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Abstract

To facilitate the analysis of human actions, interac-

tions and emotions, we compute a 3D model of human

body pose, hand pose, and facial expression from a sin-

gle monocular image. To achieve this, we use thousands

of 3D scans to train a new, unified, 3D model of the hu-

man body, SMPL-X, that extends SMPL with fully artic-

ulated hands and an expressive face. Learning to regress

the parameters of SMPL-X directly from images is chal-

lenging without paired images and 3D ground truth. Con-

sequently, we follow the approach of SMPLify, which es-

timates 2D features and then optimizes model parameters

to fit the features. We improve on SMPLify in several sig-

nificant ways: (1) we detect 2D features corresponding to

the face, hands, and feet and fit the full SMPL-X model to

these; (2) we train a new neural network pose prior using

a large MoCap dataset; (3) we define a new interpenetra-

tion penalty that is both fast and accurate; (4) we auto-

matically detect gender and the appropriate body models

(male, female, or neutral); (5) our PyTorch implementation

achieves a speedup of more than 8× over Chumpy. We use

the new method, SMPLify-X, to fit SMPL-X to both con-

trolled images and images in the wild. We evaluate 3D ac-

curacy on a new curated dataset comprising 100 images

with pseudo ground-truth. This is a step towards automatic

expressive human capture from monocular RGB data. The

models, code, and data are available for research purposes

at https://smpl-x.is.tue.mpg.de.

1. Introduction

Humans are often a central element in images and

videos. Understanding their posture, the social cues they

communicate, and their interactions with the world is criti-

cal for holistic scene understanding. Recent methods have

shown rapid progress on estimating the major body joints,

hand joints and facial features in 2D [15, 31, 70]. Our inter-

actions with the world, however, are fundamentally 3D and

recent work has also made progress on the 3D estimation

∗ equal contribution

Figure 1: Communication and gesture rely on the body

pose, hand pose, and facial expression, all together. The

major joints of the body are not sufficient to represent this

and current 3D models are not expressive enough. In con-

trast to prior work, our approach estimates a more detailed

and expressive 3D model from a single image. From left to

right: RGB image, major joints, skeleton, SMPL (female),

SMPL-X (female). The hands and face in SMPL-X enable

more holistic and expressive body capture.

of the major joints and rough 3D pose directly from single

images [10, 37, 59, 62].

To understand human behavior, however, we have to cap-

ture more than the major joints of the body – we need the

full 3D surface of the body, hands and the face. There is

no system that can do this today due to several major chal-

lenges including the lack of appropriate 3D models and rich

3D training data. Figure 1 illustrates the problem. The inter-

pretation of expressive and communicative images is diffi-

cult using only sparse 2D information or 3D representations

that lack hand and face detail. To address this problem, we

need two things. First, we need a 3D model of the body that

is able to represent the complexity of human faces, hands,

and body pose. Second, we need a method to extract such a

model from a single image.

Advances in neural networks and large datasets of man-

ually labeled images have resulted in rapid progress in 2D

human “pose” estimation. By “pose”, the field often means
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Figure 2: We learn a new 3D model of the human body called SMPL-X that jointly models the human body, face and hands.

We fit the female SMPL-X model with SMPLify-X to single RGB images and show that it captures a rich variety of natural

and expressive 3D human poses, gestures and facial expressions.

the major joints of the body. This is not sufficient to un-

derstand human behavior as illustrated in Fig. 1. OpenPose

[15, 60, 70] expands this to include the 2D hand joints and

2D facial features. While this captures much more about the

communicative intent, it does not support reasoning about

surfaces and human interactions with the 3D world.

Models of the 3D body have focused on capturing the

overall shape and pose of the body, excluding the hands and

face [2, 3, 6, 26, 48]. There is also an extensive literature

on modelling hands [39, 53, 57, 58, 68, 69, 71, 74, 75] and

faces [4, 9, 11, 13, 14, 43, 63, 76, 79] in 3D but in isola-

tion from the rest of the body. Only recently has the field

begun modeling the body together with hands [68], or to-

gether with the hands and face [36]. The Frank model [36],

for example, combines a simplified version of the SMPL

body model [48], with an artist-designed hand rig, and the

FaceWarehouse [14] face model. These disparate models

are stitched together, resulting in a model that is not fully

realistic.

