-

put does not use captions or action classification to produce

the AQA score. Besides straight forward utility for AQA

and action classification, automatic commentary or sports

narrative generation has been viewed valuable and greatly

applicable in a recent work by Yu et al. [29].

For AQA tasks, domain experts can provide detailed

analysis of performance. In the professional sports setting,

ground truth annotations for detailed action classification

and commentary by former athletes are readily available in

broadcast footage facilitating extraction of labels and de-

scriptive captions. As such, to evaluate our approach, we

introduce the first multitask AQA dataset with 1412 sam-

ples of diving which is also the largest AQA dataset to date.

Experimental evaluation show that performance of both

the architectures improved as more tasks were added and

the C3D-AVG-MTL variant outperforms all existing AQA

approaches in literature. MTL was shown to outperform

STL across various training set sizes. Further experiments

explore the AQA-orientedness of the feature representations

learned by our networks and find they outperform action-

recognition representations on unseen actions indicating

that better generalized concepts of quality were learned.

Contributions: primary novelty of this works lies in the

problem formulation – to learn spatio-temporal represen-

tations by optimizing networks end-to-end jointly for fine-

grained action description and AQA scoring. Task selec-

tion is intuitive. No previous work has done this; not

just for AQA, but even action recognition and captioning

tasks. We release a novel MTL-AQA dataset which is the

largest AQA dataset so far, much more diverse, challeng-

ing, and richly annotated with factorized fine-grained action

class and AQA-oriented captions. Our dataset can help re-

searchers in the field to examine new ideas for AQA and

auxiliary tasks. We show that our MTL approach works

across different architectures. Our approach is applicable to

a wide range of problems. Our proposed models are simple,

yet intuitive, and effective in carrying out central of learning

representations in a MTL setting by optimizing networks

end-to-end. Our C3D-AVG-MTL surpasses all the existing

approaches.

2. Related Work

AQA: Pirsiavash et al. [18] proposed the use of

DFT/DCT of body pose as features for a support vector

regressor (SVR) to map to a final action quality score.

They introduced an action quality dataset containing two

actions: Diving and Figure Skating. However, since

their method relied solely on pose features, it neglected

important visual quality cues, like splash in the case of

Diving. Since accurate pose is especially difficult in sports

scenarios where athletes undergo extremely convoluted

poses, Venkataraman et al. [25] better encoded using the

approximate entropy of the poses to improve the results.

More recently, spatio-temporal features from 3D convo-

lutional neural networks (C3D) [24] proved to be very suc-

cessful on a related task of action recognition since they

captured appearance and salient motion. Seeing this as

a desirable property that would help to take into account

visual cues, Parmar and Morris [16] proposed using C3D

features for AQA. They proposed three frameworks, C3D-

SVR, C3D-LSTM, and C3D-LSTM-SVR, which differed

in their feature aggregation and regression scheme. All

the frameworks worked better than previous models prov-

ing the efficacy of C3D features for AQA. Xiang et al. [26]

proposed breaking video clips into action specific segments

and fusing segment-averaged features instead of over full

videos. By adding finer segment labels to data samples per-

formance was improved. Li et al. [13] divide a sample into

9 clips and use 9 different C3D networks dedicated to differ-

ent stags of Diving. Features are concatenated and further

processed through conv and fc layers to produce a final

AQA score using a ranking loss along with the more typ-

ical L2 loss. Xu et al. [27] tackle AQA for longer action

sequences using self-attentive and multiscale convolutional

skip LSTM.

Skills assessment: Zia et al. [33] extract spatio-temporal

interest points (STIP’s) in the frequency domain to classify

a sample into novice, intermediate or expert skills level. In-

stead of using handcrafted STIP’s Doughty et al. [4] learn

and use convolutional features with ranking loss as their

objective function to evaluate surgical, drawing, chopstick

use and dough rolling skills. In their subsequent work [5],

they use temporal attention. Li et al. [14], make use of spa-

tial attention in the assessment of hand manipulation skills.

Bertasius et al. [1] focus on measuring basketball skills but

rely only on assessment of a single basketball coach making

their dataset subjective to a particular evaluator.

