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Abstract

Robust principal component analysis (RPCA) has drawn

significant attentions due to its powerful capability in re-

covering low-rank matrices as well as successful appplica-

tions in various real world problems. The current state-of-

the-art algorithms usually need to solve singular value de-

composition of large matrices, which generally has at least

a quadratic or even cubic complexity. This drawback has

limited the application of RPCA in solving real world prob-

lems. To combat this drawback, in this paper we propose

a new type of RPCA method, RES-PCA, which is linearly

efficient and scalable in both data size and dimension. For

comparison purpose, AltProj, an existing scalable approach

to RPCA requires the precise knowlwdge of the true rank;

otherwise, it may fail to recover low-rank matrices. By con-

trast, our method works with or without knowing the true

rank; even when both methods work, our method is faster.

Extensive experiments have been performed and testified to

the effectiveness of proposed method quantitatively and in

visual quality, which suggests that our method is suitable

to be employed as a light-weight, scalable component for

RPCA in any application pipelines.

1. Introduction

Principal component analysis (PCA) bas been one of the

most widely used techniques for unsupervised learning in

various applications. The classic PCA aims at seeking a

low-rank approximation of a given data matrix. Mathe-

matically, it uses the ℓ2 norm to fit the reconstruction er-

ror, which is known to be sensitive to noise and outliers.

The harder problem of seeking a PCA effective for outlier-

corruped data is called robust PCA (RPCA). There has

been no mathematically precise meaning for the term “out-

lier” [24]. Thus multiple methods have been attempted to

define or quantify this term, such as alternating minimiza-

tion [14], random sampling techniques [9, 17], multivariate

trimming [11], and so on [7, 27].

Among these methods, a recently emerged one treats an

outlier as an additive sparse corruption [25], which leads

to decomposing the data into a low-rank and a sparse part.

Given data matrix X ∈ Rd×n, based on such a decomposi-

tion assumption, the corresponding RPCA method aims to

mathematically solve the following problem [6, 25]:

min
L,S

rank(L) + λ‖S‖0, s.t. X = L+ S, (1)

where λ ≥ 0 is a balancing parameter, and ‖ · ‖0 is the ℓ0
(pseudo) norm that counts the number of nonzero elements

of the matrix. It is generally NP-hard to solve the rank func-

tion and ℓ0 norm-based optimization problems. Hence, in

practice (1) is often relaxed to the following convex prob-

lem [6]:

min
L,S
‖L‖∗ + λ‖S‖1, s.t. X = L+ S, (2)

where ‖ · ‖∗ is the nuclear norm that adds all singular

values of the input matrix and ‖ · ‖1 =
∑

ij |Sij | is the

ℓ1 norm of a matrix. A number of algorithms have been

developed to solve (2), such as singular value threshold-

ing (SVT) [5], accelerated proximal gradient (APG) [23],

and inexact agumented Lagrange multipliers (IALM) [16].

These algorithms, however, need to compute SVDs of ma-

trices of size d × n at each iteration, which, is known to

generally have at least a quadratic or even cubic complex-

ity [12]. Thus, due to the use of SVDs, high complexity

of these algorithms renders them less applicable to large-

scale data. To improve efficiency, an augmented Lagrange

multipliers (ALM)-based algorithm adopts the PROPACK

package [10] to solve partial, instead of full, SVDs. Even

with partial SVD, it is still computationally costy when d
and n are both large.

The convex RPCA in (2) has two known limitations: 1)

Without the incoherence guarantee of the underlying ma-

trix, or when the data is grossly corrupted, the results can be

much deviated from the truth [6]; 2) When the matrix has

large singular values, its nuclear norm may lead to an esti-

mation far from the rank [13]. To combact these drawbacks,
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several approaches to a better rank approximation have been

proposed. For example, the rank of L is fixed and used as

a hard constraint in [15], and a nonconvex rank approxi-

mation is adopted to more accurately approximate the rank

function in [13]. However, these nonconvex approaches

also need to solve full SVDs of d×n matrices. Two methods

in [15, 19] need only to solve partial SVDs, which signifi-

cantly reduces the complexity compared to full SVDs; for

example, AltProj has a complexity of O(r2dn) [19], with

r being the ground truth rank of L. However, if r is not

known a priori, [19] usually fails to recover L.