Here we learn a new, holistic, body model with face and

hands from a large corpus of 3D scans. The new SMPL-X

model (SMPL eXpressive) is based on SMPL and retains

the benefits of that model: compatibility with graphics soft-

ware, simple parametrization, small size, efficient, differ-

entiable, etc. We combine SMPL with the FLAME head

model [43] and the MANO hand model [68] and then reg-

ister this combined model to 5586 3D scans that we curate

for quality. By learning the model from data, we capture

the natural correlations between the shape of bodies, faces

and hands and the resulting model is free of the artifacts

seen with Frank. The expressivity of the model can be seen

in Fig. 2 where we fit SMPL-X to expressive RGB images,

as well as in Fig. 4 where we fit SMPL-X to images of the

public LSP dataset [33]. SMPL-X is freely available for

research purposes.

Several methods use deep learning to regress the param-

eters of SMPL from a single image [37, 59, 62]. To estimate

a 3D body with the hands and face though, there exists no

suitable training dataset. To address this, we follow the ap-

proach of SMPLify. First, we estimate 2D image features

“bottom up” using OpenPose [15, 70, 77], which detects the

joints of the body, hands, feet, and face features. We then fit

the SMPL-X model to these 2D features “top down”, with

our method called SMPLify-X. To do so, we make several

significant improvements over SMPLify. Specifically, we

learn a new, and better performing, pose prior from a large

dataset of motion capture data [50, 51] using a variational

auto-encoder. This prior is critical because the mapping

from 2D features to 3D pose is ambiguous. We also define a

new (self-) interpenetration penalty term that is significantly

more accurate and efficient than the approximate method in

SMPLify; it remains differentiable. We train a gender de-

tector and use this to automatically determine what body

model to use, either male, female or gender neutral. Finally,

one motivation for training direct regression methods to es-

timate SMPL parameters is that SMPLify is slow. Here we

address this with a PyTorch implementation that is at least

8 times faster than the corresponding Chumpy implementa-

tion, by leveraging the computing power of modern GPUs.

Examples of this SMPLify-X method are shown in Fig. 2.
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To evaluate the accuracy, we need new data with full-

body RGB images and corresponding 3D ground truth bod-

ies. To that end, we curate a new evaluation dataset contain-

ing images of a subject performing a wide variety of poses,

gestures and expressions. We capture 3D body shape us-

ing a scanning system and we fit the SMPL-X model to the

scans. This form of pseudo ground-truth is accurate enough

to enable quantitative evaluations for models of body, hands

and faces together. We find that our model and method

performs significantly better than related and less powerful

models, resulting in natural and expressive results.

We believe that this work is a significant step towards

expressive capture of bodies, hands and faces together

from a single RGB image. We make available for re-

search purposes the SMPL-X model, SMPLify-X code,

trained networks, model fits, and the evaluation dataset at

https://smpl-x.is.tue.mpg.de.

2. Related work

2.1. Modeling the body

Bodies, Faces and Hands. The problem of modeling the

3D body has previously been tackled by breaking the body

into parts and modeling these parts separately. We focus on

methods that learn statistical shape models from 3D scans.

Blanz and Vetter [9] pioneered this direction with their

3D morphable face model. Numerous methods since then

have learned 3D face shape and expression from scan data;

see [13, 81] for recent reviews. A key feature of such mod-

els is that they can represent different face shapes and a

wide range of expressions, typically using blend shapes in-

spired by FACS [21]. Most approaches focus only on the

face region and not the whole head. FLAME [43], in con-

trast, models the whole head, captures 3D head rotations,

and also models the neck region; we find this critical for

connecting the head and the body. None of these methods,

model correlations in face shape and body shape.

The availability of 3D body scanners enabled learning of

body shape from scans. In particular the CAESAR dataset

[67] opened up the learning of shape [2]. Most early work

focuses on body shape using scans of people in roughly

the same pose. Anguelov et al. [6] combined shape with

scans of one subject in many poses to learn a factored model

of body shape and pose based on triangle deformations.

Many models followed this, either using triangle deforma-

tions [16, 23, 26, 29, 64] or vertex-based displacements

[3, 27, 48], however they all focus on modeling body shape

and pose without the hands or face. These methods assume

that the hand is either in a fist or an open pose and that the

face is in a neutral expression.

