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Abstract

We propose a transfer learning-based solution for the

problem of multiple class novelty detection. In particular,

we propose an end-to-end deep-learning based approach in

which we investigate how the knowledge contained in an

external, out-of-distribution dataset can be used to improve

the performance of a deep network for visual novelty de-

tection. Our solution differs from the standard deep clas-

sification networks on two accounts. First, we use a novel

loss function, membership loss, in addition to the classi-

cal cross-entropy loss for training networks. Secondly, we

use the knowledge from the external dataset more effec-

tively to learn globally negative filters, filters that respond

to generic objects outside the known class set. We show that

thresholding the maximal activation of the proposed net-

work can be used to identify novel objects effectively. Ex-

tensive experiments on four publicly available novelty de-

tection datasets show that the proposed method achieves

significant improvements over the state-of-the-art methods.

1. Introduction

In recent years, intelligent systems powered by artifi-

cial intelligence and computer vision that perform visual

recognition have gained much attention [8],[12],[1],[25].

These systems observe instances and labels of known ob-

ject classes during training and learn association patterns

that can be used during inference. A practical visual recog-

nition system should first determine whether an observed

instance is from a known class. If it is from a known class,

then the identity of the instance is queried through classifi-

cation.

The former process is commonly known as novelty de-

tection (or novel class detection) [14] in the literature.

Given a set of image instances from known classes, the

goal of novelty detection is to determine whether an ob-

served image during inference belongs to one of the known
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Figure 1. Novelty detection in dog-breed classification. Left:

Sample images. Right: Feature representation. Both known (first

row) and novel (second row) images are images of dogs. Given

known images, the goal of novelty detection is to reject novel im-

ages. In order to do so, the knowledge of out-of-distribution im-

ages (final row), in this case non-dog images, are used to learn a

suitable representation.

classes. Novelty detection is generally a more challenging

task than out-of-distribution detection [29], [9] since novel

object samples are expected to be from a similar distribution

to that of known samples.

In practice, the knowledge of unknown classes is not

entirely absent. Given a set of known classes from a cer-

tain problem domain, generally unknown class data from

the same problem domain is unavailable. However, in

some cases it is possible to obtain data outside the known

class from different problem domains, which we refer to as

out-of-distribution samples. For example, for a dog-breed

recognition application, ImageNet dataset [21] that contains

images of objects may be considered as out-of-distribution

data as shown as in Figure 1. However, since the out-of-

distribution data are from a different problem domain, they

do not approximate the distribution of the novel samples

well.

Nevertheless, since the deep-models produce generaliz-

able features, the knowledge of out-of-distribution samples

can be transferred to the original problem to aid novelty de-

tection. When the problem considered is a c class prob-

lem, and when the out-of-distribution data of C classes are

available, the following three strategies are used to transfer

knowledge for novelty detection in the literature:
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1. Fine-tuning: Network is first pre-trained on the out-of-

distribution data and later fine-tuned on the training data of

the given domain. Novelty is queried by thresholding the

final activation score [2].

2. Feature Extraction: Conventional novelty detection

techniques [4],[13],[24] are used based on the fine-tuned

features.

3. Fine-tune (c+C): Network is first pre-trained on the out-

of-distribution data. Both the training data and the out-of-

distribution data are used to perform fine-tuning in (c + C)
classes together. Novelty is determined in the same way as

in approach 1.

We note that in all these baselines, the out-of-distribution

data is employed in the training process. In fact, any nov-

elty detection method operating on the pre-trained/finetuned

deep features are implicitly making use of the out-of-

distribution data. In this work, we introduce a new frame-

work to perform novelty detection based on transfer learn-

ing. First, we show that using cross-entropy loss alone for

training is not optimal for the novelty detection task. Sec-

ondly, we empirically show that the out-of-distribution data

can be used more effectively in training to produce better

novelty detection performance with respect to considered

baseline solutions. Specifically, we make following primary

contributions in this paper.

1. We propose an end-to-end novelty detection framework

based on deep learning. To the best of our knowledge, this is

one of the first end-to-end deep learning solutions targeting

visual novelty detection.

2. We introduce a new loss function, membership loss

which has a similar functionality to that of the cross-entropy

loss but encourages an embedding that produces high acti-

vation for known object classes consistently.

3. We propose to take advantage of large-scale external

datasets to learn the globally negative filters to reduce high

activations caused by the novel images.

