
DDLSTM: Dual-Domain LSTM for Cross-Dataset Action Recognition

Toby Perrett and Dima Damen

Department of Computer Science, University of Bristol, Bristol, UK

<firstname>.<lastname>@bristol.ac.uk

Abstract

Domain alignment in convolutional networks aims to

learn the degree of layer-specific feature alignment bene-

ficial to the joint learning of source and target datasets.

While increasingly popular in convolutional networks, there

have been no previous attempts to achieve domain align-

ment in recurrent networks. Similar to spatial features, both

source and target domains are likely to exhibit temporal de-

pendencies that can be jointly learnt and aligned.

In this paper we introduce Dual-Domain LSTM (DDL-

STM), an architecture that is able to learn temporal de-

pendencies from two domains concurrently. It performs

cross-contaminated batch normalisation on both input-to-

hidden and hidden-to-hidden weights, and learns the pa-

rameters for cross-contamination, for both single-layer and

multi-layer LSTM architectures. We evaluate DDLSTM on

frame-level action recognition using three datasets, taking

a pair at a time, and report an average increase in accuracy

of 3.5%. The proposed DDLSTM architecture outperforms

standard, fine-tuned, and batch-normalised LSTMs.

1. Introduction

Online action recognition has direct implications on as-

sistive and surveillance applications, enabling action classi-

fication as soon as a new frame is observed. It only depends

on previously observed frames, with no knowledge from fu-

ture observations. This contrasts offline action recognition

where the whole action is observed before being classified.

One obstacle to deploying online action-recognition sys-

tems in the wild is that they require a large amount of train-

ing data to achieve high performance, so an open question is

how to make best-use of multiple datasets to achieve higher

recognition accuracy. Such cross-dataset temporal depen-

dencies can be present even when datasets use different

class labels. In this paper, we focus on the related tasks

of kitchen activities. In one dataset, a sequence of actions

could be labeled as:

‘pick-up knife’ → ‘cut onion’ → ‘put onion in pan’

whereas a second dataset would have labels such as:

‘take knife’ → ‘chop potato’ → ‘place on a baking tray’

While the two sets of labels differ, we investigate how

a joint recurrent model can be learnt for both datasets

and we demonstrate that this joint training outperforms

independently-learnt models.

In online recognition, recurrent models are typically

used, particularly Long Short-Term Memory recurrent net-

works (LSTM) [9, 8, 27]. It has recently been shown that

LSTMs can benefit from multiple data sources when us-

ing CNN features for frame-based action classification [32].

However, LSTMs are not explicitly designed to handle in-

formation from multiple domains. We aim to address this

limitation by combining recent advances in CNN domain

adaptation [2] with batch-normalised LSTM training [4],

and introduce the Dual-Domain LSTM (DDLSTM). We

show that it is indeed possible for the DDLSTM to learn

jointly from two related datasets, and in a way which out-

performs the standard LSTM for frame-based online action

recognition (whether jointly trained, or pre-trained and fine-

tuned). Importantly, our formalism allows learning cross-

contamination parameters in a differentiable manner within

the backpropation-through-time of the LSTM. In each ex-

periment, we evaluate DDLSTM on pairs of datasets, out of

three datasets frequently used for kitchen-based activities:

50 Salads [40], Breakfast [21] and MPII Cooking 2 [36].

We also demonstrate the benefit of joint training with larger

datasets of related domains (e.g. EPIC [6]) to leverage miss-

ing temporal knowledge.

The rest of this paper is organised as follows. Section 2

gives a summary of related domain adaptation and LSTM

literature. Section 3 introduces the proposed DDLSTM.

Section 4 gives an overview of the datasets we use for eval-

uation. Section 5 includes the comparative analysis, where

we show an average increase in frame-level recognition ac-

curacy of 3.5%. Finally, the conclusion is in Section 6.

2. Background

Works which learn from multiple domains have tradi-

tionally used measures, such as the Maximum Mean Dis-

crepancy (MMD) [13, 28], to determine differences in fea-

ture space between the domains, and apply transformations

to bring them closer together [1, 33]. More recently, loss

17852



functions which take these differences into account have

been used, in conjunction with classification loss, in CNNs

to merge domains in an end to end fashion [14, 5, 42], en-

abling predictions to be made on unsupervised domains.

Recent advances have taken the approach of introducing

additional layers into a network in order to align deep and

shallow feature spaces. Of particular interest to us is the

work of Carlucci et al. [2]. Their Automatic Domain

Alignment Layers are based around expanding batch nor-

malisation (introduced by Ioffe and Szegedy [18] to im-

prove model accuracy and reduce the number of training

iterations) to handle inputs from source and target domains.