As large-scale data is increasingly ubiquitous, it is cru-

cial to handle them with more efficient and scalable RPCA

methods which, nonetheless, are still largely missing. To

address such a need and challenge, in this paper, we pro-

pose a new RPCA method, called RES-PCA. This model

does not depend on rank approximation to recover the low-

rank component; rather, it effectivelly exploits the under-

lying group structural information of the low-rank compo-

nent for the recovery. Consequently, the new method does

not need to solve any SVDs as current state-of-the-art meth-

ods typically do, which avoids any quadratic or higher com-

plexity; more specifically, the proposed method has a linear

complexity in both n and p, rendering it lightweight, scal-

able, and thus suitable for large-scale data applications. We

summarize the contributions of this paper as follows:

• We propose a new type of RPCA model exploiting the

underlying group structures of the low-rank compo-

nent.

• We develop an ALM-based algorithm for optimiza-

tion, which uses no matrix decomposition and has lin-

early efficient computation at each iteration. The new

method is scalable in data dimension and sample size,

suitable for large-scale data.

• Extensive experiments have demonstrated the effec-

tiveness of the proposed method quantitatively and

qualitatively.

The rest of this paper is organized as follows. We first

briefly review some related work. Then we introduce the

new method and its optimization. Next, we conduct experi-

ments to evaluate the new method. Finally, we conclude the

paper.

2. Related Work

The convex RPCA in (2) considers the sparsity of the

sparse component in an element-wise manner [5]. To ex-

ploit example-wise sparsity, the ℓ2,1 norm has been adopted

by replacing the ℓ1 norm in (2) [18, 26]:

min
L,S
‖L‖∗ + λ‖S‖2,1, s.t. X = L+ S, (3)

where ‖S‖2,1 =
∑

j

√

∑

i S
2
ij is the sum of ℓ2 norms of

the columns. The difference between (2) and (3) is that the

latter incorporates spatial connections of the sparse compo-

nent.

It is ponited out that the nuclear norm may be far from

accurate in approximating the rank function [22]. To alle-

viate this defficiency, some new rank approximations have

been used to replace the nuclear norm in (2) and (3), such as

γ-norm [13]. The γ-norm based RPCA solves the following

optimization problem:

min
L,S
‖L‖γ + λ‖S‖2,1, s.t. X = L+ S, (4)

where ‖L‖γ =
∑

i
(1+γ)σi(L)
γ+σi(L) , γ > 0, and σi(L) is the i-

th largest singular value of L. Here, with different values

used for λ, the γ-norm may have different performance in

approximating the rank function.

Another recent nonconvex approach to RPCA, AltProj,

cobmines the simplicity of PCA and elegant theory of con-

vex RPCA [19]. It alternatively projects the fitting residuals

onto the low-rank and sparse sets. Given that the desired

rank of L is r, AltProj computes a rank-k projection in each

of the total r stages, with k ∈ {1, 2, · · · , r}. During this

process, matrix elements with large fitting errors are dis-

carded such that sparse errors are suppressed. This method

enjoys several nice properties; however, it needs the precise

knowledge of the ground truth rank of L, which is not al-

ways available. Without such knowledge, AltProj may fail

to recover the low-rank component.

3. New Robust PCA Method

The classic RPCA and its variants usually require to

solve SVDs, which has a high complexity. To overcome this

drawback, in this paper we consider a new type of RPCA

model that has a linear complexity. Motivated by the con-

vex RPCA approach, we assume that the data can be de-

composed as X=L+S. Here, L is the low-rank component

of X and its columns are linearly dependent in linear al-

gebra; hence, it is true that many columns of L share high

similarities and thus are close geometrically in Euclidean

space. In the case of a single rank-1 subspace, the above

assumption naturally leads to the minimization of the sum

of squared mutual distances, or equivalently the variance

(scaled by n), of the column vectors of L:

min
L,S

λ

n
∑

i=1

n
∑

j=1

‖Li−Lj‖22+ ‖S‖1, s.t. X = L+S, (5)