4. We show empirically, that the proposed method outper-

forms the baseline novelty detection methods across four

publicly available datasets.

2. Related Work

Object classification schemes are often equipped with

a suitable mechanism to detect novel objects. For exam-

ple, Eigenfaces [28] was accompanied by a reconstruc-

tion error-based novel object detection method. In sparse

representation-based classification (SRC) algorithm [30],

Sparsity Concentration Index (SCI) was proposed for the

same purpose. In contrast, there is no formal novelty de-

tection mechanism proposed for deep-learning based clas-

sification. In its absence, thresholding the highest class ac-

tivation score of the deep model has been used as a base-

line in the literature [2]. As an alternative, several recent

works have proposed novelty detection schemes based on

deep features [2],[24]. In the same spirit, it is also a possi-

bility to use classical novelty detection tools such as Kernel

PCA [10], Kernel null space-based novelty detection (KN-

FST) [4] and its variants [3],[13] on deep features. KNFST

operating on deep-features produces the current state of the

art performance in visual novelty detection [13]. However,

advantages of deep-learning are not properly exploited in

all of these approaches due to the absence of an end-to-end

learning framework.

On the other hand, novelty detection problem has

a close resemblance to both anomaly detection [17],

[19],[20], [18], [5],[16], and open-set recognition problems

[22],[2],[7],[15]. Therefore, it is possible to solve anomaly

detection using tools proposed in these alternative domains.

In anomaly detection, given a single normal class, the ob-

jective is to detect out-of-class instances. One-class SVM

[23] and SVDD [27] are two of the most widely used tools

in anomaly detection. Novelty detection can be viewed as

an anomaly detection problem if all known classes are con-

sidered as a single augmented class. On the other hand,

objective in open-set recognition (OSR) is similar to that

of novelty detection. But in addition, OSR requires correct

classification of samples detected as known samples. There-

fore, it is also possible to use open-set recognition tools to

perform novelty detection. However, we note that due to

subtle differences in objectives, OSR algorithms are not op-

timal for novelty detection.

In the proposed framework, maximal activation of the fi-

nal layer of a deep network is considered as a statistic to per-

form novelty detection. We design the network and choose

loss functions appropriately so that this statistic is low for

novel objects compared to the known object classes.

3. Background

In this section, we briefly review how deep networks

produce activations in response to input stimuli. Based on

this foundation, we introduce the notion of positive filters

and negative filters. Consider a c class fully-supervised

object classification problem with a training image set

x = x1, x2, . . . , xn and the corresponding labels y =
y1, y2, . . . , yn where yi ∈ {1, 2, . . . c}. Deep convolutional

neural networks (CNNs) seek to learn a hierarchical, convo-

lutional filter bank with filters that respond to visual stimuli

of different levels. In c class classification, the top most

convolutional filter activation g is subjected to a non-linear

transformation to generate the final activation vector f ∈ R
c

(for example, g is the conv5-3 layer in VGG16 and conv5c

in Resnet50. f is the fc8 and fc1000 layers in the respective

networks). In a supervised setting, network parameters are

learned such that argmax f = yi for ∀i ∈ {1, 2, . . . , n}.

This is conventionally done by optimizing the network pa-

rameters based on the cross-entropy loss.

If there exist k filters in the top most convolution filter
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Figure 2. Positive and negative filters of the sand snake class in the

Resnet50 trained on ILSVRC12 dataset. Top: weights of the fully

connected layer corresponding to the sand snake class. We call

filters associated with positive weights as positive filters of sand

snake class. All other filters are named as negative filters. Bottom:

Visualization of top negative and positive filters. These patterns

are likely to produce high activation in these filters. We note top

positive filters are activated by snake-like structures.

bank, its output g is a set of k number of activation maps.

The final activation vector of the network f is a function of

g. For a given class i, there exists some ki filters in the filter

bank (1 ≤ ki ≤ k) that generally generates positive activa-

tion values. These activations provide supporting (positive)

evidence that an observed image is from class i. Conversely,

all remaining filters provide evidence against this hypothe-

sis. Activation score of each class in f is determined by

taking into account the evidence for and against each class.

For the remainder of the paper, we call filters that provide

evidence for and against a particular class as positive filters

and negative filters of the class, respectively.