This is achieved by calculating separate batch statistics from

source and target samples within a batch, but allowing for

some cross-contamination between domains. These layers

are inserted into classification networks (after the fully con-

nected layers in AlexNet [20] and replacing standard batch

normalisation layers in InceptionBN), equipped with a soft-

max classification loss for source samples and an entropy

loss for unlabelled target samples. This approach is related

to, but fundamentally different from cross-network stitching

for multi-tasks [29]. In [29], two networks which perform

different tasks (e.g. detection vs captioning) on the same

input are trained. However in [2], one task (e.g. classifica-

tion) is performed on two sets input features which are not

necessarily related.

The works covered so far are all designed for classifi-

cation using convolutional networks trained on single im-

ages. For example, a commonly used benchmark is the Of-

fice+Caltech dataset [11] where adaptation between images

taken with a DSLR in an office and product images taken

from Amazon is attempted. The most common technique

to utilise multiple datasets in video-level classification is

to train on one and fine tune on another [3]. Attempts

have also been made to use semantic similarity between la-

bels [44], and to treat different camera angles of the same

content as different domains [31].

We are specifically interested in online action recogni-

tion, where single-dataset methods tend to use CNN fea-

tures with LSTMs to make frame-level predictions [30,

43].Incorporating a domain adaptation component into re-

current neural networks (RNNs) has the potential to provide

a number of benefits. Applying domain adaptation within

an RNN will allow the direct use of different features which

are well suited to their respective domains, whilst also en-

abling the learning of related temporal information from

multiple domains at the same time. Additionally, when

RNNs are used with raw sensor output, the only place where

domain adaptation can occur is within the RNN.

LSTMs are an obvious candidate for modification to be-

come multi-domain aware, as their ability to remember in-

formation for a long period of time makes them particu-

larly well suited to applications such as frame-based ac-

tion recognition (which we focus on here), and language

modelling, amongst others. Greff et al. [12] evaluated 8

different LSTM cell types, and found there was very lit-

tle difference between them. A number of works have at-

tempted to incorporate batch normalisation into an LSTM

framework [24, 4]. In [4], Recurrent Batch Normalisation

consists of normalisation of two sets of weights; Input-to-

hidden weight normalisation can be thought of as standard

batch normalisation, and this is used in conjunction with

hidden-to-hidden normalisation. They found that perform-

ing a separate normalisation for each timestep achieved bet-

ter performance due to initial activations being dissimilar

to values which are converged to after multiple timesteps.

We revisit the batch-normalised LSTM (BNLSTM) in Sec-

tion 3.

3. Dual-Domain LSTM

In this section, we propose the DDLSTM, capable of op-

erating on arbitrary sequential data, which we evaluate in

the context of online action recognition. It is able to jointly

learn temporal dependencies from two domains: both in-

dependent temporal dependencies per domain, as well as

common cross-domain temporal dependencies.

Fig. 1a shows a standard LSTM trained on one dataset.

Fig. 1b shows a standard LSTM trained jointly on two

datasets (i.e. each batch contains examples from both). This

generalises to cases where the labels in the two datasets do

not necessarily match. Should the labels match, a single

shared output vector can be used. However, when each do-

main has its own set of labels, predictions can be defined as

concatenated label vectors, with the first part of the output

vector corresponding to predictions for the first dataset’s la-

bels, and the second part corresponding to predictions for

the second dataset’s labels. While this architecture learns

the mapping from both input domains to shared or distinct

output labels, the model is likely to learn each domain inde-

pendently, as no effort to align the input from both domains

is incorporated in the architecture.

Before introducing the DDLSTM for aligning and jointly

learning from two domains, we revisit the BNLSTM for sin-

gle domain batch normalisation from [4]. Fig. 1c shows the

BNLSTM trained on a single dataset. We choose to base

the DDLSTM on the BNLSTM architecture for two main

reasons. First, the BNLSTM demonstrated superior results

over the standard LSTM in applications such as language

modelling and simple sequential MNIST [4]. Second, and

perhaps more importantly, it incorporates batch normalisa-

tion, which makes it suitable for adaptation to work with

the domain-mixing aspect (via batch normalisation) of au-

tomatic domain alignment layers. Its formulation in [4] is

7853



0 1 0
0 1 0
0 1 0
0 1 0

LSTM

D1

xt

ht

ct

ht−1

ct−1

ht

batch features

D1

batch predictions

(a) Standard LSTM trained

on one dataset.