where λ ≥ 0 is a balancing parameter, Li is the ith column

of L, and ‖ · ‖2 is the ℓ2 norm of a vector. It is noted that,

though not necessary, it is sufficient that the minimization of

the first term in (5) leads to low-rank structure for L. To see
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this, we reformulate it as 2nλ
∑n

i=1 ‖Li − 1
n

∑n

j=1 Lj‖22,

which is the sum of squares of residuals (SSR) from each

data point to the average of all data points. Thus, by mini-

mizing it, all columns are close to their average and the av-

erage is the minimizer of SSR, which ideally lead to rank-1

solution to L. Under some mild conditions, we have the

following theorem.

Theorem 3.1. Given a matrix L = [l1, · · · , ln], with li ∈
Rp, and ‖li‖22 = si, i = 1, · · · , n, we have that rank(L) =
1 is sufficient and necessary for

L = argmin
Q∈Rp×n

Tr(Q(I − 1

n
11T )QT ), (6)

s.t.

‖qi‖22 ≤ si, i = 1, · · · , n, (7)

where Q = [q1, · · · , qn], and 1 is an all-1 vector of dimen-

sion n.

It is noted that the double summation in the first term of

(5) can be written as Tr(L(In − 1
n

11T )LT ), by minimizing

which we can obtain the desired low-rank structure. It is

natural to generalize the above idea. To this end, we con-

sider the case of multiple rank-1 subspaces with the follow-

ing model, which we refer to as Robust, linearly Efficient,

Scalable PCA (RES-PCA):

min
L,S,{p1,··· ,pc}

λ

c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1Tn

)

d(pi)L
T
)

+ ‖S‖1 s.t. X = L+ S, pi ∈ {0, 1}n,
∑

i

pi = 1n,

(8)

where In is an identity matrix of size n × n, 1n is an n-

dimensional column vector containing 1’s, d(·) is an op-

erator that returns a diagonal matrix from an input vector,

and pi is a binary vector with the positions of 1s indicating

which of the n column vectors belong to the i-th subspace.

It is evident that by automatically learning pi’s we are able

to obtain the structural information about the low-rank sub-

spaces. It is noted that different norms can be used for S,

such as ℓ1 and ℓ21 norms; in this paper, without loss of gen-

erality, we adopt the ℓ1 norm to capture the sparse structure

of S. In next section, we will develop an efficient algorithm

to optimize (8).

Remark In the case that data have nonlinear relation-

ships, i.e., Li and Lj are close on manifold rather than in

Euclidean space if they come from the same subspace, a

direct extension of our method can be made, which is pre-

sented in Section 4.2. Since the linear model provides with

us the key ideas and contributions of this paper, and the ex-

periments have confirmed its effectiveness in several real

world applications, we focus on the linear model in our pa-

per. Due to space limit, we do not fully expand the nonlin-

ear model and will consider it in further research and more

applications.

4. Optimization

In this section, we present an efficient ALM-based algo-

rithm to solve (8). First, we define the augmented Lagrange

function of (8):

L = λ
c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1T

n

)

d(pi)L
T
)

+ ‖S‖1 +
ρ

2
‖X − L− S +

1

ρ
Θ‖2F

s.t. pi ∈ {0, 1}n,
∑

i

pi = 1n.

(9)

Then we adpot the alternating decent approach to opti-

mization, where at each step we optimize a subproblem with

respect to a variable while keeping the others fixed. The de-

tailed optimization strategies for each variable are described

in the following.