This concept can be easily explained by taking the

Resnet architecture [8] as an example. In Resnet, final

convolution output g is subjected to global average pool-

ing followed by a fully connected layer. Therefore, the ith

component of the final activation vector f can be written as

fi = Wi×GAP (g), where GAP is global average pooling

operation (mean of filter map) and W is the weight matrix

of the fully connected layer. Here, activation of the ith class

is a weighted summation of mean feature maps found in g.

From the above definition, filters associated with positive

weights for a given class in W can be identified as positive

filters for that particular class. Conversely, filters associ-

ated with the negative weights become negative filters of

the class.

For example consider the Sand Snake class appearing in

the ILSVRC12 dataset [21]. Shown in Figure 2 (top) are

the weights associated with the Sand Snake class in the fi-

nal fully connected layer of the Resnet50 network trained

on the ILSVRC12 dataset. We recognize filters associated

with positive and negative weights as positive and negative

filters, respectively for the given class. In Figure 2 (bottom)

we visualize per-unit visualization of top positive and top

negative filters for the considered class using the DeepVis

toolbox [31] (these are the images that are most likely to ac-

tivate the corresponding filters). By observation, we notice

that the top positive filters are activated when the network

observes structures similar to snakes. On the other hand, the

top negative filters are unrelated to the appearance of sand

snakes.

4. Deep Novelty Detection

Based on the above background, we propose to learn the

distributions of known object classes using a CNN frame-

work with the objective of performing joint classification

and novelty detection. In our formulation, assuming each

known class has a unique single label, we force the final ac-

tivation vector f to model the probability distribution vec-

tor of known classes. Formally, for a given data-label pair

(xi, yi), we expect fi = 1 and fj = 0, ∀j 6= i. Once such a

representation is learned, argmax f returns the most-likely

class of an observed sample. Then, max f yields the likeli-

ness of the sample belonging to the most likely class. Sim-

ilar to binary classification, identity I of a test instance can

be queried using hard thresholding. In order to learn a rep-

resentation suitable for the stated objective, we use conven-

tional classification networks as the foundation of our work

and propose the following two alternations.

1. Membership loss. Assuming each known class has a

unique single label, if the observed image is from a known

class, only a single positive activation should appear in f .

We observe that when cross-entropy loss is used, this is not

the case. To alleviate this, we introduce a new loss called

membership loss in addition to the cross-entropy loss.

2. Globally negative filters. In a classification setting, a

negative filter of a certain class is also a positive filter of an-

other class. In other words, there exist no explicit negative

filters. In our formulation, we propose to generate globally

negative filters (filters that generate negative evidence for all

known classes) to reduce the possibility of a novel sample

registering high activation scores.

4.1. Limitations of Cross­Entropy Loss

When a classification network is trained, each element

fi of the activation vector f is first normalized using the

softmax function to arrive at a normalized activation vector

f̃ as in, f̃j = efj/
c
∑

l=1

efl . When it is assumed that all image

classes appearing during inference are known ahead of time,

jth element of vector f̃ is interpreted as the likelihood of the

input image xi belonging to the jth class. Neural network-

based classification systems are learned by minimizing the

cross-entropy loss which is the negative log likelihood of

the correct class f̃ . However, since this is a relative measure,

the learned representation deviates from our objective due

to the following reasons.
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Figure 3. (a) Activations of known (Calculator) and unknown samples (Playing Cards) in a VGG16 model. In conventional CNN, both

known and unknown samples activates similar conv5-3 filters and results in a similar fc8 activation map. Novelty detection of the novel

sample fails due to high activation scores present in fc8 layer. In the proposed method, Calculator object activates filters related to

Calculators whereas top activated filters in Playing Cards is unrelated to known classes (globally negative). Since all activations in fc8

are very small for the Playing Cards object, it can be detected as a novel sample by thresholding. (b) Top positive filters and top globally

negative filters of the calculator class.

Firstly, even a low activation of the ground truth class

could yield a low cross-entropy provided that the activa-

tions of all other (non-matching) classes are very low. As

a result, lower score values may not get heavily penalized

during training. Therefore, a model trained using the cross-

entropy loss may end up producing low activation scores

for known classes during inference. In closed set classifi-

cation, this behavior will not cause complications as long

as the correct class records the highest score. However, in

threshold-based novelty detection, this poses a problem as

having low scores for the positive class will result in false

negatives. Secondly, the cross-entropy loss does not neces-

sarily drive activations of unrelated classes below zero. As

a result, inaccurate cross-class relationships are encouraged

during training.

