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Abstract

Robust principal component analysis (RPCA) has drawn
significant attentions due to its powerful capability in re-
covering low-rank matrices as well as successful appplica-
tions in various real world problems. The current state-of-
the-art algorithms usually need to solve singular value de-
composition of large matrices, which generally has at least
a quadratic or even cubic complexity. This drawback has
limited the application of RPCA in solving real world prob-
lems. To combat this drawback, in this paper we propose
a new type of RPCA method, RES-PCA, which is linearly
efficient and scalable in both data size and dimension. For
comparison purpose, AltProj, an existing scalable approach
to RPCA requires the precise knowlwdge of the true rank;
otherwise, it may fail to recover low-rank matrices. By con-
trast, our method works with or without knowing the true
rank; even when both methods work, our method is faster.
Extensive experiments have been performed and testified to
the effectiveness of proposed method quantitatively and in
visual quality, which suggests that our method is suitable
to be employed as a light-weight, scalable component for
RPCA in any application pipelines.

1. Introduction

Principal component analysis (PCA) bas been one of the
most widely used techniques for unsupervised learning in
various applications. The classic PCA aims at seeking a
low-rank approximation of a given data matrix. Mathe-
matically, it uses the /5 norm to fit the reconstruction er-
ror, which is known to be sensitive to noise and outliers.
The harder problem of seeking a PCA effective for outlier-
corruped data is called robust PCA (RPCA). There has
been no mathematically precise meaning for the term “out-
lier” [24]. Thus multiple methods have been attempted to
define or quantify this term, such as alternating minimiza-
tion [14], random sampling techniques [9, 1 7], multivariate
trimming [ 1], and so on [7,27].

Among these methods, a recently emerged one treats an
outlier as an additive sparse corruption [25], which leads
to decomposing the data into a low-rank and a sparse part.
Given data matrix X € R?*", based on such a decomposi-
tion assumption, the corresponding RPCA method aims to
mathematically solve the following problem [6,25]:

minrank(L) + A[[Sllo, st X =L+S, (1

where A\ > 0 is a balancing parameter, and || - ||o is the £y
(pseudo) norm that counts the number of nonzero elements
of the matrix. It is generally NP-hard to solve the rank func-
tion and ¢; norm-based optimization problems. Hence, in
practice (1) is often relaxed to the following convex prob-
lem [0]:

min[|L[l, +A[S]y, st X=L+S, (@

where || - ||« is the nuclear norm that adds all singular
values of the input matrix and || - [[1 = 2, |Si;| is the
¢1 norm of a matrix. A number of algorithms have been
developed to solve (2), such as singular value threshold-
ing (SVT) [5], accelerated proximal gradient (APG) [23],
and inexact agumented Lagrange multipliers TALM) [16].
These algorithms, however, need to compute SVDs of ma-
trices of size d x m at each iteration, which, is known to
generally have at least a quadratic or even cubic complex-
ity [12]. Thus, due to the use of SVDs, high complexity
of these algorithms renders them less applicable to large-
scale data. To improve efficiency, an augmented Lagrange
multipliers (ALM)-based algorithm adopts the PROPACK
package [10] to solve partial, instead of full, SVDs. Even
with partial SVD, it is still computationally costy when d
and n are both large.

The convex RPCA in (2) has two known limitations: 1)
Without the incoherence guarantee of the underlying ma-
trix, or when the data is grossly corrupted, the results can be
much deviated from the truth [6]; 2) When the matrix has
large singular values, its nuclear norm may lead to an esti-
mation far from the rank [13]. To combact these drawbacks,
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several approaches to a better rank approximation have been
proposed. For example, the rank of L is fixed and used as
a hard constraint in [15], and a nonconvex rank approxi-
mation is adopted to more accurately approximate the rank
function in [13]. However, these nonconvex approaches
also need to solve full SVDs of d xn matrices. Two methods
in [15, 19] need only to solve partial SVDs, which signifi-
cantly reduces the complexity compared to full SVDs; for
example, AltProj has a complexity of O(r2dn) [19], with
r being the ground truth rank of L. However, if r is not
known a priori, [19] usually fails to recover L.