4.1. L­minimization

The L-subproblem is to solve the following problem:

min
L

λ

c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1Tn

)

d(pi)L
T
)

+
ρ

2
‖X − L− S +Θ/ρ‖2F

(10)

Omitting the factor λ, it is seen that the first term above

can be derived as

c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1T

n

)

d(pi)L
T
)

=

c
∑

i=1

Tr
(

Pi(L)
(

I‖pi‖2
− 1

‖pi‖2
1‖pi‖2

1T‖pi‖2

)

PT
i (L)

)

,

(11)

where the operator Pi(L) returns the submatrix of L that

contains the columns of L corresponding to nonzeros of pi.
Correspondingly, it is straightforward to see that the second

term of (10) can be decomposed in a similar way:

ρ

2
‖X − L− S +Θ/ρ‖2F

=
ρ

2

c
∑

i=1

‖Pi(X − S +Θ/ρ)− Pi(L)‖2F .
(12)

Hence, L can be solved by individually solving the follow-

ing subproblems for i = 1, · · · , c:

min
Pi(L)

λTr
(

Pi(L)
(

I‖pi‖2
− 1

‖pi‖2
1‖pi‖2

1T‖pi‖2

)

PT
i (L)

)

+
ρ

2
‖Pi(X − S +Θ/ρ)− Pi(L)‖2F

(13)
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The above subproblems are convex and according to the

first-order optimality condition we have

2λPi(L)Mi + ρPi(L)− ρPi(D) = 0, (14)

where, for ease of presentation, we denote D=X−S+Θ/ρ,

and Mi = I‖pi‖2
− 1

‖pi‖2
1‖pi‖2

1T‖pi‖2
. Hence, (14) leads to

the soluation of Pi(L):

Pi(L) = ρ(2λMi + ρI‖pi‖2
)−1Pi(D). (15)

It is seen that (15) requires matrix inversion, which, unfor-

tunately, has a time complexity of O(n3) in general. To

avoid matrix inversion, we re-write this matrix to simplify

(15):

2λMi + ρI‖pi‖2
= (2λ+ ρ)I‖pi‖2

− 2λ

‖pi‖2
1‖pi‖2

1T‖pi‖2
.

(16)

It is notable that due to the special structure of (16) its inver-

sion has a simple analytic expression by using the Sherman-

Morrison-Woodbury formula:

(

(2λ+ ρ)I‖pi‖2
+ (−2λ

n
1‖pi‖2

)1T‖pi‖2

)−1

=
1

2λ+ ρ
I‖pi‖2

−
1

2λ+ρ
I‖pi‖2

(− 2λ
n

1‖pi‖2
)1T‖pi‖2

1
2λ+ρ

I‖pi‖2

1 + 1T
‖pi‖2

1
2λ+ρ

I‖pi‖2
(− 2λ

n
1‖pi‖2

)

=
1

2λ+ ρ
I‖pi‖2

+
2λ

‖pi‖2ρ(2λ+ ρ)
1‖pi‖2

1T‖pi‖2

(17)

Hence, it is apparent that that (15) can be written as follows:

Pi(L) =

(

ρ

2λ+ ρ
I‖pi‖2

+
2λ

‖pi‖2(2λ+ ρ)
1‖pi‖2

1T‖pi‖2

)

Pi(D)

=
ρ

2λ+ ρ
Pi(D)

+
2λ

‖pi‖2(2λ+ ρ)
(1‖pi‖2

(1T‖pi‖2
Pi(D))),

(18)

which has a linear complexity in both n and d by exploiting

matrix-vector multiplications. L can be obtained accord-

ingly after obtaining all Pi(L), for i = 1, 2, · · · , c.
4.2. pi­minimization

The subproblem associated with pi-minimization is

given as follows:

min
pi

c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1Tn

)

d(pi)L
T
)

s.t. pi ∈ {0, 1}n,
∑

i

pi = 1n.

(19)

It is seen that

c
∑

i=1

Tr
(

Ld(pi)
(

In −
1

‖pi‖2
1n1Tn

)

d(pi)L
T
)

=

c
∑

i=1

Tr
(

L
(

d(pi)−
1

‖pi‖2
d(pi)1n1Tnd(pi)

)

LT
)

=

c
∑

i=1

‖L
(

d(pi)−
1

‖pi‖2
d(pi)1n1T

nd(pi)
)