In order to illustrate this point, we trained a VGG16 [26]

based CNN classification network using the first 128 classes

of the Caltech256 dataset. For the considered example, the

Calculator class (indexed at 27) is a known class and the

Playing Cards class (indexed at 163) is a novel class. Shown

in Figure 3 are the activations of conv5-3 and fc8 layers of

the network for two inputs of the two classes. As can be

seen from this figure, when the network observes a calcula-

tor object (known object), it correctly associates the highest

score in f to the correct class (class 27). However, there

is also a significant miss-association between the calculator

class and coin (class 43), keyboard (class 45), dice (class

55) and joystick classes (class 120).

4.2. Membership Loss

In our approach, we first independently translate each

activation score value fi into the range 0 − 1 using the

sigmoid(σ) function. We interpret each transformed acti-

vation score as the probability of the input image belong-

ing to each individual class. If the ground truth label of a

given observation x is y, we aim at learning a function that

produces absolute probabilities for the membership of each

class as follows

P(y = i) = σ(f(x)i) ∀i ∈ {1, 2, . . . c}. (1)

Ideally, the learned transformation will produce σ(f(x)i) =
1 for i = y and σ(f(x)i) = 0, otherwise. We denote

the risk of associating a higher score with a wrong class

(σ(f(x)i) = 1 for i 6= y ) as RW1 and risk of associating

a low score with the correct class (σ(f(x)i) = 0 for i = y)

as RC0. We define the membership loss LM as the risk of

classification as

LM (x, y) = RC0(x, y) +RW1(x, y), (2)

where λ is a positive scalar. With our formulation, we define

RW1(x, y) = [1 − P(y = 1)]2 = [1 − σ(f(x)y)]
2. Here,

the quadratic term is introduced to impose a heavy penalty

on very high deviations. Similarly, RC0(x, y) becomes,

RC0(x, y) =
1

c− 1

c
∑

i=1,i 6=y

[P(i = 1)]2

=
1

c− 1

c
∑

i=1,i 6=y

[σ(f(x)i)]
2.

By substitution, we get

LM (x, y) = λ[1−σ(f(x)y)]
2 +

1

c− 1

c
∑

i=1,i 6=y

[σ(f(x)i)]
2.

(3)

Here, the parameter λ controls relative weight given to each

risk source. In our experiments, we set λ = 5. Taking the

partial derivative of the membership loss yields the follow-

ing back-propagation formula

∂LM (x, y)

∂f(x)i
=

{

−2λ[1− σ(f(x)i)]× σ(f(x)i)
′ for i = y

2

c−1
σ(f(x)i)× σ(f(x)i)

′ for i 6= y,

where, σ(f(x)i)
′ = σ(f(x)i)(1− σ(f(x)i)).

The proposed membership loss does not operate on the
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closed-set assumption. It takes individual score values into

account in an absolute sense. Therefore, when the member-

ship loss is used, known samples that produce small activa-

tions will be penalized regardless of the score values of the

other classes. When the membership loss is used together

with the cross-entropy loss, the network learns a represen-

tation that produces relatively higher activation scores for

the correct class. For example, consider the fc8 activation

map of the proposed method for the Calculator object input

shown in Figure 3. There, we observe that the correct class

(indexed at 27) produces a large positive score whereas all

other classes produce negative scores.

4.3. Globally Negative Filters

When a conventional classification network is used,

novel images are often able to produce very high activation

scores there by leading to false positive detections. Such

an example is shown in Figure 3(bottom) where a Playing

Cards instance has produced a very high activation score

in the index corresponding to the Calculator class (indexed

at 27). Final activation score of a class is generated based

on the responses of the positive and negative filters as dis-

cussed in Section 3. Once the network is trained, given an

input of a particular known class, the input stimulates some

positive filters and negative filters associated with the class.

If the model is well trained, the response of the positive fil-

ters exceeds the response of the negative filters to produce a

high positive activation score.