As large-scale data is increasingly ubiquitous, it is cru-
cial to handle them with more efficient and scalable RPCA
methods which, nonetheless, are still largely missing. To
address such a need and challenge, in this paper, we pro-
pose a new RPCA method, called RES-PCA. This model
does not depend on rank approximation to recover the low-
rank component; rather, it effectivelly exploits the under-
lying group structural information of the low-rank compo-
nent for the recovery. Consequently, the new method does
not need to solve any SVDs as current state-of-the-art meth-
ods typically do, which avoids any quadratic or higher com-
plexity; more specifically, the proposed method has a linear
complexity in both n and p, rendering it lightweight, scal-
able, and thus suitable for large-scale data applications. We
summarize the contributions of this paper as follows:

e We propose a new type of RPCA model exploiting the
underlying group structures of the low-rank compo-
nent.

e We develop an ALM-based algorithm for optimiza-
tion, which uses no matrix decomposition and has lin-
early efficient computation at each iteration. The new
method is scalable in data dimension and sample size,
suitable for large-scale data.

e Extensive experiments have demonstrated the effec-
tiveness of the proposed method quantitatively and
qualitatively.

The rest of this paper is organized as follows. We first
briefly review some related work. Then we introduce the
new method and its optimization. Next, we conduct experi-
ments to evaluate the new method. Finally, we conclude the

paper.

2. Related Work

The convex RPCA in (2) considers the sparsity of the
sparse component in an element-wise manner [5]. To ex-
ploit example-wise sparsity, the /2 ; norm has been adopted
by replacing the #; norm in (2) [18,26]:

min [+ AIS]21, st X =L+S, (3

where [|Sll21 = >, 4/>2; S7; is the sum of £5 norms of
the columns. The difference between (2) and (3) is that the
latter incorporates spatial connections of the sparse compo-
nent.

It is ponited out that the nuclear norm may be far from
accurate in approximating the rank function [22]. To alle-
viate this defficiency, some new rank approximations have
been used to replace the nuclear norm in (2) and (3), such as
~-norm [ |3]. The y-norm based RPCA solves the following
optimization problem:

where ||, = 32, U2y > 0, and o3(L) is the i-
th largest singular value of L. Here, with different values
used for A, the y-norm may have different performance in
approximating the rank function.

Another recent nonconvex approach to RPCA, AltProj,
cobmines the simplicity of PCA and elegant theory of con-
vex RPCA [19]. It alternatively projects the fitting residuals
onto the low-rank and sparse sets. Given that the desired
rank of L is r, AltProj computes a rank-£ projection in each
of the total r stages, with k € {1,2,--- ,r}. During this
process, matrix elements with large fitting errors are dis-
carded such that sparse errors are suppressed. This method
enjoys several nice properties; however, it needs the precise
knowledge of the ground truth rank of L, which is not al-
ways available. Without such knowledge, AltProj may fail
to recover the low-rank component.

3. New Robust PCA Method

The classic RPCA and its variants usually require to
solve SVDs, which has a high complexity. To overcome this
drawback, in this paper we consider a new type of RPCA
model that has a linear complexity. Motivated by the con-
vex RPCA approach, we assume that the data can be de-
composed as X = L+S. Here, L is the low-rank component
of X and its columns are linearly dependent in linear al-
gebra; hence, it is true that many columns of L share high
similarities and thus are close geometrically in Euclidean
space. In the case of a single rank-1 subspace, the above
assumption naturally leads to the minimization of the sum
of squared mutual distances, or equivalently the variance
(scaled by n), of the column vectors of L:

%mzz |Li — L;||2 4 ||S]1,5.t. X =L+3S, (5

i=1 j=1

where A > 0 is a balancing parameter, L; is the ith column
of L, and || - ||2 is the {5 norm of a vector. It is noted that,
though not necessary, it is sufficient that the minimization of
the first term in (5) leads to low-rank structure for L. To see
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this, we reformulate it as 2nA Y27, || Li — + 320 Lylls,
which is the sum of squares of residuals (SSR) from each
data point to the average of all data points. Thus, by mini-
mizing it, all columns are close to their average and the av-
erage is the minimizer of SSR, which ideally lead to rank-1
solution to L. Under some mild conditions, we have the
following theorem.