All of the existing AQA and SA frameworks are single

task models and only give the final AQA score. Our pro-

posed framework is a multitask model to recognize the ac-

tion, measures its quality and also generates captions (or
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Dataset Events Height Genders # Samples Events
View Variation/

Background
Labels

MIT Dive [18] Individual 10m Platform Male 159 1 No/Same AQA score

UNLV Dive [16] Individual 10m Platform Male 370 1 No/Same AQA score

Ours MTL-AQA
Individual,

Synchronous

3m Springboard,

10m Platform

Male,

Female
1412 16 Yes/Different

AQA score,

Action class,

Commentary

Table 1: Details of our newly introduced dataset, and its comparison with the existing AQA datasets.

Position Armstand Rotation type # SS # TW

Free

Tuck

Pike

No

Yes

Inward

Reverse

Backward

Forward

0 to 4.5 0 to 3.5

Table 2: Classification of dives. Each combination of the

presented sub-fields produces a different kind of maneuver.

commentary).

Multi-modal approaches and captioning: Images and

videos (especially sports) are often accompanied by a cap-

tion or commentary which can themselves serve as labels

yet to be exploited for AQA or skill assessment. Quattoni

et al. [19] use large quantities of unlabeled images, with

associated captions, to learn image representations. They

found that this sort of pre-training with extra information

could speed up the learning on a target task. Rather than

using captions as groundtruth labels, Sonal et al. [6] treated

captions as a “view” and use them along with images to

learn a classifier using co-training. They again used com-

mentary as a “view” for action recognition with success. To

train an activity classifier in an automated fashion, without

the requirement of any manual labeling, Sonal and Mooney

[7] make use of broadcast closed captions and used the sys-

tem for video retrieval. There are a few works which fo-

cus on captioning in sports settings. Yu et al. [29] address

the task of generating fine-grained video descriptions for

basketball and evaluate performance using their novel met-

ric. Commentary generation in cricket has been addressed

in [20, 21], while Sukhwani addressed the problem of de-

scribing tennis videos in [23]. While these works focus on

captioning or improving captioning, we integrate a caption-

ing task with an AQA task to provide stronger supervision

as commentary is a verbal description of AQA.

3. Multitask AQA Dataset

In order to facilitate research in the area of AQA, we re-

lease a new dataset. This is the first of a kind multitask

AQA dataset. With 1412 samples, it is the largest AQA

dataset to date. This particular dataset focuses only on Div-

ing as it has seen the most usage recently. Data was com-

piled from 16 different events unlike the single main event

(2012 Olympics Men’s 10m Platform Diving competition)

used for previous datasets [18, 16] to provide significantly

more variation. Diving samples in the new dataset were col-

lected from various International competitions and include

the 10m Platform as well as 3m Springboard, include both

male and female athletes, individual or pairs of synchro-

nized divers, and different views. A comparison of our new

dataset with existing Diving AQA sets is provided in Table

1.

Since data was collected from televised international

events, before the athletes perform their routines, informa-

tion regarding their routine is displayed. This information

includes the difficulty of the dive and a description of the

dive. The AQA score is extracted from the judges’ scores

after the dive completion. The dataset uses the same dive

classification strategy as Nibali et al. [15], where instead of

using dive number (equivalent to an action class in action

recognition) directly, we factorize a dive into its compo-

nents such as the position of the dive, the number of somer-

saults (SS), and number of twists (TW). Full details for the

dive classification is in Table 2.

Further, during and after a diving routine, television an-

alysts provide commentary. These analysts are often retired

athletes and have deep understanding of the sport. This ver-

bal account of the athlete’s performance is recorded for the

third type of action label. The commentary was consid-

ered an important indicator for performance since it was the

only way to “watch” an event before telecast was available.

Commentators say what the athlete performed, what was

correct with the athlete’s performance, and where and how

athletes made mistakes. This provides deeper insight into

the athlete’s performance and can help an average person

better understand the sport. We used Google’s Speech-To-

Text API to convert commentary audio to text.
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4. Multitask Approach to AQA

MTL is a machine learning paradigm in which a single

model caters to more than a single task. An example is to

recognize road signs, roads, and vehicles together while an

STL approach would require separate models for each ob-

ject type. MTL tasks are generally chosen such that they

are related to one another and their networks have a com-

mon body that branches into task-specific heads. The total

network loss is the sum of individual task losses. When

optimized end-to-end, the network is able to learn richer

representation in the common body section since it must be

able to serve/explain all tasks. With the use of related aux-

iliary tasks, which are complementary to the main task, the

richer representation tends to help improve performance on

the main task.