Given this background, it is interesting to investigate

how a novel sample is able to produce a high activation

score. Let us revisit activations of Playing Cards image

(novel image) shown in Figure 3 (bottom). In this exam-

ple, Playing Cards image has stimulated some positive fil-

ters of the Calculator class despite the differences in con-

tent. At the same time, by chance, it has not produced suf-

ficient stimulation in negative filters of the Calculator class,

thereby producing a large positive activation in f . This can

be clearly observed in Figure 3 where both the Calculator

and the Playing Cards images have activated similar filters

in the conv5-3 layer.

To this end, we make the following proposal. We wish

to learn a set of filters that are stimulated generally by natu-

ral images and produce evidence against all known classes.

In other words, these filters are negative filters with respect

to all known classes - hence we call them globally negative

filters. If any of such filters are stimulated during inference,

it would prove greater evidence that the observed image is

novel. However, this proposal will succeed only if the glob-

ally negative filters are stimulated by arbitrary images out-

side the known class set.

In order to learn the globally negative filters, we pro-

pose a joint-learning network structure. In addition to the

known object dataset, we use the out-of-distribution data

samples in training. For the remainder of the paper we re-

fer the out-of-distribution dataset as the reference dataset.

We learn features that can perform classification in both the

known dataset and the reference dataset. If the reference

dataset has C classes, once trained, the filter bank will con-

tain positive filters of all c + C classes. Filters associated

with the reference dataset will likely act as negative filters

for all classes in the known dataset, thereby be globally neg-

ative. In this framework, the globally negative filters are

likely to respond to arbitrary natural images provided that

the reference dataset is a large-scale diverse dataset.

In Figure 3, we show the impact of using the globally

negative filters. Visualization of top activated filters for the

Calculator class are shown at the top in Figure 3(b). As

can be seen from this figure, these filters are positively co-

related with the Calculator class. With the new formulation,

we observe that playing cards object activates some extra

filters which are not in common with the calculator class

(highlighted in red). At the bottom of Figure 3(b) we visu-

alize filters with the highest activation for the Playing Cards

object. By inspection, these two visualizations look arbi-

trary and do not have an obvious association with any of the

Caltech256 classes. We interpret these filters as instances

of the globally negative filters. Due to the availability of

more negative evidence, the overall activation value of the

playing cards object has been drastically reduced.

4.4. Training Procedure

We propose a network architecture and a training mecha-

nism to ensure that the network learns the globally negative

filters. For this purpose, we use an external multi-class la-

beled dataset which we refer to as the reference dataset.

We first select a CNN backbone of choice (this could

be a simple network such as Alexnet [12] or a very

deep/complex structure such as DenseNet [11]). Two par-

allel CNN networks of the selected backbone are used for

training as shown in Figure 4(a). The only difference be-

tween the two parallel networks is the final fully-connected

layer where the number of outputs is equal to the number

of classes present in either dataset. For the purpose of our

discussion, we refer the sub-network up to the penultimate

layer of the CNN as the feature extraction sub-network.

Initially, weights of the two feature extraction sub-

networks are initialized with identical weights and they are

kept identical during training. Weights are not shared be-

tween the final layer of two parallel networks. During train-

ing, two mini batches from two datasets (reference dataset

(R) and known classes (T)) are considered and they are

fed into the two branches independently. We calculate the

cross-entropy loss (Lce) with respect to the samples of the

reference dataset and both the membership loss (Lm) and

the cross-entropy loss with respect to the samples of known

classes. The cumulative loss of the network then becomes a
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linear combination of the two losses as follows,

CumulativeLoss = Lce(R) + α1 Lce(T ) + α2 Lm(T ).
(4)

In our experiments, we keep α1, α2 = 1. The cumulative

loss is back-propagated to learn the weights of the two CNN

branches. Reducing membership loss and cross-entropy

loss with respect to the known-class dataset increases the

potential of performing novelty detection in addition to clas-

sification as discussed in the preceding sub-section. On the

other hand, having good performance (low cross-entropy

loss) in the reference dataset suggests the existence of fil-

ters that are responsive to generic objects provided that the

reference dataset is sufficiently diverse. When classes ap-

pearing in the reference dataset do not intersect with known

classes, these filters serve as the globally negative filters.

Figure 4. Proposed architecture for novelty detection. We use an

external multi-class dataset (reference dataset (R)) in addition to

the known object dataset (T). Two parallel CNN networks with

identical structure and weights are used to extract features from

both datasets. We train separate classifier networks operating on

the same feature to perform classification in either dataset. Dur-

ing inference, novelty detection is performed by thresholding the

maximal activation of the bottom branch of the network.