Theorem 3.1. Given a matrix L = [ly,--- ,1,,], with I; €
RP, and |I;||3 = si, i = 1,--- ,n, we have that rank(L) =
1 is sufficient and necessary for
L = argminTr(Q(I — l11T)QT), (6)

QeRPxn n
s.t.

qullg <spi=1,---,m, @)
where Q = [qy,- - ,4q,,], and 1 is an all-1 vector of dimen-
sion n.

It is noted that the double summation in the first term of
(5) can be written as Tr(L(I,, — %IIT)LT), by minimizing
which we can obtain the desired low-rank structure. It is
natural to generalize the above idea. To this end, we con-
sider the case of multiple rank-1 subspaces with the follow-
ing model, which we refer to as Robust, linearly Efficient,
Scalable PCA (RES-PCA):

- 1
min A Tr(Ld s (In _ —1n1Z)d ; LT)
L,S{p1, ,pc} ; P) ||sz2 ) 4ps)
+Sh st X=L+8, pef{0,1}", > pi=1,,

(®)
where I, is an identity matrix of size n x n, 1, is an n-
dimensional column vector containing 1’s, d(-) is an op-
erator that returns a diagonal matrix from an input vector,
and p; is a binary vector with the positions of 1s indicating
which of the n column vectors belong to the i-th subspace.
It is evident that by automatically learning p;’s we are able
to obtain the structural information about the low-rank sub-
spaces. It is noted that different norms can be used for .S,
such as ¢/ and /51 norms; in this paper, without loss of gen-
erality, we adopt the /1 norm to capture the sparse structure
of S. In next section, we will develop an efficient algorithm
to optimize (8).

Remark In the case that data have nonlinear relation-
ships, i.e., L; and L; are close on manifold rather than in
Euclidean space if they come from the same subspace, a
direct extension of our method can be made, which is pre-
sented in Section 4.2. Since the linear model provides with
us the key ideas and contributions of this paper, and the ex-
periments have confirmed its effectiveness in several real
world applications, we focus on the linear model in our pa-
per. Due to space limit, we do not fully expand the nonlin-
ear model and will consider it in further research and more
applications.

4. Optimization

In this section, we present an efficient ALM-based algo-
rithm to solve (8). First, we define the augmented Lagrange
function of (8):

° 1
L=\ Tr(Ld(p)) (I, — ——1,11)d(p;) LT
2 7r{ L) (1 - et ) a1
p 12 9)
+||S||1+§||X—L—S+;@||F

st. pi € {07 1}71’ sz =1,.

Then we adpot the alternating decent approach to opti-
mization, where at each step we optimize a subproblem with
respect to a variable while keeping the others fixed. The de-
tailed optimization strategies for each variable are described
in the following.

4.1. L-minimization

The L-subproblem is to solve the following problem:

mLinA; Tr(Ld(pZ-)(In - @mz)d(pi)ﬂ) o

P
+5IX =L =S+6/pl%

Omitting the factor J, it is seen that the first term above
can be derived as

i Tr(Ld(pi) <In L 1n1§) d(pi)LT)

1pill2

- 1
=2 TP (Bt = o Wi o ) PE (D).
) an

where the operator P;(L) returns the submatrix of L that
contains the columns of L corresponding to nonzeros of p;.
Correspondingly, it is straightforward to see that the second
term of (10) can be decomposed in a similar way:

LIX —L—5+6/pl}

K , (12)
=3 S IPi(X = S +0/p) — Pi(L)|[3-

i=1

Hence, L can be solved by individually solving the follow-
ing subproblems fori =1,--- | ¢:

i . o T T
721(121) /\TF(PZ(L)<IHP¢H2 ||pi||2lllpilbll‘p1"|2)7)i (L))
p
+2IP(x — 5+ 0/p) ~ PULIIE
(13)
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The above subproblems are convex and according to the
first-order optimality condition we have

2AP,(L)M; + pPi(L) — pPy(D) =0, (14)
where, for ease of presentation, we denote D= X—-S+0/p,

_ 1 T
and M; = IHPLH2 — WIHPL”?l”IhM Hence, (14) leads to
the soluation of P;(L):

Pi(L) = p(2AM; + pljp,,) ™~

It is seen that (15) requires matrix inversion, which, unfor-
tunately, has a time complexity of O(n?) in general. To
avoid matrix inversion, we re-write this matrix to simplify

(15):

'Pi(D). (15)

T
PAM; + plips = (2 -+ i~ oM

(16)
It is notable that due to the special structure of (16) its inver-
sion has a simple analytic expression by using the Sherman-
Morrison-Woodbury formula:

2 P
(@A+Mﬂmu+@—nhmhﬂwm>

1

= o plivila
22 T 1 (17)
Vit ) Y12 s Ll 12

2\
2 Lp,1)

1
g lipalla (—

L 1,1, 2 Ll (—

1 2\ .
- Iyt q 1T
oA+ p Pl T ap2A + py 1Pl Tz

Hence, it is apparent that that (15) can be written as follows:

p
Pi(L) = (Mfllpilz

2 -
T i oy Heille g, | Pi(D
Ipill2(2A+ p) 177l |p1|2> (D) (18)

P
2>\+pp( )

2\
+ it gy et g Po(D)),

which has a linear complexity in both n and d by exploiting

matrix-vector multiplications. L can be obtained accord-
ingly after obtaining all P;(L), fori =1,2,--- c.
4.2. p;-minimization

The subproblem associated with p;-minimization is
given as follows:

mmZTr(Ld (pi) (In ” 1” IHIZ)d(pi)LT)
Pi i—1 Pill2 (19)
s.t. p; € {0,1}", Zpi =1,.

It seen that
(o (1~ a1

- ; (L (a(p) — od) 1,1 () ) 7)

—ZHL( ”

—XIE: L; mﬂgigfmi

1

d(p)117d(p) ) I3
(20)

where (p;); denotes the j-th element of p,. Hence, the p;-
subproblems can be converted to

EOYDINUE

L(pi
st. p; € {07 1}",

> Ll

e R o

Zpi = lna

which is simply the standard K-means problem. This is
surprising in that we only need to perform K-means to L
and then the optimal [p1,- - ,p.] € {0,1}"*¢ simply cor-
responds to the group indicator matrix:

[pl, cee ,pc] < K-means(L, c). (22)

It should be noted that with its current form, (21) is solved
by K-means [20]. However, more general clustering meth-
ods can be also applicable if we consider solving p; as a
clustering rather than optimization problem. For example, if
we consider nonlinear clustering algorithms, such as spec-
tral clustering, the recovered L and p actually reflect non-
linear structures of the data, which can be treated as a direct
nonlinear extension of our method to account for nonlinear
relationships of the data.

4.3. S-minimization

The S-subproblem is
o1 1
min ;Hsnl + 51X = L=S+0/plF  (23)

which is solved using the soft-thresholding operator [3, 8]:
Sij = (|Bijl = 1/p) . sign (Bij) , (24)

where B=X — L+ 0/p.

