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Abstract

Abstracting complex 3D shapes with parsimonious part-

based representations has been a long standing goal in

computer vision. This paper presents a learning-based so-

lution to this problem which goes beyond the traditional

3D cuboid representation by exploiting superquadrics as

atomic elements. We demonstrate that superquadrics lead

to more expressive 3D scene parses while being easier to

learn than 3D cuboid representations. Moreover, we pro-

vide an analytical solution to the Chamfer loss which avoids

the need for computational expensive reinforcement learn-

ing or iterative prediction. Our model learns to parse 3D

objects into consistent superquadric representations with-

out supervision. Results on various ShapeNet categories as

well as the SURREAL human body dataset demonstrate the

flexibility of our model in capturing fine details and complex

poses that could not have been modelled using cuboids.

1. Introduction

Evolution has developed a remarkable visual system that

allows humans to robustly perceive their 3D environment.

It has long been hypothesized [2] that the human visual

system processes the vast amount of raw visual input into

compact parsimonious representations, where complex ob-

jects are decomposed into a small number of shape prim-

itives that can each be represented using low-dimensional

descriptions. Indeed, experiments show that humans can

understand complex scenes from renderings of simple shape

primitives such as cuboids or geons [3].

Likewise, machines would tremendously benefit from

being able to parse 3D data into compact low-dimensional

representations. Such representations would provide use-

ful cues for recognition, detection, shape manipulation and

physical reasoning such as path planning and grasping. In

the early days of computer vision, researchers explored

shape primitives such as 3D polyhedral shapes [8], general-

ized cylinders [4], geons [2] and superquadrics [24]. How-

ever, it proved very difficult to extract such representations

(a) Input Mesh

(b) Inferred Cuboid Representation [36]

(c) Inferred Superquadric Representation (Ours)

Figure 1: 3D Shape Parsing. We consider the problem

of learning to parse unstructured 3D data (e.g., meshes or

point clouds) into compact part-based representations. Prior

work [22, 36, 43] has considered cuboid representations (b)

which capture the overall object structure, but lack expres-

siveness. In this work, we propose an unsupervised model

for superquadrics (c), which allows us to capture details

such as the body of the airplane and the ears of the rabbit.

from images due to the lack of computation power and data

at the time. Thus, the research community shifted their fo-

cus away from the shape primitive paradigm.

In the last decade, major breakthroughs in shape extrac-

tion were due to deep neural networks coupled with the

abundance of visual data. Recent works focus on learning

3D reconstruction using 2.5D [14, 15, 23, 42], volumetric

[7, 11, 13, 17, 29, 41], mesh [12, 20] and point cloud [10, 26]
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representations. However, none of the above are sufficiently

parsimonious or interpretable to allow for higher-level 3D

scene understanding as required by intelligent systems.

Very recently, shape primitives have been revisited in the

context of deep learning. In particular, [22, 36, 43] have

demonstrated that deep neural networks enable to reliably

extract 3D cuboids from meshes and even RGB images.

Inspired by these works, we propose a novel deep neural

network to efficiently extract parsimonious 3D representa-

tions in an unsupervised fashion, conditioned on a 3D shape

or 2D image as input. In particular, this paper makes the fol-

lowing contributions:

First, we note that 3D cuboid representations used in

prior works [22, 36, 43] are not sufficiently expressive to

model many natural and man-made shapes as illustrated

in Fig. 1. Thus, cuboid-based representation may require

a large number of primitives to accurately represent com-

mon shapes. Instead, in this paper, we propose to utilize

superquadrics, which have been successfully used in com-

puter graphics [1] and classical computer vision [24,33,35].

Superquadrics are able to represent a diverse class of shapes

such as cylinders, spheres, cuboids, ellipsoids in a single

continuous parameter space (see Fig. 1+2). Moreover, their

continuous parametrization is particularly amenable to deep

learning, as their shape is smooth and varies continuously

with their parameters. This allows for faster optimization,

and hence faster and more stable training as evidenced by

our experiments.

Second, we provide an analytical closed-form solution

to the Chamfer distance function which can be evaluated in

linear time wrt. the number of primitives. This allows us

to compute gradients wrt. the model parameters using stan-

dard error backpropagation [30] without resorting to com-

putational expensive reinforcement learning techniques as

required by prior work [36]. We consequently mitigate the

need for designing an auxiliary reward function. Instead,

we formulate a simple parsimony loss to favor configura-

tions with a small number of primitives. We demonstrate

the strengths of our model by learning to parse 3D shapes

from the ShapeNet [5] and the SURREAL [37]. We observe

that our model converges faster than [36] and leads to more

accurate reconstructions. Our code is publicly available1.