4.5. Testing (Novelty Detection)

During inference, we propose to use the setup shown

in Figure 4(b) where we only consider the bottom CNN

branch of the training network. Given a test image x, we

perform a forward pass using the learned CNN network to

obtain the final feature f(x). The largest element of σ(f(x)),
maxσ(f(x)) is thresholded using a predetermined threshold

γ to arrive at the identity of the test image. If the yielded

score is below the threshold γ, we identify the test sample

to be novel. In a practical system, threshold γ is chosen

considering the percentile of the matched score distribution

(for example threshold can be chosen to be 95th percentile

if the accepted false negative rate is 5%) . In addition to

the novelty detection procedure, the same network struc-

ture can be used to perform classification as well. Here,

argmaxσ(f(x)) yields the identity of the predicted class

for the test sample x. We note that this step is identical

to the classification procedure used in the standard CNN-

based classification.

5. Experimental Setup and Results

In this section, we present experimental results for the

novelty detection task. We first describe the baseline meth-

ods used for comparison. Then, we introduce the four

datasets used for evaluation. Finally, we discuss the ob-

tained results followed by the analysis of the proposed

method.

5.1. Baseline Methods

We evaluate the proposed method on four novelty de-

tection databases and we compare its performance with the

standard novelty detection schemes. We use the following

baseline comparisons based on the AlexNet [12] and the

VGG16 [26] features fine-tuned on the given dataset.

1. Finetune [26]: fc8 feature scores of the trained deep

model are thresholded to detect novel samples.

2. One-class SVM [23]: A one-class SVM classifier is

trained for all known classes. The maximum SVM score

is considered during the inference.

3. KNFST [4], [13]: Deep features are normalized and his-

togram intersection kernel method is used to generate inner

products between the samples.

4. Local KNFST [3]: Deep features with histogram inter-

section kernel is considered with 600 local regions.

5. OpenMax [2]: Activations of penultimate layer of a

deep model are used to construct a single channel class-

wise mean activation vectors (MAV) and the corresponding

Weibull distributions.

6. K-extremes [24]: Mean activations of the VGG16 fc7
features are considered for each class and top 0.1 activation

indexes are binarized to arrive at the Extreme Value Signa-

tures.

7. Finetune(c+C): A (c+C) class CNN is trained by treat-

ing classes of the reference dataset as the additional class.

In addition, we evaluate the performance based on the pre-

trained deep features (trained on the ILSVRC12 database)

for KNFST and local KNFST methods. Whenever pre-

trained features are use they are denoted by the suffix pre.

5.2. Datasets

We use four publicly available multi-class datasets to

evaluate the novelty detection performance of the proposed

method.

Caltech-256 CUB-200 Dogs FounderType-200

Figure 5. Sample images from the evaluation datasets. Each col-

umn contains images taken from a single class of each dataset.
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Caltech256 Dataset. The Caltech256 dataset is a fully an-

notated dataset which consists of 30607 images from 256

object classes. Following the protocol presented in [13], we

first sorted the class names alphabetically and picked the

first 128 classes as the known classes and considered the

images from the remaining 128 classes as the novel images.

Caltech-UCSD Birds 200 (CUB 200) Dataset. The CUB-

200 dataset includes 6033 images belonging to 200 distinct

bird categories. Ground truth labels for each image are pro-

vided. In our experiment, we sorted names of the bird cat-

egories alphabetically and used the first 100 classes as the

known classes. The remaining classes were used to repre-

sent novel images.

Stanford Dogs Dataset. This dataset is a subset of the Im-

ageNet dataset and was originally intended for fine-grain

classification. There are 20580 images belonging to 120

different dog breeds in this dataset. We considered the first

60 classes as the known classes and treated the remaining

classes as the novel classes during performance evaluation.

FounderType-200 Dataset. This dataset is a collection

of Chinese character images in different font types. The

dataset is organized based on the font-type. In total there are

200 different font-types with 6763 images from each class

in this dataset. Following the same convention as before, we

picked the first 100 classes to represent the enrolled classes.

The remaining 100 classes were used to simulate the novel

images.