4.4. ©, p-updating

For the updating of ©® and p, we follow a standard ap-
proach in ALM framework:

O=0+pX -L-25),
p = pK,

(25)
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Table 1. Description of Video Sequence Data Sets

Data Set data size # of backgrounds
Escalator Airport | 130x160 x 3,417 1
Hall Airport 144x176 x 3,584 1
Bootstrap 120x160 x 2,055 1
Shopping Mall | 256x320 x 1,286 1
Highway 240x320 x 1,700 1
Lobby 128x 160 x 1,546 2
Camera Parameter | 240%x320 x 5,001 2
Light Switch-1 | 120x160 x 2,800 2
Light Switch-2 | 120x160 x 2,715 2

where x > 1 is a parameter that controls the increasing
speed of p.

Regarding the complexity of the above optimization pro-
cedure, it should be noted that each step requires O(nd)
complexity and typically ALM converges in a finite num-
ber of steps [4], thus the overall complexity of our method
is O(nd).

5. Experiments

In this section, we evaluate the proposed method
in comparison with several current state-of-the-art algo-
rithms, including variational Bayesian RPCA (VBRPCA)
[10], TALM for convex RPCA [6], AltProj [19], NSA
[1], and PCP [28]. In particular, we follow [I3, 21]
and evaluate RES-PCA in three applications, including
foreground-background separation from video sequences,
shadow removal from face images, and anamoly detec-
tion from hand-written digits. All these experiments
are conducted under Ubuntu system with 12 Intel(R)
Xeon(R) W-2133 CPR 3.60GHz. All algorithms are ter-

minated if a maximum of 500 iterations is reached or

[ X—=Li¢—=S¢llr | Lex1—=Lellr |llISe41=Sellr < .
max{ R X e ) < 0-001 s

satisfied.

5.1. Foreground-Background Seperation

Foreground-background separation is to detect moving
objects or interesting activities in a scene, and remove back-
ground(s) from a video sequence. The background(s) and
moving objects correspond to the low-rank and sparse parts,
respectively. For this task, we use 9 datasets, whose char-
acteristics are summarized in Table 1. Among these video
datasets, the first 5 contain a single background while the
remaining sequences have 2 backgrounds.

For the parameters, we set them as follows. For
TIALM, we use the theoretically optimal balancing param-
eter 1 . The same balancing parameter is used for

\/max (n,d)
PCP and NSA as suggested in the original papers. For fair

comparison, we use /max (n, d) for the proposed method.
For AltProj, we specify the ground truth rank; for VBR-

Table 2. Results of Foreground-Background Separation

Data Method || Rank(L) | ||S]o/(dn) W #of Iter. | Time

AltProj 1 0.9397 4.22e-4 36 68.61
Boot- NSA 843 0.7944 5.87e-4 12 1343.22
strap VBRPCA 1 1.0000 9.90e-4 175 186.90
TALM 782 0.8003 6.11e-4 15 1356.04

PCP 1174 0.7859 3.45e-4 94 571.75

RES-PCA 1 0.9379 7.81e-4 23 16.73

AltProj 1 0.8987 3.86e-4 33 69.34
Escala- NSA 1016 0.6390 8.09e-4 12 1793.35
tor VBRPCA 1 0.9839 9.76e-4 134 168.01
Airport IALM 1065 0.6482 6.95e-4 15 1325.40
PCP 1232 0.6670 3.59e-4 93 727.65

RES-PCA 1 0.8898 5.77e-4 23 20.47

AltProj 1 09573 | 1.69%-5 | 37 | 93.62
Hall NSA 943 07489 | 4.89c4 13 | 2189.99
Airport | VBRPCA 1 1.0000 | 9.90e-4 | 152 | 240.17
IALM 974 0.6917 | 737e4 | 14 | 2024.10

PCP 1292 | 07055 | 427e-4 | 77 | 74428

RES-PCA 1 0.9302 5.82e-4 23 26.38

AltProj 1 0.8846 | 4.63c4 27 | 119.17
High- NSA 166 0.9732 0.87e-4 15 1238.95
way VBRPCA 1 1.0000 9.87e-4 126 287.27
TALM 357 0.7980 6.25¢e-4 15 1409.10
PCP 531 0.8440 2.27e-4 152 1013.00