0 1 0
0 1 0

0 1 0
0 1 0

LSTM

0 0 0
0 0 0

0 0 0
0 0 0

D1

D2

xt

ht

ct

ht−1

ct−1

ht

batch features

batch predictions
(concatenated)

D1

D2

(b) LSTM trained jointly

on two datasets, with con-

catenated labels.

0 1 0
0 1 0
0 1 0
0 1 0

D1

xt

ht

ct

ht−1

ct−1

ht

batch features

D1

batch predictions

BNLSTM

(c) BNLSTM trained on

one dataset. BN on feature

input and hidden-to-hidden

input and output.

xt

ht

ct

ht−1

ct−1

ht

DDLSTM

0 1 0
0 1 0

0 1 0
0 1 0

0 0 0
0 0 0

0 0 0
0 0 0

batch predictions
(concatenated)

D1

D2

D1

D2

batch features

(d) DDLSTM with concate-

nated labels. Dual-domain

BN on feature and hidden-

to-hidden inputs.

Figure 1: Proposed DDLSTM (d) in comparison to other LSTM architectures and training procedures: (a) single domain

LSTM, (b) jointly trained LSTM, (c) single domain batch-normalised LSTM.

given as:




f̃t

ĩt
õt

g̃t




= BN (Whht−1; γh, βh)
+BN (Wxxt; γx, βx) + b

(1)

ct = σ
(
f̃t

)
⊙ ct−1 + σ

(
ĩt

)
⊙ tanh (g̃t) (2)

ht = σ (õt)⊙ tanh (BN (ct; γc, βc)) (3)

Equation 1 contains the forget gate layer (̃f ), input gate

layer (̃i), output gate layer (õ) and layer used to gener-

ate candidates to change the cell state later on (g̃). Here,

the normalisation of the Wxxt term can be thought of

as input-to-hidden normalisation (as it operates on the in-

put at the current timestep, xt). The normalisation of the

Whht−1 term can be thought of as hidden-to-hidden nor-

malisation, as it operates on the output of the cell at the pre-

vious timestep (ht−1). Equation 2 gives the new cell state

ct. Note how it is not normalised, which allows the gra-

dient to flow through timesteps. Equation 3 gives the cell

output, where ct is normalised to match the õ term. The

batch normalisation function [4] is:

BN (h; γ, β) = β + γ ⊙
h− Ê[h]√
V̂ar[h] + ǫ

(4)

where β and γ are the offset and scale, fixed at 0 and 0.1

in practice. The BNLSTM above assumes the observations

come from a single domain (Fig. 1c). We next propose to

expand this to work on samples from two domains, D1, D2.

Fig. 1d introduces DDLSTM, proposed in this paper,

which is designed to jointly learn temporal dependencies in

two datasets, utilising the power of LSTMs in learning both

short- and long-term dependencies. We do this by first us-

ing concatenated label vectors. If D1 has L1 labels and D2

has L2 labels, then the one-hot label vector provided to the

LSTM will be L1 + L2 dimensional. Labels corresponding

to D1 occupy entries 0 to L1 − 1, and labels corresponding

to D2 occupy entries L1 to L1+L2−1. Another, more cru-

cial, modification is to construct each batch with samples

from D1 and D2, so the BNLSTM can be jointly trained on

both. The first n1 samples in the batch are from D1, while

the rest (n2 = N − n1) are from D2.

The standard BNLSTM is not suitable for dual domains,

as the two domains are likely to have different means and

variances. In order to address this issue, a separate batch

normalisation can be performed for samples from each do-

main. This would be sufficient but would, yet again, ignore

any shared (cross-domain) temporal dependencies. We aim

to learn cross-contamination between domains, when calcu-

lating batch statistics, as follows.

For each domain Di, we aim to learn a corresponding

cross-contamination factor αi which is used to determine

the contributions of samples from the other domain to be

included in the mean and variance calculations. Each αi is

constrained such that ni ≤ αiN ≤ N . A higher αi indi-

cates that more cross-contamination occurs and vice versa.

Note that this cross contamination is required for accurate

variance calculation – if only means were required, then a

weighted average of means for D1 and D2 could be used.