‖2F

=

c
∑

i=1

∑

(pi)j=1

‖Lj −
1

‖pi‖2
∑

(pi)j=1

Lj‖22,
(20)

where (pi)j denotes the j-th element of pi. Hence, the pi-
subproblems can be converted to

min
pi

c
∑

i=1

∑

(pi)j=1

‖Lj −
1

‖pi‖2
∑

(pi)j=1

Lj‖22

s.t. pi ∈ {0, 1}n,
∑

i

pi = 1n,

(21)

which is simply the standard K-means problem. This is

surprising in that we only need to perform K-means to L
and then the optimal [p1, · · · , pc] ∈ {0, 1}n×c simply cor-

responds to the group indicator matrix:

[p1, · · · , pc]← K-means(L, c). (22)

It should be noted that with its current form, (21) is solved

by K-means [20]. However, more general clustering meth-

ods can be also applicable if we consider solving pi as a

clustering rather than optimization problem. For example, if

we consider nonlinear clustering algorithms, such as spec-

tral clustering, the recovered L and p actually reflect non-

linear structures of the data, which can be treated as a direct

nonlinear extension of our method to account for nonlinear

relationships of the data.

4.3. S­minimization

The S-subproblem is

min
S

1

ρ
‖S‖1 +

1

2
‖X − L− S +Θ/ρ‖2F , (23)

which is solved using the soft-thresholding operator [3, 8]:

Sij = (|Bij | − 1/ρ)+ sign (Bij) , (24)

where B = X − L+Θ/ρ.

4.4. Θ, ρ­updating

For the updating of Θ and ρ, we follow a standard ap-

proach in ALM framework:

Θ = Θ+ ρ(X − L− S),

ρ = ρκ,
(25)
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Table 1. Description of Video Sequence Data Sets

Data Set data size # of backgrounds

Escalator Airport 130×160 × 3,417 1

Hall Airport 144×176 × 3,584 1

Bootstrap 120×160 × 2,055 1

Shopping Mall 256×320 × 1,286 1

Highway 240×320 × 1,700 1

Lobby 128×160 × 1,546 2

Camera Parameter 240×320 × 5,001 2

Light Switch-1 120×160 × 2,800 2

Light Switch-2 120×160 × 2,715 2

where κ > 1 is a parameter that controls the increasing

speed of ρ.

Regarding the complexity of the above optimization pro-

cedure, it should be noted that each step requires O(nd)
complexity and typically ALM converges in a finite num-

ber of steps [4], thus the overall complexity of our method

is O(nd).

5. Experiments

In this section, we evaluate the proposed method

in comparison with several current state-of-the-art algo-

rithms, including variational Bayesian RPCA (VBRPCA)

[10], IALM for convex RPCA [6], AltProj [19], NSA

[1], and PCP [28]. In particular, we follow [13, 21]

and evaluate RES-PCA in three applications, including

foreground-background separation from video sequences,

shadow removal from face images, and anamoly detec-

tion from hand-written digits. All these experiments

are conducted under Ubuntu system with 12 Intel(R)

Xeon(R) W-2133 CPR 3.60GHz. All algorithms are ter-

minated if a maximum of 500 iterations is reached or

max{‖X−Lt−St‖F

‖X‖F
, ‖Lt+1−Lt‖F

‖X‖F
, ‖‖St+1−St‖F

‖X‖F
} ≤ 0.001 is

satisfied.

5.1. Foreground­Background Seperation

Foreground-background separation is to detect moving

objects or interesting activities in a scene, and remove back-

ground(s) from a video sequence. The background(s) and

moving objects correspond to the low-rank and sparse parts,

respectively. For this task, we use 9 datasets, whose char-

acteristics are summarized in Table 1. Among these video

datasets, the first 5 contain a single background while the

remaining sequences have 2 backgrounds.

For the parameters, we set them as follows. For

IALM, we use the theoretically optimal balancing param-

eter 1√
max (n,d)

. The same balancing parameter is used for

PCP and NSA as suggested in the original papers. For fair

comparison, we use
√

max (n, d) for the proposed method.