RES-PCA 1 0.9340 7.20e-4 23 35.32

AltProj 1 0.8907 | 8.12e-4 | 30 | 8592
Shop- NSA 174 09372 | 1.57c-4 4 102745
ping VBRPCA 1 1.0000 9.92e-4 157 295.00
Mall TALM 151 0.8457 6.25¢e-4 14 498.65
PCP 290 0.8898 2.85e-4 165 790.30

RES-PCA 1 0.9208 7.94e-4 23 28.44

AltProj 2 0.8897 | 3.77¢4 | 26 | 21.58

NSA 161 08073 | 6.13¢4 13 | 18250

Lobby | VBRPCA 2 1.0000 | 992e4 | 111 | 69.47
TALM 104 0.8229 | 56604 | 15 | 16822

PCP 502 0.8500 | 2.59%-4 | 92 | 16679

RES.PCA | 2 08963 | 1834 | 25 2011

AltProj e — o e —

Camera NSA — S S— S —
Parameter VBRPCA 1 1.0000 9.95e-4 171 1108.20
TALM 1123 0.7020 7.81e-4 16 9297.40

PCP e e e e e

RES-PCA 2 0.8305 2.48e-4 25 303.57

AltProj 2 0.90.84 | 42le4 | 48 73.54

Light NSA 541 06559 | 5.87c-4 13 | 687.19
Switch- || VBRPCA 1 1.0000 9.83e-4 165 151.05
1 IALM 415 0.6298 9.21e-4 14 496.92
PCP 848 0.6776 591e-4 85 410.39

RES-PCA 2 0.9708 4.15e-4 23 31.68

AltProj 2 0.8078 | 9.0lc4 37 4434

Light NSA 486 0.8041 4.90e-4 14 846.81
Switch- || VBRPCA 1 1.0000 9.93e-4 150 141.21
2 TIALM 333 0.7815 7.79e-4 15 616.28
PCP 985 0.8337 2.68e-4 154 756.34

RES-PCA 2 0.8608 2.82e-4 25 33.71

We set the rank to be the minimal number of singular values that contribute more
than 99.5% information to avoid the noise effect of small singular values.
« ” presents an “out of memory” issue.

PCA, we use the ground truth rank as its initial rank pa-
rameter. For fair comparison, we set ¢ to be ground truth
rank for RES-PCA. For all methods that relay on ALM-
optimization, we set the parameters to be p = 0.0001 and
k = 1.5. These settings remain the same throughout this
paper unless specified otherwise.
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We show the results in Table 2. It is observed that Alt-
Proj, VBRPCA, and RES-PCA are able to recover the back-
grounds from the video with low rank while TALM, NSA
and PCP with much higher ranks. However, it is noted that
VBRPCA may recover L with ranks lower than the ground
truth. For example, on Light Switch-1, Light Switch-2,
and Camera Parameter data sets, the ground truth rank of
the background is 2 whereas VBRPCA recovers the low
rank parts with rank 1. This may be a potential problem,
as will be clear later on in visual illustration. Although
TALM, NSA amd PCP do not recover L with desired low
ranks, they recovery S more sparsely than AltProj, VBR-
PCA, and RES-PCA. Besides, we observe that the speed of
the proposed method is superior to that of the other meth-
ods. From Table 2, it is observed that the proposed method
is about 3 times faster than AltProj, the second fastest one,
and more than 10 (even about 60 on some data sets) times
faster than IALM. Although the proposed method does not
obtain the smallest errors at convergence on some data, it is
noted that the levels of the errors are well comparable to the
other methods.

It should be noted that for mthods such as IALM, PCP,
and NSA, though they do not recover L with desired low
ranks, it is possible that by tunning their balancing param-
eters they may work well. However, tunning parameter for
unsupervised learning method is usually time consuming.
The proposed method has one balancing parameter, which
has been empirically verified that the theoretical parameter
as provided in [6] works well. A possible explaination is
that RES-PCA has a close connection and thus enjoies the
same optimal parameter with the convex RPCA. More the-
oretical validation is to be explored in further work.