Similarly, hand modeling approaches typically ignore

the body. Additionally, 3D hand models are typically not

learned but either are artist designed [71], based on shape

primitives [53, 58, 69], reconstructed with multiview stereo

and have fixed shape [8, 75], use non-learned per-part scal-

ing parameters [19], or use simple shape spaces [74]. Only

recently [39, 68] have learned hand models appeared in the

literature. Khamis et al. [39] collect partial depth maps of

50 people to learn a model of shape variation, however they

do not capture a pose space. Romero et al. [68] on the other

side learn a parametric hand model (MANO) with both a

rich shape and pose space using 3D scans of 31 subjects in

up to 51 poses, following the SMPL [48] formulation.

Unified Models. The most similar models to ours are

Frank [36] and SMPL+H [68]. Frank stitches together

three different models: SMPL (with no pose blend shapes)

for the body, an artist-created rig for the hands, and the

FaceWarehouse model [14] for the face. The resulting

model is not fully realistic. SMPL+H combines the SMPL

body with a 3D hand model that is learned from 3D scans.

The shape variation of the hand comes from full body scans,

while the pose dependent deformations are learned from

a dataset of hand scans. SMPL+H does not contain a de-

formable face.

We start from the publicly-available SMPL+H [52] and

add the publicly-available FLAME head model [22] to it.

Unlike Frank, however, we do not simply graft this onto the

body. Instead we take the full model and fit it to 5586 3D

scans and learn the shape and pose-dependent blend shapes.

This results in a natural looking model with a consistent

parameterization. Being based on SMPL, it is differentiable

and easy to swap into applications that already use SMPL.

2.2. Inferring the body

There are many methods that estimate 3D faces from im-

ages or RGB-D [81] as well as methods that estimate hands

from such data [80]. While there are numerous methods

that estimate the location of 3D joints from a single image,

here we focus on methods that extract a full 3D body mesh.

Several methods estimate the SMPL model from a single

image [37, 41, 59, 62]. This is not trivial due to a paucity

of training images with paired 3D model parameters. To

address this, SMPLify [10] detects 2D image features “bot-

tom up” and then fits the SMPL model to these “top down”

in an optimization framework. In [41] these SMPLify fits

are used to iteratively curate a training set of paired data to

train a direct regression method. HMR [37] trains a model

without paired data by using 2D keypoints and an adversary

that knows about 3D bodies. Like SMPLify, NBF [59] uses

an intermediate 2D representation (body part segmentation)

and infers 3D pose from this intermediate representation.

MonoPerfCap [78] infers 3D pose while also refining sur-

face geometry to capture clothing. These methods estimate

only the 3D pose of the body without the hands or face.

There are also many multi-camera setups for capturing

3D pose, 3D meshes (performance capture), or parametric
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3D models [7, 20, 24, 30, 35, 46, 54, 66, 72]. Most relevant

is the Panoptic studio [35] which shares our goal of captur-

ing rich, expressive, human interactions. In [36], the Frank

model parameters are estimated from multi-camera data by

fitting the model to 3D keypoints and 3D point clouds. The

capture environment is complex, using 140 VGA cameras

for the body, 480 VGA cameras for the feet, and 31 HD

cameras for the face and hand keypoints. We aim for a sim-

ilar level of expressive detail but from a single RGB image.

3. Technical approach

In the following we describe SMPL-X (Section 3.1), and

our approach (Section 3.2) for fitting SMPL-X to single

RGB images. Compared to SMPLify [10], SMPLify-X uses

a better pose prior (Section 3.3), a more detailed collision

penalty (Section 3.4), gender detection (Section 3.5), and a

faster PyTorch implementation (Section 3.6).