For AltProj, we specify the ground truth rank; for VBR-

Table 2. Results of Foreground-Background Separation

Data Method Rank(L) ‖S‖0/(dn) ‖X−L−S‖F
‖X‖F # of Iter. Time

Boot-

strap

AltProj 1 0.9397 4.22e-4 36 68.61

NSA 843 0.7944 5.87e-4 12 1343.22

VBRPCA 1 1.0000 9.90e-4 175 186.90

IALM 782 0.8003 6.11e-4 15 1356.04

PCP 1174 0.7859 3.45e-4 94 571.75

RES-PCA 1 0.9379 7.81e-4 23 16.73

Escala-

tor

Airport

AltProj 1 0.8987 3.86e-4 33 69.34

NSA 1016 0.6390 8.09e-4 12 1793.35

VBRPCA 1 0.9839 9.76e-4 134 168.01

IALM 1065 0.6482 6.95e-4 15 1325.40

PCP 1232 0.6670 3.59e-4 93 727.65

RES-PCA 1 0.8898 5.77e-4 23 20.47

Hall

Airport

AltProj 1 0.9573 1.69e-5 37 93.62

NSA 948 0.7489 4.89e-4 13 2189.99

VBRPCA 1 1.0000 9.90e-4 152 240.17

IALM 974 0.6917 7.37e-4 14 2024.10

PCP 1292 0.7055 4.27e-4 77 744.28

RES-PCA 1 0.9302 5.82e-4 23 26.38

High-

way

AltProj 1 0.8846 4.63e-4 27 119.17

NSA 166 0.9732 0.87e-4 15 1238.95

VBRPCA 1 1.0000 9.87e-4 126 287.27

IALM 357 0.7980 6.25e-4 15 1409.10

PCP 531 0.8440 2.27e-4 152 1013.00

RES-PCA 1 0.9340 7.20e-4 23 35.32

Shop-

ping

Mall

AltProj 1 0.8907 8.12e-4 30 85.92

NSA 174 0.9372 1.57e-4 14 1027.45

VBRPCA 1 1.0000 9.92e-4 157 295.00

IALM 151 0.8457 6.25e-4 14 498.65

PCP 290 0.8898 2.85e-4 165 790.30

RES-PCA 1 0.9208 7.94e-4 23 28.44

Lobby

AltProj 2 0.88.97 3.77e-4 26 21.58

NSA 161 0.8073 6.13e-4 13 182.50

VBRPCA 2 1.0000 9.92e-4 111 69.47

IALM 104 0.8229 5.66e-4 15 168.22

PCP 502 0.8500 2.59e-4 92 166.79

RES-PCA 2 0.8963 1.83e-4 25 20.11

Camera

Parameter

AltProj —— —— —— —— ——

NSA —— —— —— —— ——

VBRPCA 1 1.0000 9.95e-4 171 1108.20

IALM 1123 0.7020 7.81e-4 16 9297.40

PCP —— —— —— —— ——

RES-PCA 2 0.8305 2.48e-4 25 303.57

Light

Switch-

1

AltProj 2 0.90.84 4.21e-4 48 73.54

NSA 541 0.6559 5.87e-4 13 687.19

VBRPCA 1 1.0000 9.83e-4 165 151.05

IALM 415 0.6298 9.21e-4 14 496.92

PCP 848 0.6776 5.91e-4 85 410.39

RES-PCA 2 0.9708 4.15e-4 23 31.68

Light

Switch-

2

AltProj 2 0.8078 9.01e-4 37 44.34

NSA 486 0.8041 4.90e-4 14 846.81

VBRPCA 1 1.0000 9.93e-4 150 141.21

IALM 333 0.7815 7.79e-4 15 616.28

PCP 985 0.8337 2.68e-4 154 756.34

RES-PCA 2 0.8608 2.82e-4 25 33.71

We set the rank to be the minimal number of singular values that contribute more

than 99.5% information to avoid the noise effect of small singular values.

“——” presents an “out of memory” issue.