Moreover, to visually compare the algorithms and illus-
trate the effectiveness of the proposed method, we show
some decomposition results in Figs. 1 and 2. Since IALM,
NSA and PCP cannot recover L with desired low ranks, they
cannot recover the backgrounds well. For example, we can
observe shadows of car on highway in Fig. 1. VBRPCA
reocvers L with ranks lower than the ground truth on some
data sets; consequently, on such data as Light Switch-2 in
Fig. 2 we can see that VBRPCA cannot work well on data
with different backgrounds. AltProj and RES-PCA can sep-
arate the backgrounds and foregrounds well.

To further assess the performance of the proposed
method, we conduct the following experiments to compare
the two methods that have achieved the top performance:
AltProj and RES-PCA. In this test we asume that the ground
truth rank of L is unknown, and we set it to 5 for AltProj and
¢ = b for the proposed method. Some obtained results are
given in Figs. 3 and 4. It is seen that RES-PCA can still
separate the background and foreground well while AltProj
fails. The success of RES-PCA in this kind of scenarios
can be explained as follows: With ¢ greater than the ground

(a) Original
Foreground-background separation in the Highway
video when the ground truth rank is unknown and, consequently, ¢
is specified to a wrong value. The top left is the original frame and
the rest are extracted background (top) and foreground (bottom).

(b) AltProj (c) Proposed

Figure 3.

8 e .i:?“
J

(a) Original (b) AltProj

(e) Proposed

Figure 4. Foreground-background separation in the Light Switch-
2 video. Within the two and bottom two rows, the top left is
the original frame and the rest are extracted background (top) and
foreground (bottom), respectively.

truth rank of L, a large group of backgrounds is usually di-
vided into smaller groups such that the backgrounds within
each group still share the same structure; as a consequence,
RES-PCA can still recover the low-rank matrices correctly.
This observation reveals that RES-PCA has superior perfor-
mance to AltProj when the precise knowledge of the ground
truth is unknown a priori.

5.2. Shadow removal from face images

Face recognition is an important topic; however, it is of-
ten plagued by heavy noise and shadows on face images [2].
Therefore, there is a need to handle shadows. In this test,
low-rank methods are used because the (unknown) clean
images reside in a low-rank subspace, corresponding to L,
while the shadows correspond to S. We use the Extended
Yale B (EYaleB) data set for comparative study. EYaleB
data contains face images from 38 persons, among which
we select images of the first 2 persons, namely, subject 1
and subject 2. For each there are 64 images of 192 x 168
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(a) AltProj (b) NSA (c) VBPCA

(d) IALM (e) PCP (f) RES-PCA

Figure 1. Foreground-background separation in the Highway video. The top to the bottom are the original frame, extracted background,

and foreground, respectively.

(a) AltProj (b) NSA

(c) VBPCA

(d) IALM (e) PCP (f) RES-PCA

Figure 2. Foreground-background separation in the Light Switch-2 video. Within the first and last 3 lines, the top to bottom are the original

frame, extracted background, and foreground, respectively.

pixels. Following the common approach as in [0, 3], we
construct a data matrix for each person by vectorizing the
images and perform different RPCA algorithms on the ma-
trix. We show some results in Fig. 5 for visual inspection. It
is observed that all methods can successfully remove shad-
ows on subject 2, but some fail on subject 1. The proposed
method removes shadows from face images on both subject
1 and subject 2, which confirms its effectiveness.