3.1. Unified model: SMPL­X

We create a unified model, called SMPL-X, for SMPL

eXpressive, with shape parameters trained jointly for the

face, hands and body. SMPL-X uses standard vertex-

based linear blend skinning with learned corrective blend

shapes, has N = 10, 475 vertices and K = 54 joints,

which includes joints for the neck, jaw, eyeballs and fin-

gers. SMPL-X is defined by a function M (θ, β, ψ) :
R

|θ|×|β|×|ψ| → R
3N , parameterized by the pose θ ∈

R
3(K+1) where K is the number of body joints in addition

to a joint for global rotation. We decompose the pose pa-

rameters θ into: θf for the jaw joint, θh for the finger joints,

and θb for the remaining body joints. The joint body, face

and hands shape parameters are noted by β ∈ R
|β| and the

facial expression parameters by ψ ∈ R
|ψ|. More formally:

M (β, θ, ψ) =W (Tp (β, θ, ψ) , J (β) , θ,W) (1)

TP (β, θ, ψ) = T̄ +BS (β;S) +BE (ψ; E) +BP (θ;P)
(2)

where BS (β;S) =
∑|β|
n=1 βnSn is the shape blend shape

function, β are linear shape coefficients, |β| is their number,

Sn ∈ R
3N are orthonormal principle components of ver-

tex displacements capturing shape variations due to differ-

ent person identity, and S =
[

S1, . . . , S|β|

]

∈ R
3N×|β| is a

matrix of all such displacements. BP (θ;P) : R|θ| → R
3N

is the pose blend shape function, which adds corrective ver-

tex displacements to the template mesh T̄ as in SMPL [47]:

BP (θ;P) =
9K
∑

n=1

(Rn(θ)−Rn(θ
∗))Pn, (3)

where R : R|θ| → R
9K is a function mapping the pose vec-

tor θ to a vector of concatenated part-relative rotation ma-

trices, computed with the Rodrigues formula [12, 55, 65]

and Rn(θ) is the nth element of R(θ), θ∗ is the pose vec-

tor of the rest pose, Pn ∈ R
3N are again orthonormal

principle components of vertex displacements, and P =
[P1, . . . , P9K ] ∈ R

3N×9K is a matrix of all pose blend

shapes. BE (ψ; E) =
∑|ψ|
n=1 ψnE is the expression blend

shape function, where E are principle components captur-

ing variations due to facial expressions and ψ are PCA co-

efficients. Since 3D joint locations J vary between bod-

ies of different shapes, they are a function of body shape

J(β) = J
(

T̄ +BS (β;S)
)

, where J is a sparse linear re-

gressor that regresses 3D joint locations from mesh vertices.

A standard linear blend skinning function W (.) [42] ro-

tates the vertices in Tp (.) around the estimated joints J(β)
smoothed by blend weights W ∈ R

N×K .

We start with an artist designed 3D template, whose face

and hands match the templates of FLAME [43] and MANO

[68]. We fit the template to four datasets of 3D human

scans to get 3D alignments as training data for SMPL-X.

The shape space parameters, {S}, are trained on 3800
alignments in an A-pose capturing variations across identi-

ties [67]. The body pose space parameters, {W,P,J }, are

trained on 1786 alignments in diverse poses. Since the full

body scans have limited resolution for the hands and face,

we leverage the parameters of MANO [68] and FLAME

[43], learned from 1500 hand and 3800 head high resolu-

tion scans respectively. More specifically, we use the pose

space and pose corrective blendshapes of MANO for the

hands and the expression space E of FLAME.

The fingers have 30 joints, which correspond to 90
pose parameters (3 DoF per joint as axis-angle rotations).

SMPL-X uses a lower dimensional PCA pose space for the

hands such that θh =
∑|mh|
n=1 mhn

M, where M are princi-

ple components capturing the finger pose variations andmh

are the corresponding PCA coefficients. As noted above, we

use the PCA pose space of MANO, that is trained on a large

dataset of 3D articulated human hands. The total number of

model parameters in SMPL-X is 119: 75 for the global body

rotation and { body, eyes , jaw } joints, 24 parameters for

the lower dimensional hand pose PCA space, 10 for sub-

ject shape and 10 for the facial expressions. Additionally

there are separate male and female models, which are used

when the gender is known, and a shape space constructed

from both genders for when gender is unknown. SMPL-X

is realistic, expressive, differentiable and easy to fit to data.

3.2. SMPLify­X: SMPL­X from a single image

To fit SMPL-X to single RGB images (SMPLify-X), we

follow SMPLify [10] but improve every aspect of it. We

formulate fitting SMPL-X to the image as an optimization

problem, where we seek to minimize the objective function

E(β, θ, ψ) = EJ + λθbEθb + λθfEθf + λmh
Emh

+

λαEα + λβEβ + λEEE + λCEC (4)
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where θb, θf and mh are the pose vectors for the body,

face and the two hands respectively, and θ is the full

set of optimizable pose parameters. The body pose pa-

rameters are a function θb(Z), where Z ∈ R
32 is a

lower-dimensional pose space described in Section 3.3.