In all datasets, following the protocol in [13], images

of the enrolled classes were randomly split into two even

sets to form training and testing datasets of the enrolled

classes. Images of the novel classes were used only during

testing. When finetuning/extracting features from the cal-

tech256 dataset following [6], we used the pretrained model

trained on the Places365 dataset [32]. For all other tasks, we

used the pretrained model trained on the ILSVRC12 dataset.

Accordingly, the validation sets of Places365 was used as

the reference dataset for Caltech256. For all other tasks the

validation set of ILSVRC12 was considered.

5.3. Results

We evaluated all methods based on the VGG16 and the

AlexNet features. We used the training codes provided by

the authors when evaluating the KNFST [4] and the local

KNFST [3] methods. Performance of each method is eval-

uated using the area under the receiver operating character-

istics (AUC) curve. Obtained AUC values for each method

are tabulated in Table 1 for all datasets1.

When baseline methods are considered, a variance in

performance can be observed across datasets. In general,

K-extremes has reported below-par performances compared

to the other methods. When the number of enrolled classes

1Source code of the proposed method is made available at

https://github.com/PramuPerera/TransferLearningNovelty

Table 1. Novelty detection results (AUC of the ROC curve) on the

evaluation datasets. The best performing method for each dataset

is shown in bold. Second best method is shown in italics.
Method Caltech-256 CUB-200 Dogs FounderType

VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet

Finetune[26], [12] 0.827 0.785 0.931 0.909 0.766 0.702 0.841 0.650

One-class SVM[23] 0.576 0.561 0.554 0.532 0.542 0.520 0.627 0.612

KNFST pre[4] 0.727 0.672 0.842 0.710 0.649 0.619 0.590 0.655

KNFST[4], [13] 0.743 0.688 0.891 0.748 0.633 0.602 0.870 0.678

Local KNFST pre[3] 0.657 0.600 0.780 0.717 0.652 0.589 0.549 0.523

Local KNFST[3] 0.712 0.628 0.820 0.690 0.626 0.600 0.673 0.633

K-extremes[24] 0.546 0.521 0.520 0.514 0.610 0.592 0.557 0.512

OpenMax[2] 0.831 0.787 0.935 0.915 0.776 0.711 0.852 0.667

Finetune(c+ C) 0.848 0.788 0.921 0.899 0.780 0.692 0.754 0.723

Deep Novelty (ours) 0.869 0.807 0.958 0.947 0.825 0.748 0.893 0.741

are very high, the mean activation signature of a class looses

its uniqueness. This is why K-extremes method fails when

very large number of classes are enrolled as suggested in

[24]. In the Caltech-256 and CUB-200 datasets, threshold-

ing deep activations and OpenMax has yielded better results

among the baseline methods. In Caltech256, this has im-

proved marginally when the reference dataset (ILSVRC12)

is incorporated. This method has performed reasonably

well in the FounderType-200 dataset but it’s performance

in the Standford Dogs dataset is not convincing. In general,

KNFST has out-performed local KNFST except for in the

Standford Dogs dataset. KNFST (and local KNFST) oper-

ating on the finetuned deep features have performed better

in general compared to the pre-trained deep features. This

trend has changed only in the Standford Dogs dataset. Here

we note that none of the baseline methods have yielded con-

sistent performance across datasets.

In comparison, the proposed method is able to produce

the best performance across all datasets. When AlexNet is

used as the back-bone network, there is an improvement of

about 3.0% over the baselines in the CUB-200 and Stand-

ford Dogs datasets. In the other two datasets this margin is

2.0%. In the Caltech256, CUB-200 and FounderType-200

datasets, the improvements in AUC are in excess of 2.0%

for the VGG16 model. In the Standford Dogs dataset, the

proposed method is able to introduce a significant advance-

ment of more than 7.0% in AUC compared with the base-

line methods. In general, we note that in datasets where

the baseline performance is already very good, as in the

CUB-200 and FounderType 200 datasets, the improvement

of the proposed method is relatively small. On the other

hand, when the baseline performance is poor, the proposed

method is able to generate a significant improvement in the

performance.

5.4. Ablation Study

In this subsection, we investigate the impact of each in-

dividual component of the proposed framework. For the

purpose of the ablation study, we use the validation dataset

of the ILSVRC12 dataset as the reference dataset. It should

be noted that figures reported in this subsection are differ-

ent from Table 1 due to this reason. Starting from the tra-

ditional CNN architecture, we added one component of the
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proposed framework at a time and evaluated the novelty de-

tection performance on the Caltech-256 dataset as a case

study. Testing protocol presented in the preceding subsec-

tion was followed in all cases. Considered cases are as fol-

lows.

a) Single CNN with the cross-entropy loss (AUC 0.854).