2. Related Work

In this section, we discuss the most relevant work on

deep learning-based 3D shape modeling approaches and re-

view the origins of superquadric representations.

2.1. 3D Reconstruction

The simplest representation for 3D reconstruction from

one or more images are 2.5D depth maps as they can be

1https://github.com/paschalidoud/superquadric parsing

inferred using standard 2D convolutional neural networks

[14, 17, 23, 42]. Since depth maps are view-based, these

methods require additional post-processing algorithms to

fuse information from multiple viewpoints in order to cap-

ture the entire object geometry. As opposed to depth maps,

volumetric representations [7, 11, 13, 29, 34] naturally cap-

ture the entire 3D shape. While, hierarchical 3D data struc-

tures such as octrees accelerate 3D convolutions, the high

memory requirements remain a limitation of existing vol-

umetric methods. An alternative line of work [10, 27] fo-

cuses on learning to reconstruct 3D point sets. A natural

limitation of these approaches is the lack of surface con-

nectivity in the representation. To address this limitation,

[12, 20, 28, 39] proposed to directly learn 3D meshes.

While some of the aforementioned models are able to

capture fine surface details, none of them lends itself to par-

simonious, semantic interpretations. In this work, we uti-

lize superquadrics which provide a concise and yet accurate

representation with significantly less parameters.

2.2. Constructive Solid Geometry

Towards the goal of concise representations, researchers

exploited constructive solid geometry (CSG) [19] for shape

modeling [9, 31]. Sharma et al. [31] leverage an encoder-

decoder architecture to generate a sequence of simple

boolean operations to act on a set of primitives that can

be either squares, circles or triangles. In a similar line

of work, Ellis et al. [9] learn a programmatic representa-

tion of a hand-written drawing, by first extracting simple

primitives, such as lines, circles and rectangles and a set of

drawing commands that is used to synthesize a LATEX pro-

gram. In contrast to [9,31], our goal is not to obtain accurate

3D geometry by iteratively applying boolean operations on

shapes. Instead, we aim to decompose the depicted object

into a parsimonious interpretable representation where each

part has a semantic meaning associated with it. Besides, we

do not suffer from ambiguities of an iterative construction

process, where different executions lead to the same result.

2.3. Learning­based Scene Parsing

Recently, shape primitives have been revisited in the con-

text of deep learning [22, 36, 43]. Niu et al. [22] propose to

use a recurrent neural network (RNN) to iteratively predict

cuboid primitives as well as symmetry relationships from

RGB images. They first train an encoder which encodes the

input image and its segmentation into a 80-dimensional la-

tent code. Starting from this root feature, they iteratively

decode the structure into cuboids, splitting nodes based on

adjacency and symmetry relationships. In related work, Zou

et al. [43] utilize LSTMs in combination with mixture den-

sity networks to generate cuboid representations from depth

maps encoded by a 32-dimensional feature vector. How-

ever, both works [22,43] require supervision in terms of the
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Figure 2: Superquadrics Shape Vocabulary. Due to their

ability to model various shapes with little parameters, su-

perquadrics are a natural choice for geometric primitives.

primitive parameters as well as the sequence of predictions.

This supervision must either be provided by manual anno-

tation or using greedy heuristics as in [22, 43].

In contrast, our approach is unsupervised and does not

suffer from ambiguities caused by different possible pre-

diction sequences that lead to the same cuboid assembly.

Furthermore, [22,43] exploit simple cuboid representations

which do not capture more complex shapes that are com-

mon in natural and man-made scenes (e.g., curved objects,

spheres). In this work, we propose to use superquadrics [1]

which yield a more diverse shape vocabulary and hence lead

to more expressive scene abstractions as illustrated in Fig. 1.

A primary inspiration for this paper is the seminal work

by Tulsiani et al. [36], who proposed a method for 3D shape

abstraction using a non-iterative approach which does not

require supervision. Instead, they use a convolutional net-

work architecture for predicting the shape and pose param-

eters of 3D cuboids as well as their probability of existence.