EJ(β, θ,K, Jest) is the data term as described below, while

the terms Emh
(mh), Eθf (θf ), Eβ(β) and EE(ψ) are sim-

ple L2 priors for the hand pose, facial pose, body shape

and facial expressions, penalizing deviation from the neu-

tral state. Since the shape space of SMPL-X is scaled for

unit variance, similarly to [68], Eβ(β) = ‖β‖2 describes

the Mahalanobis distance between the shape parameters

being optimized and the shape distribution in the training

dataset of SMPL-X. Eα(θb) =
∑

i∈(elbows,knees) exp(θi)
follows [10] and is a simple prior penalizing extreme bend-

ing only for elbows and knees. We further employ Eθb(θb)
that is a VAE-based body pose prior (Section 3.3), while

EC(θb,h,f , β) is an interpenetration penalty (Section 3.4).

Finally, λ denotes weights that steer the influence of each

term in Eq. 4. We empirically find that an annealing scheme

for λ helps optimization (Section 3.6).

For the data term we use a re-projection loss to minimize

the weighted robust distance between estimated 2D joints

Jest and the 2D projection of the corresponding posed 3D

joints Rθ(J(β))i of SMPL-X for each joint i, where Rθ(·)
is a function that transforms the joints along the kinematic

tree according to the pose θ. Following the notation of [10],

the data term is EJ(β, θ,K, Jest) =

∑

joint i

γiωiρ(ΠK(Rθ(J(β))i)− Jest,i) (5)

where ΠK denotes the 3D to 2D projection with intrinsic

camera parameters K. For the 2D detections we rely on the

OpenPose library [15, 70, 77], which provides body, hands,

face and feet keypoints jointly for each person in an im-

age. To account for noise in the detections, the contribution

of each joint in the data term is weighted by the detection

confidence score ωi, while γi are per-joint weights for an-

nealed optimization, as described in Section 3.6. Finally,

ρ denotes a robust Geman-McClure error function [25] for

down weighting noisy detections.

3.3. Variational Human Body Pose Prior

We seek a prior over body pose that penalizes impos-

sible poses while allowing possible ones. SMPLify uses

an approximation to the negative log of a Gaussian mix-

ture model trained on MoCap data. While effective, we find

that the SMPLify prior is not sufficiently strong. Conse-

quently, we train our body pose prior, VPoser, using a vari-

ational autoencoder [40], which learns a latent representa-

tion of human pose and regularizes the distribution of the

latent code to be a normal distribution. We train our prior

on the data released by [50, 51], namely pose parameters

obtained by applying MoSh [47] on three publicly available

human motion capture datasets: CMU [17], training set of

Human3.6M [32], and the PosePrior dataset [1]. Our train-

ing and test data respectively consist of roughly 1M, and

65k poses, in rotation matrix representation. Details on the

data preparation procedure is given in Sup. Mat.

The training loss of the VAE is formulated as:

Ltotal = c1LKL + c2Lrec + c3Lorth + c4Ldet1 + c5Lreg
(6)

LKL = KL(q(Z|R)||N (0, I)) (7)

Lrec = ||R− R̂||22 (8)

Lorth = ||R̂R̂
′

− I||22 (9)

Ldet1 = |det(R̂)− 1| (10)

Lreg = ||φ||22, (11)

where Z ∈ R
32 is the latent space of the autoencoder,

R ∈ SO(3) are 3× 3 rotation matrices for each joint as the

network input and R̂ is a similarly shaped matrix represent-

ing the output. The Kullback-Leibler term in Eq. (7), and

the reconstruction term in Eq. (8) follow the VAE formula-

tion in [40], while their role is to encourage a normal distri-

bution on the latent space, and to make an efficient code to

reconstruct the input with high fidelity. Eq. (9) and (10) en-

courage the latent space to encode valid rotation matrices.

Finally, Eq. (11) helps prevent over-fitting by encouraging

smaller network weights φ. Implementation details can be

found in Sup. Mat.