This is the CNN baseline where a CNN is trained using the

enrolled classes conventionally.

b) Single CNN with the cross-entropy loss+membership

loss (AUC 0.865). The network architecture is the same

as in case (a). In addition to the cross-entropy loss, the

membership loss is calculated with respect to the enrolled

dataset.

c) Two Parallel CNNs with cross-entropy loss (AUC

0.864). The network structure proposed in Figure 4(a) is

used. In contrast, only the cross-entropy loss is used in the

bottom sub-network.

d) Proposed method (AUC 0.906). Proposed structure

Figure 4(a) is used for training.

In the proposed method, we introduced membership loss

and a parallel network structure as contributions. From the

case study conducted, it appears that the novelty detection

performance improves compared to the baseline even when

one of the contributions are used. Moreover, we observe

that the two contributions compliment each other and gen-

erate even better results when combined together.

5.5. Impact of the Reference Dataset

In the proposed method, we assumed the availability of a

reference dataset with large number of classes. In this sub-

section, we investigate the impact of the reference dataset

by varying the reference dataset of choice. In particular,

we use the ILSVRC12, Caltech-256 and Standford Dogs

datasets as the reference datasets to perform novelty detec-

tion using the proposed method in the CUB-200 dataset.

Results obtained are tabulated in Table 2. Here we have in-

cluded the performance of the best baseline method for the

CUB-200 dataset (Finetune) from Table 1 as a baseline.

Compared to ILSVRC12, when Caltech-256 is used as

the reference dataset, AUC drops by 0.005%. This fur-

ther drops by 0.008% when the Standford Dogs dataset is

used. The ILSVRC12 dataset contains 1000 image classes

and has significant variance in images within each class.

Caltech-256 is a similar multi-class dataset but with fewer

classes. Both of these datasets contain natural images.

However since ILSVRC12 has more classes and more intra-

class variance, we expect it to generate globally negative

filters better. Therefore, the performance drop of Caltech-

256 compared to ILSVRC12 is expected. On the other

hand, the Standford Dogs dataset only contains images of

dogs. Therefore, filters learned using this dataset may not

be generic to get stimulated by the arbitrary inputs. There-

fore, the drop in the performance is justified. In conclusion,

we note that the proposed method is able to out-perform

baseline novelty detection methods even when the reference

dataset is varied. However, better results are obtained when

a larger dataset with high degree of intra-class variation is

used as the reference dataset.

Table 2. Impact of the reference dataset used. Results of the case

study conducted on the CUB-200 dataset by varying the reference

dataset.
Baseline ILSVRC12 Caltech-256 Dogs

Novelty Detection AUC 0.931 0.958 0.953 0.945

5.6. Impact on Classification Accuracy

When a test image is present, the proposed method pro-

duces a set of class activation scores. It is still possible to

perform classification using the same system by associat-

ing the test image with the class containing the highest ac-

tivation. In what follows, we consider test samples of the

known classes and perform closed-set classification in the

same experimental setup described in Section 5.3. In other

words, we do not consider novel samples for the purpose

of this study. Obtained classification accuracies for the four

datasets are tabulated in Table 3. Although the proposed

method is designed for the purpose of novelty detection,

we note that the proposed changes have contributed towards

increasing the classification accuracy of the system as well.

This is because the membership loss explicitly enforces cor-

rect class to have a high score and all other classes to have

scores closer to zero.

Table 3. Classification accuracy obtained for conventional fine-

tuning and the proposed method for the four evaluation datasets.
Caltech-256 CUB-200 Dogs FounderType

VGG16 0.908 0.988 0.730 0.945

Proposed Method 0.939 0.990 0.801 0.950

6. Conclusion

We presented an end-to-end deep learning-based solu-

tion for image novelty detection. We build up on the con-

ventional classification networks and introduce two novel

contributions; namely, membership loss and a training pro-

cedure that produces globally negative filters. In the pro-

posed method, novelty is quarried simply by thresholding

the highest activation of the output vector. We demonstrate

the effectiveness of the proposed method on four publicly

available multi-class image datasets and obtain state-of-the-

art results.
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