They demonstrate that learning shape abstraction from data

allows for obtaining consistent parses across different in-

stances in an unsupervised fashion.

In this paper, we extend the model of Tulsiani et al. [36]

in the following directions. First, we utilize superquadrics,

instead of cuboids, which leads to more accurate scene ab-

stractions. Second, we demonstrate that the bi-directional

Chamfer distance is tractable and doesn’t require reinforce-

ment learning [40] or specification of rewards [36]. In par-

ticular, we show that there exists an analytical closed-form

solution which can be evaluated in linear time. This allows

us to compute gradients wrt. the model parameters using

standard error propagation [30] which facilitates learning.

In addition, we add a new simple parsimony loss to favor

configurations with a small number of primitives.

2.4. Superquadrics

Superquadrics are a parametric family of surfaces that

can be used to describe cubes, cylinders, spheres, octahedra,

ellipsoids etc. [1]. In contrast to geons [2], superquadric

surfaces can be described using a fairly simple parame-

terization. In contrast to generalized cylinders [2], su-

perquadrics are able to represent a larger variety of shapes.

See Fig. 2 for an illustration of the shape space.

In 1986, Pentland introduced superquadrics to the com-

puter vision community [24]. Solina et al. [33] formulated

the task of fitting superquadrics to a point cloud as a least-

squares minimization problem. Chevalier et al. [6] followed

a two-stage approach, where the point cloud is first parti-

tioned into regions and then each region is fit with a su-

perquadric. As a thorough survey on superquadrics is be-

yond the scope of this paper, we refer to [16,32] for details.

In contrast to these classical works on superquadric fit-

ting using non-linear least squares, we present the first ap-

proach to train a deep network to predict superquadrics di-

rectly from 2D or 3D inputs. This allows our network to

distill statistical dependencies wrt. the arrangement and ge-

ometry of the primitives from data, leading to semantically

meaningful parts at inference time. Towards this goal, we

utilize a convolutional network that predicts superquadric

poses and attributes, and develop a novel loss function that

allow us to train this network efficiently from data. Our

model is able to directly learn superquadric surfaces from

an unordered 3D point cloud without any supervision on

the primitive parameters nor a 3D segmentation as input.

3. Method

We now describe our model. We start by introducing the

model parameters, followed by the loss functions and the

superquadric parametrization we employ.

Given an input I (e.g., image, volume, point cloud) and

an oriented point cloud X of the target object, our goal is

to estimate the parameters θ of a neural network φθ(I) that

predicts a set of M primitives that best describe the target

object. Every primitive is fully described by a set of pa-

rameters λm that define its shape, size and its position and

orientation in the 3D space. For details about the param-

eterization of the superquadric representation, we refer the

reader to Section 3.3.

Since not all objects and scenes require the same num-

ber of primitives, we enable our model to predict a variable

number of primitives, hence allowing it to decide whether

a primitive should be part of the assembled object or not.

To achieve this, we follow [36] and associate every primi-

tive with a binary random variable zm ∈ {0, 1} which fol-

lows a Bernoulli distribution p(zm) = γzm
m (1 − γm)1−zm

with parameter γm. The random variable zm indicates

whether the mth primitive is part of the scene (zm = 1)
or not (zm = 0). We refer to these variables as existence

variables and denote the set of all existence variables as
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z = {z1, . . . , zM}. Our goal is to learn a neural network

φθ : I 7→ P (1)

which maps an input I to a primitive representation P

where P = {(λm, γm)}Mm=1 comprises the primitive pa-

rameters λm and the existence probability γm for M prim-

itives. Note that M is only an upper bound on the num-

ber of predicted primitives. The final primitive representa-

tion is obtained by sampling the existence of each primitive,

zm ∼ Bernoulli(γm).
One of the key challenges when training such models

is related to the lack of direct supervision in the form of

primitive annotations. However, despite the absence of su-

pervision, one can still measure the discrepancy between

the predicted object and the target object. Towards this

goal, we formulate a bi-directional reconstruction objective

LD(P,X) and incorporate a Minimum Description Length

(MDL) prior Lγ(P), which favors parsimony, i.e. a small

number of primitives. Our overall loss function is given as:

L(P,X) = LD(P,X) + Lγ(P) (2)

We now describe both losses functions in detail.