The contribution function, τi, then determines the contribu-

tion of the j’th sample in the batch for each domain, for

a given parameter αi. Each domain has its own contribu-

tion function (remember that samples from D1 appear first

in each batch), defined as:

7854



α1N

1− α2N

τ2 τ1

D1

D2

Contribution
0.0 0.5 1.0

Batch features
Batch index

0

N − 1

Figure 2: Illustration of the contribution functions given in

Equations 5 (red) and 6 (yellow). The contribution of sam-

ples from both D1 and D2 to D1’s batch statistics is given

by τ1, which is governed by the variable α1. Similarly, α2

governs τ2, which gives the contribution of samples from

both datasets to the batch statics of D2.

τ1(α1, j) =
1− tanh(j − α1N)

2
(5)

τ2(α2, j) =
1 + tanh(j − α2N)

2
(6)

An illustration of this process is given in Fig 2.

This can be used to redefine the batch normalisation

function which learns from one domain (Equation 4) with

a dual-domain batch normalisation function, DDBN:

DDBN (h; γ, β, α1, α2) = β+γ⊙
h− D̂DE[h, α1, α2]√
D̂DVar[h, α1, α2] + ǫ

(7)

Instead of using standard expectation and variance calcula-

tions, DDBN relies on the contribution functions given in

Equations 5 and 6 to give the expectation and variance for a

weight w at a specific timestep from each Di as:

DDEi(w) =

∑N

j=1
wjτi(αi, j)

∑N

j=1
τi(αi, j)

(8)

DDVari(w) =

∑N

j=1

(
wj − Ei(w)

)2
τi(αi, j)

∑N

j=1
τi(αi, j)

(9)

where wj denotes the value of w corresponding to the j’th

sample in the batch.

The main advantage of operating on the α values with

tanh, rather than just selecting samples as in [2], is that it

allows the whole process to be differentiable, and α val-

ues can be learned as part of the LSTM backpropogation-

through-time process. During training, DDEi and DDVari
are estimated from the batch, and population wide esti-

mates are updated for both domains as more batches are

processed. When testing an unseen sample, a flag is passed

indicating which dataset the sample belongs to, and the

dataset’s population estimates are used for normalisation.

Fig. 3 shows this training and testing process.

Note in Fig. 1d, two DDBN functions are applied: input-

to-hidden, and hidden-to-hidden. While a different set of

xt

ht

ct

ht−1

ct−1

ht

DDLSTM

0 1 0
0 1 0

0 1 0
0 1 0

0 0 0
0 0 0

0 0 0
0 0 0

batch predictions
(concatenated)

D1

D2

D1

D2

batch features

(a) Joint training

xt

ht

ct

ht−1

ct−1

ht

DDLSTM

0 1 0 0 0 0

D1

test sample features

test sample prediction

(b) Test on D1

xt

ht

ct

ht−1

ct−1

ht

DDLSTM

0 1 00 0 0

D2

test sample features

test sample prediction

(c) Test on D2

Figure 3: DDLSTM joint training and testing on each

dataset in turn. During testing, a flag specifying which

dataset the sample comes from is passed to the DDBN lay-

ers in order to use the correct batch statistics.

α parameters could be used for each, we found that a sin-

gle set of parameters gives better performance, presumably

because there is similar dataset crossover at the hidden-to-

hidden and input-to-hidden stages, and fewer parameters

need to be learned. Given these findings, we can define the

DDLSTM, highlighting proposed differences in blue, as:




f̃t

ĩt
õt

g̃t




= DDBN (Whht−1; γh, βh, α1, α2)
+DDBN (Wxxt; γx, βx, α1, α2) + b

(10)

with ct and ht defined as previously in Equations 2 and 3.

DDBN was also trialled instead of the BN function in Equa-

tion 3, and found to be be less effective (with regard to both

the results and stability during training). We hypothesise

that this is because there is little point in effectively per-

forming DDBN on the same data twice, and it would con-

fuse the calculation of the final class probabilities.

Fig. 4 extends the proposed DDLSTM to two layers, and

highlights where in the cell different forms of batch nor-

malisation occur. Note that the parameters α are shared

between timesteps, along with the rest of the LSTM cell,

but the dual-domain batch normalisations are run individu-

ally for each timestep. Whilst the number of samples from

D1 (n1) and D2 (n2) in each batch can vary, in our experi-

ments we set n1 = n2 = N/2. If either n1 or n2 are zero

(i.e. training data is only drawn from one domain), then the

DDLSTM reduces to the BNLSTM [4].

The Multi-layer DDLSTM can benefit from a gradual

increase in cross-contamination, from lower to higher lay-

ers. This is based on the assumption that more shared infor-

mation will be present in higher-layer representations than

domain-specific lower-layers. This was shown to be the

case in CNNs [2] where cross-contamination increases as

the network goes from deep to shallow. In Section 5, we

test DDLSTM architectures with up to 10 layers, and show

3 layers give the best performance.