PCA, we use the ground truth rank as its initial rank pa-

rameter. For fair comparison, we set c to be ground truth

rank for RES-PCA. For all methods that relay on ALM-

optimization, we set the parameters to be ρ = 0.0001 and

κ = 1.5. These settings remain the same throughout this

paper unless specified otherwise.
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We show the results in Table 2. It is observed that Alt-

Proj, VBRPCA, and RES-PCA are able to recover the back-

grounds from the video with low rank while IALM, NSA

and PCP with much higher ranks. However, it is noted that

VBRPCA may recover L with ranks lower than the ground

truth. For example, on Light Switch-1, Light Switch-2,

and Camera Parameter data sets, the ground truth rank of

the background is 2 whereas VBRPCA recovers the low

rank parts with rank 1. This may be a potential problem,

as will be clear later on in visual illustration. Although

IALM, NSA amd PCP do not recover L with desired low

ranks, they recovery S more sparsely than AltProj, VBR-

PCA, and RES-PCA. Besides, we observe that the speed of

the proposed method is superior to that of the other meth-

ods. From Table 2, it is observed that the proposed method

is about 3 times faster than AltProj, the second fastest one,

and more than 10 (even about 60 on some data sets) times

faster than IALM. Although the proposed method does not

obtain the smallest errors at convergence on some data, it is

noted that the levels of the errors are well comparable to the

other methods.

It should be noted that for mthods such as IALM, PCP,

and NSA, though they do not recover L with desired low

ranks, it is possible that by tunning their balancing param-

eters they may work well. However, tunning parameter for

unsupervised learning method is usually time consuming.

The proposed method has one balancing parameter, which

has been empirically verified that the theoretical parameter

as provided in [6] works well. A possible explaination is

that RES-PCA has a close connection and thus enjoies the

same optimal parameter with the convex RPCA. More the-

oretical validation is to be explored in further work.

Moreover, to visually compare the algorithms and illus-

trate the effectiveness of the proposed method, we show

some decomposition results in Figs. 1 and 2. Since IALM,

NSA and PCP cannot recover L with desired low ranks, they

cannot recover the backgrounds well. For example, we can

observe shadows of car on highway in Fig. 1. VBRPCA

reocvers L with ranks lower than the ground truth on some

data sets; consequently, on such data as Light Switch-2 in

Fig. 2 we can see that VBRPCA cannot work well on data

with different backgrounds. AltProj and RES-PCA can sep-

arate the backgrounds and foregrounds well.

To further assess the performance of the proposed

method, we conduct the following experiments to compare

the two methods that have achieved the top performance:

AltProj and RES-PCA. In this test we asume that the ground

truth rank of L is unknown, and we set it to 5 for AltProj and

c = 5 for the proposed method. Some obtained results are

given in Figs. 3 and 4. It is seen that RES-PCA can still

separate the background and foreground well while AltProj

fails. The success of RES-PCA in this kind of scenarios

can be explained as follows: With c greater than the ground

(a) Original (b) AltProj (c) Proposed

Figure 3. Foreground-background separation in the Highway

video when the ground truth rank is unknown and, consequently, c

is specified to a wrong value. The top left is the original frame and

the rest are extracted background (top) and foreground (bottom).

(a) Original (b) AltProj (e) Proposed
Figure 4. Foreground-background separation in the Light Switch-

2 video. Within the two and bottom two rows, the top left is

the original frame and the rest are extracted background (top) and

foreground (bottom), respectively.

truth rank of L, a large group of backgrounds is usually di-

vided into smaller groups such that the backgrounds within

each group still share the same structure; as a consequence,

RES-PCA can still recover the low-rank matrices correctly.

This observation reveals that RES-PCA has superior perfor-

mance to AltProj when the precise knowledge of the ground

truth is unknown a priori.

5.2. Shadow removal from face images

Face recognition is an important topic; however, it is of-

ten plagued by heavy noise and shadows on face images [2].

Therefore, there is a need to handle shadows. In this test,

low-rank methods are used because the (unknown) clean

images reside in a low-rank subspace, corresponding to L,

while the shadows correspond to S. We use the Extended

Yale B (EYaleB) data set for comparative study. EYaleB

data contains face images from 38 persons, among which

we select images of the first 2 persons, namely, subject 1

and subject 2. For each there are 64 images of 192 × 168
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(a) AltProj (b) NSA (c) VBPCA (d) IALM (e) PCP (f) RES-PCA

Figure 1. Foreground-background separation in the Highway video. The top to the bottom are the original frame, extracted background,

and foreground, respectively.