In general, not just for diving, action quality is a func-

tion of what action was carried out and how well that action

was executed. This makes the choice of auxiliary tasks nat-

ural: detailed action recognition is the answer to the ‘what’

part and commentary, being a verbal description containing

good and bad points about action execution, is an answer

to the ‘how well’ part. AQA can be thought of as finding

a function that maps input video to the AQA scores. Caru-

ana in [2] views supervision signals from auxiliary tasks

as an inductive bias (assumptions). Inductive bias can be

thought of as constraints that restrict the hypothesis/search

space when finding the AQA function. Through inductive

biases, MTL provides improved generalization as compared

STL [2].

In this work, the main task is to assess the action quality

(AQA score) and the auxiliary tasks are to recognize the

action (dive type classification) and to generate descriptive

captions/commentary. Action recognition in turn consists

of five fine-grained dive sub-recognition tasks: recognizing

position and rotation type, detecting armstand, and counting

somersaults and twists.

First, let us formalize the settings and objective func-

tions. AQA is a regression problem where, generally, the

Euclidean distance between the predicted quality score and

the ground truth is used as the objective function to be mini-

mized [16, 26, 13]. Initial experimentation found that using

L1 distance in addition to L2 yielded better results on the

AQA task

LAQA = −
1

N

N∑

i=1

(xi − yi)
2 + |xi − yi| (1)

where xi is the predicted score and yi is the ground truth

score for each of the N samples. For action recognition,

we use cross-entropy loss between the predicted labels and

ground truth label

LCls = −
1

N

N∑

i=1

∑

sa

ksa∑

j=1

ysai,j log(x
sa
i,j) (2)

where ksa is the number of categories in sub-action class sa

(as in Table 2). Negative log likelihood is used as the loss

function for the captioning task

LCap = −
1

N

N∑

i=1

∑

sl

ln(xcap
ycap) (3)

with sl is the sentence length. The overall objective func-

tion to be minimized is the summation of all the losses

LMTL = αLAQA + βLAR + γLCap. (4)

where α, β, γ are loss the weights. Now, we will introduce

two different architectures for MTL-AQA.

MTL-AQA architectures Unlike action recognition that

may be accomplished by looking at as little evidence as just

a single frame [11], for AQA the complete action sequence

needs to be considered because the athlete can make or lose

points at any point during the whole sequence.

While spatio-temporal representations learnt using 3D

CNN’s capture appearance and salient motion patterns [24],

which makes them one of the best candidates for action

recognition [24, 8] and also for AQA [16, 26, 13], 3D

CNN’s require large memories which limits their applica-

tion to small clips. We tackle this bottleneck in two ways:

1. divide the video (96 frames) into small clips (16

frames), and then aggregate clip-level representations

to obtain video-level description (Sec. 4.1)

2. downsample the video into a small clip (Sec. 4.2)

Networks designed for multitask learning generally two

segments: common network backbone and task-specific

heads. Common network backbone learns shared repre-

sentations, which are then further processed through task-

specific heads to obtain more task-oriented features and out-

puts.

4.1. Averaging as aggregation (C3D-AVG)

The first network we present is C3D-AVG (Fig. 2).

Network backbone: Backbone consists of C3D network

[24] upto the fifth pooling layer.

Aggregation scheme: An athlete gathering (or losing)

points throughout the action can be seen as an addition op-

eration. Combining this perspective with a good rule of

thumb that when good representations are learned, linear

operations on them become meaningful, we propose to en-

force a linear combination of representations to be mean-

ingful, in order to learn good representations. Specifically,
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Figure 2: C3D-AVG-MTL network.

we propose to use averaging as the linear combination. The

network is optimized end-to-end for all three tasks.

C3D-AVG network up to Average layer can be

considered as an encoder, which encodes input video-clips

into representations that when averaged (in feature space)

would correspond to the total AQA points gathered by the

athlete. Subsequent layers can be thought of decoders for

individual tasks.