3.1. Reconstruction Loss

The reconstruction loss measures the discrepancy be-

tween the predicted shape and the target shape. While we

experimented with the truncated bi-directional loss of Tul-

siani et al. [36], we empirically found that the standard

Chamfer distance [10] works better in practice and results in

less local minima. An empirical analysis on this is provided

in our supplementary material. Thus, we use the Chamfer

distance in our experiments

LD(P,X) = LP→X(P,X) + LX→P (X,P) (3)

where LP→X measures the distance from the predicted

primitives P to the point cloud X and LX→P measures the

distance from the point cloud X to the primitives P. We

weight the two distance measures in (3) with 1.2 and 0.8,

respectively, which empirically led to good results.

Primitive-to-Pointcloud: We represent the target point

cloud as a set of 3D points X = {xi}
N
i=1. Similarly, we

approximate the continuous surface of primitive m by a set

of points Ym = {ym
k }Kk=1. Details of our sampling strategy

are provided in Section 3.4. This discretization allows us to

express the distance between a superquadric and the target

point cloud in a convenient form. In particular, for each

point on the primitive ym
k , we compute its closest point on

the target point cloud xi, and average this distance across

all points in Ym as follows:

Lm
P→X(P,X) =

1

K

K
∑

k=1

∆m
k (4)

where

∆m
k = min

i=1,..,N
‖Tm(xi)− ym

k ‖2 (5)

denotes the minimal distance from the k’th point ym
k on the

m’th primitive to the target point cloud X. Here, Tm(x) =
R(λm)x + t(λm) is a function that transforms a 3D point

xi in world coordinates into the local coordinate system of

the mth primitive. Note that both R and t depend on λm

and are hence estimated by our network.

By taking the expectation wrt. the existence variables

z and assuming independence of the existence variables:

p(z) =
∏

m p(zm), we obtain the joint loss over all primi-

tives as

LP→X(P,X) = Ep(z)

[

M
∑

m=1

Lm
P→X(P,X)

]

=

M
∑

m=1

γm Lm
P→X(P,X)

(6)

Note that this loss encourages the predicted primitives to

stay close to the target point cloud.

Pointcloud-to-Primitive: While LP→X measures the dis-

tance from the primitives to the point cloud, LX→P mea-

sures the distance from the point cloud to the primitives to

ensure that each observation is explained by at least one

primitive. We start by defining ∆m
i as the minimal distance

from point xi to the surface of the m’th primitive:

∆m
i = min

k=1,..,K
‖Tm(xi)− ym

k ‖2 (7)

Note that in contrast to (5), we minimize over the K points

from the estimated primitive. Similarly to (6), we take the

expectation of ∆m
i over p(z). In contrast to (6), we sum

over each point in the target point cloud X and retrieve the

distance to the closest primitive m that exists (zm = 1):

LX→P (X,P) = Ep(z)

[

∑

xi∈X

min
m|zm=1

∆m
i

]

(8)

Note that naı̈ve computation of Eq. 8 becomes very slow for

a large number of primitives M as it requires evaluating the

quantity inside the expectation 2M times. In this work, we

propose a novel approach to simplify this computation that

results in a linear number of evaluations. Without loss of

generality, let us assume that the ∆m
i ’s are sorted in ascend-

ing order:

∆1
i ≤ ∆2

i ≤ · · · ≤ ∆M
i (9)

Assuming this ordering, we can state the following: if the

first primitive exists, the first primitive will be the one clos-

est to point xi of the target point, if the first primitive does

not exist and the second does, then the second primitive is
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closest to point xi and so on and so forth. More formally,

this property can be stated as follows:

min
m|zm=1

∆m
i =























∆1
i , if z1 = 1

∆2
i , if z1 = 0, z2 = 1

...

∆M
i , if zm = 0, . . . , zM = 1

(10)

This allows us to simplify Eq. 8 as follows

LX→P (X,P) =
∑

xi∈X

M
∑

m=1

∆m
i γm

m−1
∏

m̄=1

(1− γm̄) (11)

where γm̄ is a shorthand notation which denotes the ex-

istence probability of a primitive closer than primitive m.

Note that this function requires only M , instead of 2M ,

evaluations of the function ∆m
i which is one of the main

results of this paper. For a detailed derivation of (11), we

refer the reader to the supplementary material.