To employ VPoser in the optimization, rather than to op-

timize over θb directly in Eq. 4, we optimize the parameters

of a 32 dimensional latent space with a quadratic penalty on

Z and transform this back into joint angles θb in axis-angle

representation. This is analogous to how hands are treated

except that the hand pose θh is projected into a linear PCA

space and the penalty is on the linear coefficients.

3.4. Collision penalizer

When fitting a model to observations, there are often

self-collisions and penetrations of several body parts that

are physically impossible. Our approach is inspired by

SMPLify, that penalizes penetrations with an underlying

collision model based on shape primitives, i.e. an ensemble

of capsules. Although this model is computationally effi-

cient, it is only a rough approximation of the human body.

For models like SMPL-X, that also model the fingers and

facial details, a more accurate collision model in needed. To

that end, we employ the detailed collision-based model for

meshes from [8, 75]. We first detect a list of colliding trian-

gles C by employing Bounding Volume Hierarchies (BVH)

[73] and compute local conic 3D distance fields Ψ defined

by the triangles C and their normals n. Penetrations are then

penalized by the depth of intrusion, efficiently computed by
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the position in the distance field. For two colliding triangles

fs and ft, intrusion is bi-directional; the vertices vt of ft are

the intruders in the distance field Ψfs of the receiver trian-

gle fs and are penalized by Ψfs(vt), and vice-versa. Thus,

the collision term EC in the objective (Eq. 4) is defined as

EC(θ) =
∑

(fs(θ),ft(θ))∈C

{

∑

vs∈fs

‖ −Ψft(vs)ns‖
2+

∑

vt∈ft

‖ −Ψfs(vt)nt‖
2

}

.

(12)

For technical details about Ψ, as well as details about han-

dling collisions for parts with permanent or frequent self-

contact we redirect the reader to [8, 75] and Sup. Mat.. For

computational efficiency, we use a highly parallelized im-

plementation of BVH following [38] with a custom CUDA

kernel wrapped around a custom PyTorch operator.

3.5. Deep Gender Classifier

Men and women have different proportions and shapes.

Consequently, using the appropriate body model to fit 2D

data means that we should apply the appropriate shape

space. We know of no previous method that automatically

takes gender into account in fitting 3D human pose. In this

work, we train a gender classifier that takes as input an im-

age containing the full body and the OpenPose joints, and

assigns a gender label to the detected person. To this end,

we first annotate through Amazon Mechanical Turk a large

dataset of images from LSP [33], LSP-extended [34], MPII

[5], MS-COCO[45], and LIP datset [44], while following

their official splits for train and test sets. The final dataset

includes 50216 training examples and 16170 test samples

(see Sup. Mat.). We use this dataset to fine tune a pretrained

ResNet18 [28] for binary gender classification. Moreover,

we threshold the computed class probabilities, by using a

class-equalized validation set, to obtain a good trade-off

between discarded, correct, and incorrect predictions. We

choose a threshold of 0.9 for accepting a predicted class,

which yields 62.38% correct predictions, and 7.54% incor-

rect predictions on the validation set. At test time, we run

the detector and fit the appropriate gendered model. When

the detected class probability is below the threshold, we fit

the gender-neutral body model.

3.6. Optimization

SMPLify employs Chumpy and OpenDR [49] which

makes the optimization slow. To keep optimization of Eq. 4

tractable, we use PyTorch and the Limited-memory BFGS

optimizer (L-BFGS) [56] with strong Wolfe line search. Im-

plementation details can be found in Sup. Mat.

We optimize Eq. 4 with a multistage approach, similar

to [10]. We assume that we know the exact or an approxi-

mate value for the focal length of the camera. Then we first

estimate the unknown camera translation and global body

orientation (see [10]). We then fix the camera parameters

and optimize body shape, β, and pose, θ. Empirically, we

found that an annealing scheme for the weights γ in the data

term EJ (Eq. 5) helps optimization of the objective (Eq. 4)

to deal with ambiguities and local optima. This is mainly

motivated by the fact that small body parts like the hands

and face have many keypoints relative to their size, and can

dominate in Eq. 4, throwing optimization in a local opti-

mum when the initial estimate is away from the solution.