Task-specific heads: For action-recognition and AQA

tasks, clip-level pool-5 features are averaged element-

wise to yield a video-level representation. Since captioning

is a sequence-to-sequence task, the individual clip-level

features are input to the captioning branch before averaging

(individual clip-level features worked better in practice

than averaged clip-level features for captioning).

4.2. Multiscale Context Aggregation with Dilated
Convolutions (MSCADC)

Multiscale context aggregation with dilated convolutions

(MSCADC) [28] has been shown to improve the classifica-

tion of dives in the work of Nibali et al. [15]. Given its

strong performance on an auxiliary task MSCADC was se-

lected for MTL. Our MTL variant network has a backbone

and multiple heads as illustrated in Table 3.

Network backbone: The MSCADC network is based on

C3D network [24] and incorporates improvements like us-

ing Batch Normalization [9] to provide better regularization

which is needed in AQA where data is quite limited. Addi-

tionally, pooling is removed from the last two convolutional

groups of C3D and instead a dilation rate of 2 is used. This

backbone structure is shared among all the MTL tasks.

Task-specific heads: We use separate heads, one for each

task. Heads consist of a context net followed by a few addi-

tional layers. The context net is where the feature maps are

aggregated at multiple scales.

Dilated convolutions and multi-scale aggregation have

shown improvements in the tasks involving dense predic-

tions [28]. We believe that removing pooling layers and

using dilated convolutions better maintains the structure of

the diving athlete without losing resolution. This helps in

better assessment of the athlete’s pose which is critical for

AQA. For example, pose can identify when legs are aligned

or split which is useful not only for diving but also other

sports such as gymnastic vault, figure skating, skiing, snow-

boarding, etc.

Unlike the C3D-AVG network, we downsample the com-

plete action into a short sequence of only 16 frames (some-

thing like key action snapshots) as done by Nibali et al. [15].

This reduces our 96-frames videos into key action snapshots

which helps in processing the complete action sequence in

a single pass. Processing an action sequence using this net-

work can be thought of as distilling information from the

input frames and putting it into feature maps, with different

feature maps containing different kinds of pose information.

A natural benefit of downsampling the sequence is that there

is a significant reduction in the the number of network pa-

rameters and memory which can be used instead to increase

spatial resolution.

5. Experiments

Implementation: PyTorch [17] is used to implement all

the networks; common network backbones were pretrained

on the UCF101 [22] action recognition dataset. The cap-

tioning module utilized a GRU [3] cell and a dropout rate of

0.2 in the encoder and decoder. Maximum caption length

is set to 100 words. Full vocabulary size is 5779. The pa-

rameters α, β, and γ in Eq. 4 are set to 1, 1, and 0.01. All

networks used the Adam optimizer [12] and were trained for

100 epochs with initial learning rate of 1e-4. Data augmen-

tation is performed through center cropping with temporal

augmentation and random horizontal flipping. The center
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(Common network body)

C3(32); BN

MP(1,2,2)

C3(64); BN

MP(2,2,2)

{C3(128); BN} x2

MP(2,2,2)

{C3(256); BN} x2

{C3(d=2,256); BN} x2

Dropout(0.5)

(Task-specific heads)

(AQA Score

Head)

(Action

recognition Head)

(Captioning

Head)

C1(12) C1(12) C1(12)

{Cntxt net} {Cntxt net} {Cntxt net}
MP(2,2,2) MP(2,2,2) MP(2,2,2)

C3(12); BN C3(12); BN C3(12); BN

C3(1) Enc. GRU

AP(2,11,11)

(Action

recognition sub-heads) Dec. GRU

Table 3: MSCADC-MTL architecture. C3(d,ch): 3D

convolutions, ch-no. of channels, d-dilation rate. C1: 1x1x1

convolutions. BN: batch normalization. MP(kr): max

pooling operation, kr-kernel size. Cntxt net: context net

for multi-scale context aggregation. AP: average pooling

across (2x11x11) volume.

crop was found to reliably capture both the athlete and other

prominent visual cues such as splash. Batch-size was set to

three samples. Additional architecture-specific implemen-

tation details are as follows:

C3D-AVG: The model is trained end-to-end with a 112 ×
112 center crop from the 171× 128 pixel input video. Each

dive sample was temporally normalized to a length of 96

frames.