3.2. Parsimony Loss

Despite the bidirectional loss formulation above, our

model suffers from the trivial solution LD(P,X) = 0
which is attained for γ1 = · · · = γm = 0. Moreover, multi-

ple primitives with identical parameters yield the same loss

function as a single primitive by dispersing their existence

probability. We thus introduce a regularizer loss on the ex-

istence probabilities γ which alleviates both problems:

Lγ(P) = max

(

α− α

M
∑

m=1

γm, 0

)

+ β

√

√

√

√

M
∑

m=1

γm (12)

The first term of (12) makes sure that the aggregate exis-

tence probability over all primitives is at least one (i.e., we

expect at least one primitive to be present) and the second

term enforces a parsimonious scene parse by exploiting a

loss function sub-linear in
∑

m γm which encourages spar-

sity. α and β are weighting factors which are set to 1.0 and

10−3 respectively.

3.3. Superquadric Parametrization

Having specified our network and the loss function, we

now provide details about the superquadric representation

and its parameterization λ. Note that, in this section, we

omit the primitive index m for clarity. Superquadrics define

a family of parametric surfaces that can be fully described

by a set of 11 parameters [1]. The explicit superquadric

equation defines the surface vector r as

r(η, ω) =





α1 cos
ǫ1 η cosǫ2 ω

α2 cos
ǫ1 η sinǫ2 ω

α3 sin
ǫ1 η





−π/2 ≤ η ≤ π/2

−π ≤ ω ≤ π

(13)

8 12 16 20 24

Number of primitives

0.0010

0.0012

0.0014

0.0016

0.0018

L
D
(P

,X
)

Cuboidal primitives

SuperQuadrics

Figure 3: Reconstruction Loss wrt. #Primitives. We illus-

trate the reconstruction loss on the test set of the ShapeNet

animal category for a different number of primitives. Su-

perquadrics (orange) consistently outperform cuboid primi-

tives (blue) due to their diverse shape vocabulary that allows

them to better capture fine details of the input shapes.

where α = [α1, α2, α3] determine the size and ǫ = [ǫ1, ǫ2]
determine the global shape of the superquadric, see supple-

mentary material for examples. Following common practice

[38], we bound the values ǫ1 and ǫ2 to the range [0.1, 1.9]
so as to prevent non-convex shapes which are less likely

to occur in practice. Eq. 13 produces a superquadric in a

canonical pose. In order to allow any position and orienta-

tion, we augment the primitive parameter λ with an addi-

tional rigid body motion represented by a translation vector

t = [tx, ty, tz] and a quaternion q = [q0, q1, q2, q3] which

determine the coordinate system transformation T (x) =
R(λ)x+ t(λ) above.

3.4. Implementation

Our network architecture comprises an encoder and a set

of linear layers followed by non-linearities that indepen-

dently predict the pose, shape and size of the superquadric

surfaces. The encoder architecture is chosen based on the

input type (e.g. image, voxelized input, etc.). In our exper-

iments, for a binary occupancy grid as input, our encoder

consists of five blocks of 3D convolution layers, followed

by batch normalization and Leaky ReLU non-linearities.

The result is passed to five independent heads that regress

translation t, rotation q, size α, shape ǫ and probability of

existence γ for each primitive. Additional details about our

network architecture as well as results using an image-based

encoder are provided in the supplementary material.

For evaluating our loss (3), we sample points on the su-

perquadric surface. To achieve a uniform point distribution,

we sample η and ω as proposed in [25]. During training, we

uniformly sample 1000 points, from the surface of the target

object, as well as 200 points from the surface of every su-

perquadric. Note that sampling points on the surface of the

objects results in a stochastic approximator of the expected
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Figure 4: Training Evolution. We visualize the qualitative

evolution of superquadrics (top) and cuboids (bottom) dur-

ing training. Superquadrics converge faster to more accu-

rate representations, whereas cuboids cannot capture details

such as the open mouth of the dog, even after convergence.

loss. The variance of this approximator is inversely propor-

tional to the number of sampled points. We experimentally

observe that our model is not sensitive to the number of

sampled points. For optimization, we use ADAM [18] with

learning rate 0.001 and a batch size of 32 for 40k iterations.

To further increase parsimony, we then fix all parameters

except γ for additional 5k iterations. This step removes re-

maining overlapping primitives as also observed in [36].

4. Experimental Evaluation

In this section, we present a set of experiments to eval-

uate the performance of our network in terms of parsing an

input 3D shape into a set of superquadric surfaces.