(a) AltProj (b) NSA (c) VBPCA (d) IALM (e) PCP (f) RES-PCA

Figure 2. Foreground-background separation in the Light Switch-2 video. Within the first and last 3 lines, the top to bottom are the original

frame, extracted background, and foreground, respectively.

pixels. Following the common approach as in [6, 13], we

construct a data matrix for each person by vectorizing the

images and perform different RPCA algorithms on the ma-

trix. We show some results in Fig. 5 for visual inspection. It

is observed that all methods can successfully remove shad-

ows on subject 2, but some fail on subject 1. The proposed

method removes shadows from face images on both subject

1 and subject 2, which confirms its effectiveness.

5.3. Anomaly Detection

Given a number of images from a subject, they form a

low-dimensional subspace. Those images with stark dif-

ferences from the majority can be regarded as outliers; be-

sides, a few images from another subject are also treated

as outliers. Anomaly detection is to identify such kinds of

outliers from the dominant images. It is modeled that L is

comprised of the dominant images while S captures the out-

liers. For this test, we use USPS data set which consists of

9,298 hand-written digits of size 16 × 16. We follow [13]

and vectorize the first 190 images of ‘1’s and the last 10 of

‘7’s to construct a 256 × 200 data matrix. Since the dat set

contains much more ‘1’s than ‘7’s, we regard the former as

the dominant digit while the latter outlier. For visual illus-

tration, we show examples of these digit images in Fig. 6. It
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(a) Original (b) AltProj (c) NSA (d) VBPCA (e) IALM (f) PCP (g) RES-PCA

Figure 5. Shadow removal from face images. Every two rows are

results for different original faces. For each original face, the first

row are shadow removed face images, while the second row are

shadow images.

Figure 6. Selected ‘1’s and ‘7’s from USPS dataset.

is observed that all the ‘7’s are outliers. Besides, some ‘1’s

are quite different from the majority, such as the one with

an underline. We apply RES-PCA to this data set and obtain

the separated L and S. In S, those columns corresponding

to outliers have relatively larger values. Following [13], we

use the ℓ2 norm to measure the columns of S and show their

values in Fig. 7, where we have vanished values smaller

than 5 for clearer visualization. Then we show the corre-

sponding digits in Fig. 8, which are the detected outliers. It

is noted that RES-PCA has detected all the ‘7’s as well as

some ‘1’s, such as the one with an underline. This has veri-

fied the effectiveness of RES-PCA in anomaly detection.

Figure 7. Values of ‖Si‖2.

Figure 8. Detected outliers from the data set.

5.4. Scalability

We have analyzed the scalability of the proposed method

in previous sections. In this test, we empirically verify the

result from our analysis regarding the linearity with n and d
using the data sets in Table 1. For each of these data sets, we

use different sampling ratios in sample size and data dimen-

sion, respectively, to collect its subsets of different sizes.

On each subset, we perform RES-PCA 10 times. From Ta-

ble 2, it is seen that all experiments are terminated within

about 23-25 iterations; hence, in this test we temporarily

ignore the terminating tolerance and terminate the experi-

ment within a reasonable number of iterations, which is set

to be 30. Then we report the average time cost and show the

results in Fig. 9. It is observed that the time cost of RES-

PCA increases linearly in both n and d, which confirms the

scalability of the proposed method.

Figure 9. Time cost with respect to n and d on different data sets

(best viewed in color).

6. Conclusion

Existing RPCA methods typically need to solve SVDs

of large matrices, which generally has at least a quadratic

or even cubic complexity. To combat this drawback, in

this pape we propose a new type of RPCA method. The

new method recovers the low-rank component by exploit-

ing geometrical similarities of the data, without performing

any SVD that current state-of-the-art RPCA methods usu-

ally have to do. We develop an ALM-based optimization

algorithm which is linearly efficient and scalable in both

data dimension and sample size. Extensive experiments in

different applications testify to the effectivenss of the pro-

posed method, in which we observe superior performance

in speed and visual quality to several current state-of-the-

art methods. These observations suggest that the proposed

method is suitable for large-scale data applications in real

world problems.
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