MSCADC: Since this architecture does not contain fully-

connected layers and all videos are downsampled to 16

frames, there are fewer model parameters allowing the use

of higher resolution video input. Frames are resized to

640× 360 pixels and 180× 180 center cropping is used.

Evaluation metrics: AQA is assessed using Spearman’s

rank correlation, dive classification uses accuracy, and com-

mentary uses captioning metrics of Bleu, Meteor, Rouge,

and CIDEr.

5.1. Single­task vs. Multi­task approach

We carry out an experiment to compare the performance

of STL against that of MTL. We have a total of 3 tasks:

AQA, detailed action recognition, and commentary genera-

tion. This experiment first considered the STL approach to

AQA task and then measured the effect of including auxil-

iary tasks. The evaluation is summarized in Table 4. We

observe that MTL approaches perform better than STL ap-

proach for both the networks, which shows that our MTL

Tasks C3D-AVG MSCADC

AQA 89.60 84.72

+ Cls 89.62 85.76

+ Caps 88.78 85.47

+ Cls + Caps 90.44 86.12

Table 4: STL vs. MTL across different architectures.

Cls - classifiction, Caps - captioning. First row shows STL

results, while the remaining rows show MTL results.

Nibali

et al. [15]

Ours-MTL

MSCADC C3D-AVG

Position 74.79 78.47 96.32

Amstand 98.30 97.45 99.72

Rotation type 78.75 84.70 97.45

# Somersaults 77.34 76.20 96.88

# Twists 79.89 82.72 93.20

Model B1 B2 B3 B4 M R C

C3D-AVG 0.26 0.10 0.04 0.02 0.11 0.14 0.06

MSCADC 0.25 0.09 0.03 0.01 0.11 0.13 0.05

Table 5: Performance on auxiliary tasks.

approach is not limited to a network but is generalizable

across networks. Other thing to note here is that MTL per-

formance improves as we incorporate more tasks. Com-

paring both the architectures, we find that our C3D-AVG

outperforms our MSCADC for both STL and MTL, while

MSCADC has the advantage of being fast and lower mem-

ory requirement than C3D-AVG. For qualitative results, re-

fer to Table 6 and supplementary material.

Performance on the auxiliary tasks is presented in Table

5. To the best of our knowledge there is only one work

(by Nibali et al. [15]) on detailed dive classification. Our

C3D-AVG-MTL performed best on the classification task as

well. We also give captioning metrics for the two networks

though there is no baseline for comparison in literature.

Secondly, we compare our models with the existing

methods in Table 7. We obtain the results for all of the

existing methods on our dataset. C3D-SVR was the best

performing method in [16] but it does not seem to ben-

efit from the increased number of training samples. In

[16], C3D-LSTM was reported to be performing worse than

C3D-SVR due to insufficient amount of training data and

does outperform C3D-SVR with the expanded training data.

Our MSCADC-STL works better than most of the existing

methods, whereas our C3D-AVG-STL is better performing

than all the existing methods. Furthermore, C3D-AVG-

MTL with 90.44 correlation achieves new state-of-the-art

results.
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True labels: 89.08; [Tuck, No, Backwards, 3.5, 0] C3D-AVG labels: 80.41; [Tuck, No, Backwards, 3.5, 0]

C3D-AVG: that’s good she will certainly keep that with a dive that we can certainly do it in that field very impressive it is

very good but it was a good dive here playing a little bit low water which is a strong start one look at that closes vertical

position it’s gonna get seven and a half’s I think super slow-motion just throwing up a little bit too much splash but she’ll get

over 60s mid sixties probably and that will be good enough to keep her middle of the pack which is where she needs to be to

True labels: 63.07; [Free, Yes, Backwards, 2, 2.5] C3D-AVG labels: 65.79; [Free, Yes, Backwards, 2, 1.5]