Datasets: We provide results on two 3D datasets. First,

we use the aeroplane, chair and animals categories from

ShapeNet [5]. Following [36], we train one model per ob-

ject category using a voxelized binary occupancy grid of

size 32 × 32 × 32 as input. Second, we use the SUR-

REAL dataset from Varol et al. [37] which comprises hu-

mans in various poses (e.g., standing, walking, sitting). Us-

ing the SMPL model [21], we rendered 5000 meshes, from

which 4500 are used for training and 500 for testing. For

additional qualitative results on both datasets, we refer the

reader to our supplementary material.

Baselines: Most related to ours is the cuboid parsing ap-

proach of Tulsiani et al. [36]. Other approaches to cuboid-

based scene parsing [22, 43] require ground-truth shape an-

notations and thus cannot be fairly compared to unsuper-

vised techniques. We thus compare to Tulsiani et al. [36],

using their publicly available code2.

4.1. Superquadrics vs. Cuboids

We first compare the modeling accuracy of superquadric

surfaces wrt. cuboidal shapes which have been extensively

used in related work [22, 36, 43]. Towards this goal, we fit

animal shapes from ShapeNet by optimizing the distance

2https://github.com/shubhtuls/volumetricPrimitives

Figure 5: Qualitative Results on SURREAL. Our net-

work learns semantic mappings of body parts across differ-

ent body shapes and articulations. For instance, the network

uses the same primitive for the left forearm across instances.

loss function in (3) while varying the maximum number of

allowed primitives M . To ensure a fair comparison, we use

the proposed model for both cases. Note that this is triv-

ially possible as cuboids are a special case of superquadrics.

To minimize the effects of network initialization and local

minima in the optimization, we repeat the experiment three

times with random initializations and visualize the average

loss in Fig. 3. The results show that for any given number of

primitives, superquadrics consistently achieve a lower loss,

and hence higher modeling fidelity. We further visualize

the qualitative evolution of the network during training in

Fig. 4. This figure demonstrates that compared to cuboids,

superquadrics better model the object shape, and more im-

portantly that the network is able to converge faster.

4.2. Results on ShapeNet

We evaluate the quality of the predicted primitives using

our reconstruction loss from (3) on the ShapeNet dataset

and compare to the cuboidal primitives as estimated by Tul-

siani et al. [36]. We associate every primitive with a unique

color, thus primitives illustrated with the same color corre-

spond to the same object part. For both approaches we set

the maximal number of primitives to M = 20. From Fig. 6,

we observe that our predictions consistently capture both

the structure as well as fine details (e.g., body, tails, head),

whereas the corresponding cuboidal primitives from [36]
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Figure 6: Qualitative Results on ShapeNet. We visualize predictions for the object categories animals, aeroplane and

chairs from the ShapeNet dataset. The top row illustrates the ground-truth meshes from every object. The middle row depicts

the corresponding predictions using the cuboidal primitives estimated by [36]. The bottom row shows the corresponding

predictions using our learned superquadric surfaces. Similarly to [36], we observe that the predicted primitive representations

are consistent across instances. For example, the primitive depicted in green describes the right wing of the aeroplane, while

for the animals class, the yellow primitive describes the front legs of the animal.

Figure 7: Attention to Details. Superquadrics allow for

modeling fine details such as the tails and ears of animals as

well as the wings and the body of the airplanes and wheels

of the motorbikes which are hard to capture using cuboids.

focus mainly on the structure of the predicted object.

Fig. 7 shows additional results in which our model suc-

cessfully predicts animals, airplanes and also more compli-

cated motorbike parts. For instance, we observe that our

model is able to capture the open mouth of the dog us-

ing two superquadrics as shown in Fig. 7 (left-most ani-

mal in third row). In addition, we notice that our model

dynamically allocates a variable number of primitives de-

pending on the complexity of the input shape. For example,

the left-most airplane in Fig. 6, is modelled with 6 prim-

itives whereas the jetfighter (right-most) that has a more

complicated shape is modelled with 9 primitives. This can

also be observed for the animal category, where our model

chooses a single primitive for the body of the cat (right-

most animal in Fig. 6) while for all the rest it uses two.

We remark that our expressive shape abstractions allow

for differentiating between different types of objects such

Figure 8: Evolution of Primitives. We illustrate the evolu-

tion of superquadrics during training. Note how our model

first focuses on the overall structure of the object and starts

to attend to finer details at later iterations.

as scooter/chopper/racebike or airliner/fighter by truthfully

capturing the shape of the individual object parts.