In the following, we denote by γb the weights corre-

sponding to the main body keypoints, γh the ones for hands

and γf the ones for facial keypoints. We then follow three

steps, starting with high regularization to mainly refine the

global body pose, and gradually increase the influence of

hand keypoints to refine the pose of the arms. After con-

verging to a better pose estimate, we increase the influence

of both hands and facial keypoints to capture expressivity.

Throughout the above steps the weights λα, λβ , λE in Eq.4

start with high regularization that gradually lowers to allow

for better fitting, The only exception is λC that gradually in-

creases while the influence of hands gets stronger inEJ and

more collisions are expected.

4. Experiments

4.1. Evaluation datasets

Despite the recent interest in more expressive models

[36, 68] there exists no dataset containing images with

ground-truth shape for bodies, hands and faces together.

Consequently, we create a dataset for evaluation from cur-

rently available data through fitting and careful curation.

Expressive hands and faces dataset (EHF). We begin

with the SMPL+H dataset [52], obtaining one full body

RGB image per frame. We then align SMPL-X to the 4D

scans following [68]. An expert annotator manually curated

the dataset to select 100 frames that can be confidently con-

sidered pseudo ground-truth, according to alignment qual-

ity and interesting hand poses and facial expressions. The

pseudo ground-truth meshes allow to use a stricter vertex-

to-vertex (v2v) error metric [48, 62], in contrast to the com-

mon paradigm of reporting 3D joint error, which does not

capture surface errors and rotations along the bones.

4.2. Qualitative & Quantitative evaluations

To test the effectiveness of SMPL-X and SMPLify-X, we

perform comparisons to the most related models, namely

SMPL [48], SMPL+H [68], and Frank [36]. In this direc-

tion we fit SMPL-X to the EHF images to evaluate both

qualitatively and quantitatively. Note that we use only 1
image and 2D joints as input, while previous methods use

much more information; i.e. 3D point clouds [36, 68] and

joints [36]. Specifically [48, 68] employ 66 cameras and 34
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Model Keypoints v2v error Joint error

“SMPL” Body 57.6 63.5
“SMPL” Body+Hands+Face 64.5 71.7

“SMPL+H” Body+Hands 54.2 63.9
SMPL-X Body+Hands+Face 52.9 62.6

Table 1: Quantitative comparison of “SMPL”, “SMPL+H”

and SMPL-X, as described in Section 4.2, fitted with

SMPLify-X on the EHF dataset. We report the mean vertex-

to-vertex (v2v) and the standard mean 3D body (only) joint

error in mm. The table shows that richer modeling power

results in lower errors.

Version v2v error

SMPLify-X 52.9
gender neutral model 58.0
replace Vposer with GMM 56.4
no collision term 53.5

Table 2: Ablative study for SMPLify-X on the EHF dataset.

The numbers reflect the contribution of each component in

overall accuracy.

projectors, while [36] employ more than 500 cameras.

We first compare to SMPL, SMPL+H and SMPL-X on

the EHF dataset and report results in Table 1. The table re-

ports mean vertex-to-vertex (v2v) error and mean 3D body

joint error after Procrustes alignment with the ground-truth

3D meshes and body (only) joints respectively. To ease nu-

meric evaluation, for this table only we “simulate” SMPL

and SMPL+H with a SMPL-X variation with locked de-

grees of freedom, noted as “SMPL” and “SMPL+H” re-

spectively. As expected, the errors show that the standard

mean 3D joint error fails to capture accurately the differ-

ence in model expressivity. On the other hand, the much

stricter v2v metric shows that enriching the body with fin-

ger and face modeling results in lower errors. We also fit

SMPL with additional features for parts that are not prop-

erly modeled, e.g. finger features. The additional features

result in an increasing error, pointing to the importance of

richer and more expressive models. We report similar qual-

itative comparisons in Sup. Mat.