C3D-AVG: well it’s okay and the entry into the water not quite 100% vertical but he’s just a little bit overcooked on the end

obviously there’s a few of the divers have you use themselves so if you’re getting your hands out there we are rocking and

rolling a little bit of a splash with technically a little bit of splash that’s not the splash means that the judges will penalize him

or only got to 17 from the two and a half somersaults before he goes into the water now that was a

True labels: 84.15; [Tuck, No, Backwards, 3.5, 0] C3D-AVG labels: 81.94; [Tuck, No, Backwards, 3.5, 0]

C3D-AVG: excellent excellent dive if you might he’s got a lot of divers here with their hands together for him a lot of them

here and take a little bit of an angle on the entry that does good through that would not quite a way over a vertical look at that

perfect angle so much better judges will like that that angle so not too many

True labels: 47.77; [Pike, No, Forwards, 2.5, 1] C3D-AVG labels: 53.04; [Pike, No, Forwards, 2.5, 1]

C3D-AVG: nice nice entry because the execution was fine and then just suggesting she went surfing over the end of the diving

board anyway she’s a safe distance from the diving board so that’s a good dive in the prelims you can see the splash moving

away from the diving board six and a half’s sevens at best moving further away from the podium dive after dive star with a

58 and it with a 64 this

Table 6: Qualitative results. Labels are ordered as follows: AQA score; [Position, Armstand?, Rotation type, #SS, #TW].

Due to space constraints only generated captions are shown here; please refer to supplementary material for groundtruth.

Method Sp. Corr.

Pose+DCT [18] 26.82

C3D-SVR [16] 77.16

C3D-LSTM [16] 84.89

Ours MSCADC-STL 84.72

Ours C3D-AVG-STL 89.60

Ours MSCADC-MTL 86.12

Ours C3D-AVG-MTL 90.44

Segment-specific methods (train/test on UNLV Dive [16])

S3D (best performing in [26]) 86.00

Li et al. [13] 80.09

Ours MSCADC-STL 79.79

Ours C3D-AVG-STL 83.83

Ours MSCADC-MTL 80.60

Ours C3D-AVG-MTL 88.08

Table 7: Performance comparison with the existing AQA

approaches.

Method proposed by Xiang et al. [26] requires manual

annotation to mark end points of all the segments which is

not available in the new Diving-MTL data. Xiang et al. [26]

used the UNLV-Dive dataset [16] so for a fair comparison

with [26] we train and test our models on UNLV-Dive [16].

The results are enumerated in Table 7. Our C3D-AVG-STL

does not perform as well S3D [26]. However, our C3D-

AVG-MTL outperforms the S3D model. An important thing

to note here is that UNLV-Dive dataset is quite a bit smaller

than our newly introduced MTL-AQA dataset which should

# samples 1059 450 280 140

STL 89.60 77.27 69.63 64.17

MTL 90.44 83.52 72.09 68.16

Table 8: STL vs. MTL generalization. Training using

increasingly reduced no. of training samples.

limit MTL performance. However, as pointed out in Section

4, MTL provides better generalization than STL, which al-

lows C3D-AVG-MTL to learn effectively from fewer train-

ing samples.

Generalization provided by MTL: To ascertain that

MTL is providing more generalization, we train our C3D-

AVG-STL and C3D-AVG-MTL models using fewer num-

ber of datapoints. Train set size and the corresponding

STL/MTL performances are detailed in Table 8. We see

that MTL consistently outperforms STL, and also the gap

seems to widen with fewer training samples.

5.2. AQA­orientedness of the learned
representations

We trained our networks end-to-end to learn AQA-

specific feature representation rather than relying on pre-

trained action-recognition oriented features (as done in

[16]). However, we question if there is a utility in

learning AQA-specific feature representation or are action-

recognition oriented features equally good? To answer

this, we follow an evaluation scheme similar to Zhang et

al. [30], where we train linear regressors on top of all
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c1 c2 c3 c4 c5

Baseline-1 71.01 71.39 73.13 76.34 73.69

Baseline-2 72.43 70.15 70.35 57.20 37.63

C3D-AVG-MTL 74.26 77.95 82.78 86.18 85.75

Table 9: Performance of fitting linear regressors on the

activations of all the convolutional layers.