Fig. 8 visualizes the training evolution of the predicted

superquadrics for three object categories. While initially,

the model focuses on the overall structure of the object us-

ing mostly blob-shaped superquadrics (ǫ1 and ǫ2 close to

1.0), as training progresses it starts attending to details. Af-

ter convergence, the predicted superquadrics closely match

the shape of the corresponding (unknown) object parts.

4.3. Results on SURREAL

In addition to ShapeNet, we also demonstrate results on

the SURREAL human body dataset in Fig. 5. The benefits

of superquadrics over simpler shape abstractions are accen-

tuated in this dataset due to the complicated shapes of the

human body. Note that our model successfully captures de-

tails that require modeling beyond cuboids: For instance,

our model predicts pointy octahedral shapes for the feet,
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Figure 9: Fig. 9a depicts the variance of the gradient estimates for γ over 300 iterations (solid) as well as the computation time

per iteration (dashed) for [36] (blue) and our method (orange). Our analytical loss function provides gradients with orders of

magnitude less variance while at the same time decreasing runtime. In Fig. 9b, we compare the training loss evolution of [36]

(blue) to ours (orange). The sampling based approach of [36] leads to large oscillations while ours converges smoothly.

ellipsoid shapes for the head and a flattened elongated su-

perellipsoid for the main body without any supervision on

the primitive parameters. Another interesting aspect of our

model is the consistency of the predicted primitives, i.e., the

same primitives (highlighted with the same color) consis-

tently represent feet, legs, arms etc. across different poses.

For more complicated poses, correspondences are some-

times mirrored. We speculate that this behavior is caused

by symmetries of the human body.

4.4. Analytical Loss Formulation

In this section, we compare the evolution of our training

loss in Equation (3) to the evolution of the training loss pro-

posed by Tulsiani et al. [36] in Fig. 9b. While it is important

to mention that the absolute values are not comparable due

to the slightly different loss formulations, we observe that

our loss converges faster with less oscillations. Note that at

iteration 20k, [36] starts updating the existence probabilities

using reinforcement learning [40] which further increases

oscillations. In contrast, our loss function decays smoothly

and does not require sampling-based gradient estimation.

To further analyze the advantages of our analytical loss

formulation, we calculate the variance of the gradient es-

timates for the existence probabilities γ over 300 training

iterations. Fig. 9a compares the variance of the gradients

of [36] to the variance of the gradients of the proposed an-

alytical loss (solid lines). Note that the variance in our gra-

dient is orders of magnitude lower compared to [36] as we

do not require sampling [40] for approximating the gradi-

ents. Simultaneously, we obtain a lower runtime per itera-

tion (dashed lines). While using more samples lowers the

variance of gradients approximated using Monte Carlo es-

timation [36], runtime per iteration increases linearly with

the number of samples. In contrast, our method does not

require sampling and outperforms [36] in terms of runtime

Chamfer Distance Volumetric IoU

Chairs Aeroplanes Animals Chairs Aeroplanes Animals

[36] 0.0121 0.0153 0.0110 0.1288 0.0650 0.3339

Ours 0.0006 0.0003 0.0003 0.1408 0.1808 0.7506

Table 1: Quantitative evaluation. We report the mean

Chamfer distance (smaller is better) and the mean Volumet-

ric IoU (larger is better) for our model compared to [36].

even for the case of gradient estimates based on a single

sample. We remark that in both cases the runtime is com-

puted for the entire iteration, considering both, the forward

and the backward pass. A quantitative comparison is pro-

vided in Table 1. Note that in contrast to [36] we optimize

for the Chamfer distance.

5. Conclusion and Future Work

We propose the first learning-based approach for pars-

ing 3D objects into consistent superquadric representations.

Our model successfully captures both the structure as well

as the details of the target objects by accurately learning to

predict superquadrics in an unsupervised fashion from data.

In future work, we plan to extend our model by includ-

ing parameters for global deformations such as tapering and

bending. We anticipate that this will significantly benefit the

fitting process as the available shape vocabulary will be fur-

ther increased. Finally, we also plan to extend our model to

large-scale scenes. We believe that developing novel hierar-

chical strategies as in [43] is key for unsupervised 3D scene

parsing at room-, building- or even city-level scales.
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