We then perform an ablative study, summarized in Ta-

ble 2, where we report the mean vertex-to-vertex (v2v) er-

ror. SMPLify-X with a gender-specific model achieves 52.9
mm error. The gender neutral model is easier to use, as

it does not need gender detection, but comes with a small

compromise in terms of accuracy. Replacing VPoser with

the GMM of SMPLify [10] increases the error to 56.4 mm,

showing the effectiveness of VPoser. Finally, removing the

collision term increases the error as well, to 53.5 mm, while

also allowing for non physically plausible pose estimates.

reference [36]: > 500 Ours: > 500 Ours: 1

RGB cameras cameras camera

Figure 3: Qualitative comparison of our gender neutral

model (top, bottom rows) or gender specific model (middle)

against Frank [36] on some of their data. To fit Frank, [36]

employ both 3D joints and point cloud, i.e. more than 500
cameras. In contrast, our method produces a realistic and

expressive reconstruction using only 2D joints. We show

results using the 3D joints of [36] projected in 1 camera

view (third column), as well as using joints estimated from

only 1 image (last column), to show the influence of noise in

2D joint detection. Compared to Frank, our SMPL-X does

not have skinning artifacts around the joints, e.g. elbows.

The closest comparable model to SMPL-X is Frank [36].

Since Frank is not available to date, nor are the fittings to

[18], we show images of results found online. Figure 3

shows Frank fittings to 3D joints and point clouds, i.e. us-

ing more than 500 cameras. Compare this with SMPL-X

fitting that is done with SMPLify-X using only 1 RGB im-

age with 2D joints. For a more direct comparison here, we

fit SMPL-X to 2D projections of the 3D joints that [36] used

for Frank. Although we use much less data, SMPL-X shows

at least similar expressivity to Frank for both the face and

hands. Since Frank does not use pose blend shapes, it suf-

fers from skinning artifacts around the joints, e.g. elbows,

as clearly seen in Figure 3. SMPL-X by contrast, is trained

to include pose blend shapes and does not suffer from this.

As a result it looks more natural and realistic.
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Figure 4: Qualitative results of SMPL-X for the in-the-wild images of the LSP dataset [33]. A strong holistic model like

SMPL-X results in natural and expressive reconstruction of bodies, hands and faces. Gray color depicts the gender-specific

model for confident gender detections. Blue is the gender-neutral model that is used when the gender classifier is uncertain.

Figure 5: Comparison of the hands-only approach of [61]

(middle) against our approach with the male model (right).

Both approaches depend on OpenPose. In case of good de-

tections both perform well (top). In case of noisy 2D detec-

tions (bottom) our holistic model shows increased robust-

ness. (images cropped at the bottom in the interest of space)

To further show the value of a holistic model of the

body, face and hands, in Fig. 5 we compare SMPL-X and

SMPLify-X to the hands-only approach of [61]. Both ap-

proaches employ OpenPose for 2D joint detection, while

[61] further depends on a hand detector. As seen in Fig. 5,

in case of good detections both approaches perform nicely,

though in case of noisy detections, SMPL-X shows in-

creased robustness due to the context of the body. We fur-

ther perform quantitative comparison after aligning the re-

sulting fittings to EHF. Due to different mesh topology, for

simplicity we use hand joints as pseudo ground-truth, and

perform Procrustes analysis of each hand independently, ig-

noring the body. Panteleris et al. [61] achieve a mean 3D

joint error of 26.5 mm, while SMPL-X has 19.8 mm.

Finally, we fit SMPL-X with SMPLify-X to some in-the-

wild datasets, namely the LSP [33], LSP-extended [34] and

MPII datasets [5]. Figure 4 shows some qualitative results

for the LSP dataset [33]; see Sup. Mat. for more examples

and failure cases. The images show that a strong holistic

model like SMPL-X can effectively give natural and ex-

pressive reconstruction from everyday images.

5. Conclusion

In this work we present SMPL-X, a new model that

jointly captures the body together with face and hands.

We additionally present SMPLify-X, an approach to fit

SMPL-X to a single RGB image and 2D OpenPose joint de-

tections. We regularize fitting under ambiguities with a new

powerful body pose prior and a fast and accurate method

for detecting and penalizing penetrations. We present a

wide range of qualitative results using images in-the-wild,

showing the expressivity of SMPL-X and effectiveness of

SMPLify-X. We introduce a curated dataset with pseudo

ground-truth to perform quantitative evaluation, that shows

the importance of more expressive models. In future work

we will curate a dataset of in-the-wild SMPL-X fits and

learn a regressor to directly regress SMPL-X parameters di-

rectly from RGB images. We believe that this work is an

important step towards expressive capture of bodies, hands

and faces together from an RGB image.
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[81] Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek

Bradley, Thabo Beeler, Patrick Pérez, Marc Stamminger,
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