5.3. Anomaly Detection

Given a number of images from a subject, they form a
low-dimensional subspace. Those images with stark dif-

ferences from the majority can be regarded as outliers; be-
sides, a few images from another subject are also treated
as outliers. Anomaly detection is to identify such kinds of
outliers from the dominant images. It is modeled that L is
comprised of the dominant images while .S captures the out-
liers. For this test, we use USPS data set which consists of
9,298 hand-written digits of size 16 x 16. We follow [13]
and vectorize the first 190 images of ‘1’s and the last 10 of
“T’s to construct a 256 x 200 data matrix. Since the dat set
contains much more ‘1’s than ‘7’s, we regard the former as
the dominant digit while the latter outlier. For visual illus-
tration, we show examples of these digit images in Fig. 6. It
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(a) Original ~ (b) AltProj (c)NSA  (d) VBPCA (e)IALM () PCP  (g) RES-PCA

Figure 5. Shadow removal from face images. Every two rows are
results for different original faces. For each original face, the first
row are shadow removed face images, while the second row are
shadow images.

L
1t
IRER!
{

e s e

Figure 6. Selected ‘1’s and “7’s from USPS dataset.

is observed that all the ‘7’s are outliers. Besides, some ‘1’s
are quite different from the majority, such as the one with
an underline. We apply RES-PCA to this data set and obtain
the separated L and S. In .S, those columns corresponding
to outliers have relatively larger values. Following [13], we
use the /> norm to measure the columns of S and show their
values in Fig. 7, where we have vanished values smaller
than 5 for clearer visualization. Then we show the corre-
sponding digits in Fig. 8, which are the detected outliers. It
is noted that RES-PCA has detected all the ‘7’s as well as
some ‘1’s, such as the one with an underline. This has veri-
fied the effectiveness of RES-PCA in anomaly detection.

B
R ’

20 40 60 80 100 120 140 160 180 200
i: column index of S

Figure 7. Values of ||.S;]|2.

it 771777 /)

Figure 8. Detected outliers from the data set.

5.4. Scalability

We have analyzed the scalability of the proposed method
in previous sections. In this test, we empirically verify the
result from our analysis regarding the linearity with n and d
using the data sets in Table 1. For each of these data sets, we

use different sampling ratios in sample size and data dimen-
sion, respectively, to collect its subsets of different sizes.
On each subset, we perform RES-PCA 10 times. From Ta-
ble 2, it is seen that all experiments are terminated within
about 23-25 iterations; hence, in this test we temporarily
ignore the terminating tolerance and terminate the experi-
ment within a reasonable number of iterations, which is set
to be 30. Then we report the average time cost and show the
results in Fig. 9. It is observed that the time cost of RES-
PCA increases linearly in both n and d, which confirms the
scalability of the proposed method.

—&—Bootstrap

—p—Ilighway
Escalator airport

—-Iall airport

&~ Shopping Mall
Lobby

—o—Light Switch-1

—— Light Switch-2

—o~Camera Parameter

=& Bootstrap
- Iighway
Escalator airport

—g-Tall airport

200| |~&~Shopping Mall
Lobby

—o-Light Switch-1

—+—Light Switch-2

(~&-Camera Parameter

o Cost (Seconds)

Time Cost (Seconds)
n
&
g

0.1 02 03 04 05 06 0.7 08 09 1 0 0.2 0.4 0.6 0.8 1
Sample Size (xn) Sample Size (xd)

Figure 9. Time cost with respect to n and d on different data sets
(best viewed in color).

6. Conclusion

Existing RPCA methods typically need to solve SVDs
of large matrices, which generally has at least a quadratic
or even cubic complexity. To combat this drawback, in
this pape we propose a new type of RPCA method. The
new method recovers the low-rank component by exploit-
ing geometrical similarities of the data, without performing
any SVD that current state-of-the-art RPCA methods usu-
ally have to do. We develop an ALM-based optimization
algorithm which is linearly efficient and scalable in both
data dimension and sample size. Extensive experiments in
different applications testify to the effectivenss of the pro-
posed method, in which we observe superior performance
in speed and visual quality to several current state-of-the-
art methods. These observations suggest that the proposed
method is suitable for large-scale data applications in real
world problems.
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