c1 c2 c3 c4 c5

Train/Test events overlapping

Baseline-1 41.10 32.06 36.53 46.86 44.78

Baseline-2 37.76 42.02 37.98 44.28 38.56

C3D-AVG-MTL 38.32 42.68 45.53 49.18 38.47

Train/Test events non-overlapping

(requires more generalization)

Baseline-1 -02.68 00.75 -03.91 -02.22 03.17

Baseline-2 -07.52 -02.44 05.07 24.09 25.80

C3D-AVG-MTL -07.75 -02.77 23.51 29.56 -03.25

Table 10: Performance of fitting linear regressors on the

activations of all the convolutional layers for a novel ac-

tion class, Gymnastic vault. Top rows: Within-dataset

evaluation, bottom rows: Out-of-dataset evaluation.

the convolutional layers, and compare the performance ob-

tained for AQA and action-recognition models. In partic-

ular, we consider two action-recognition baselines: C3D

model trained on UCF-101 dataset [22] (Baseline-1), and

our model trained on our MTL-AQA dataset, but for factor-

ized action recognition task (Baseline-2).

In the primary evaluation, we compare the representa-

tions for measuring the quality of diving action. Compari-

son is detailed in Table 9. In comparison to both the base-

lines, we find that our C3D-AVG-MTL learns better repre-

sentations at all the intermediate layers.

Further we compare the representations for measuring

the quality of an unseen action class – Gymnastic vault

[16]. This helps in estimating the generalizability of the

representations. We hypothesize that if our AQA network

has learned better representations that actually capture the

concept of quality in an action, then it should be able to

measure the quality of an unseen action better than action-

recognition specific networks. We carry out 2 different

evaluations: 1) Within-dataset evaluation and 2) Out-

of-dataset evaluation. In Within-dataset evaluation we

randomly divide the samples into train set and test set,

whereas in Out-of-dataset evaluation, train and test sam-

ples are drawn from different athletic competitions. Out-

of-dataset evaluation is more challenging and requires fea-

ture representations to be more generalizable and not suffer

from dataset-bias. Like the previous experiment, to com-

pare learned representations, we train linear regressors on

top of all the convolutional layers. Train and test sets con-

sist of 125 and 56 samples respectively. Results from both

evaluations are presented in Table 10.

In the Within-dataset evaluation, the representations

learned by all the models seem to be working well, although

C3D-AVG-MTL performs best. The difference in perfor-

mance becomes clearer in the Out-of-dataset evaluation. As

expected, Out-of-dataset evaluation is more challenging and

performances of all the models drop. However, the perfor-

mances of Baseline-2 and our model drop more gracefully.

6. Discussion

We introduced a multitask learning approach to AQA

and showed that MTL performs better than STL because of

better generalization which is especially important in AQA

and skill assessment since datasets are small. We showed

that the representations learned by our MTL models are

better able to capture the inherent concept of quality of ac-

tions. Our approach is scalable since the supervision re-

quired for the auxiliary tasks is readily available from the

existing video footage with minimal extra effort compared

to just AQA labeling. In addition, state-of-the-art perfor-

mance was achieved without any finetuning of hyperpa-

rameters. Our best performing and recommended model,

C3D-AVG-MTL, achieved 90.44% correlation with judged

scores which still leaves a small gap to achieve human-

experts-level performance (96% [18]).

Extension to other actions and skills assessment: Al-

though this paper is geared specifically toward multitask

diving AQA, the approach is general in nature. No de-

sign decisions were biased towards or specific to the diving

tasks. Experiments even showed that the models trained on

diving do work reasonably well for another action, gymnas-

tic vault. This encouraging result hints at the direct appli-

cation of our MTL approach on other actions and everyday

skills assessment. Commentary and action class details are

available almost all the of time in the sport footages. For

non-sport skills assessment, such as surgery, needle pass-

ing, drawing, or painting, experts could be used to gener-

ate comments and definition of sub-actions for classifica-

tion. Note that existing datasets can simply be augmented

to include additional labels, instead of building new datasets

from scratch. Also, our MTL approach is complementary to

the existing AQA and skills assessment approaches.

Acknowledgements: Thank you Andy (Squadra), Mark
(Wilbourne), Josh (Rana) for helping us with the dataset
collection!
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