7855



D2

x

x x

tanh

+

tanhσ σ σ

DDBN

DDBN BN

xtxt−1xt−2

h1

t−2 h1

t−1
h1

t

h0

t

h0

t−1
h0

t−2

h1

t

h0

t−1

h0

t

h0

t−2

h1

t−2
h1

t−1

c0t−2
c0t−1

c1t−2
c1t−1

c1t

c0t

α0

1
,α0

2
α0

1
,α0

2
α0

1
,α0

2

α1

1
,α1

2
α1

1
,α1

2
α1

1
,α1

2

α0

1
,α0

2

D1

xt

h0

t

h0

t−1
h0

t

c0t−1
c0t

Figure 4: Multi-layer DDLSTM architecture (left), and a DDLSTM cell (right). Note that αs are shared, along with other

LSTM parameters, between timesteps of the same level. However, the dual-domain batch normalisation (which uses α values

to determine the amount of cross-contamination) is calculated separately for each timestep.

(a) Breakfast (b) 50 Salads (c) MPII Cooking 2

Figure 5: Visualised comparative results for each dataset. Colours indicate the second dataset used in DDLSTM in each case.

For example, (a) shows the results for Breakfast trained with 50 Salads (blue) or trained with MPII Cooking (red).

4. Datasets

For this work, we use the three largest datasets of

cooking-related activities with framewise action labels,

which are all based around activities in the kitchen. These

are the Breakfast [21], 50 Salads [40] and MPII Cook-

ing 2 [36] datasets. There is very little label crossover as

they are captured in different environments, with different

viewpoints, participants and recipes. However, we assume

temporal dependences in the common tasks can be lever-

aged during a shared training process. Some visual exam-

ples are given, along with qualitative results of some exper-

iments, in Figure 6. For all datasets in this paper, 4 train/test

splits are used, with 75% training and 25% testing. All

splits use leave-person-out, i.e. no participant appears in

both training and testing sets from the same split.

Note that datasets such as UCF [39], HMDB [23] and

Kinetics [3] are not suitable here because they only contain

a single action class per video sequence. For online action

classification, where each frame is classified as soon as it

is seen, multiple actions are required for each video to en-

sure a robust evaluation. Datasets which would fit this cri-

teria include THUMOS [17] and ActivityNet [15], but they

lack the task related-ness of Breakfast, 50 Salads and MPII

Cooking, as we show in Section 5.4.

Breakfast [21]: The Breakfast dataset contains 433 se-

quences performed by 52 participants, containing 3078 ac-

tions across 50 classes (including a background class) in 18

different kitchens. All the sequences are one of 10 break-

fast routines such as “cooking scrambled eggs” and “mak-

ing tea”, and no specific recipes are followed. For the exper-

iments in this paper, the lowest level action labels are used.

Examples include “pour cereal” and “smear butter”.

50 Salads [40]: The 50 Salads dataset contains 50 videos,

by 25 participants. There are 52 of the lowest level ac-

tion classes (including the background class which we have

added), which gives a total of 2967 labelled actions. Exam-

ple actions include “cut tomato prep”, “cut tomato core”,

and “cut tomato post”. These prep- and post- labels are not

found in the other two datasets.

MPII Cooking 2 Salads [36]: The MPII Cooking 2

dataset contains 275 sequences from 30 participants in one

kitchen. It consists of 14105 actions across 88 classes (in-

7856



Figure 6: A 1000 frame section from 50 Salads (left) and MPII cooking 2 (right). GT shows the ground truth, LSTM indicates

a standard LSTM fine-tuned, and DDLST is jointly trained on (Breakast and 50 Salads left; MPII and 50 Salads right).

D1 D2 Training LSTM Type D1 Avg D2 Avg

50 Salads MPII Cooking 2 Single None 41.1 38.3

50 Salads MPII Cooking 2 Joint LSTM 41.6 39.0

50 Salads MPII Cooking 2 Joint BNLSTM 32.4 22.6

50 Salads MPII Cooking 2 D1,D2 LSTM 04.4 38.7

50 Salads MPII Cooking 2 D2,D1 LSTM 43.0 00.0

50 Salads MPII Cooking 2 Joint DDLSTM 47.1 41.5

Breakfast 50 Salads Single None 24.5 41.1

Breakfast 50 Salads Joint LSTM 24.7 40.5

Breakfast 50 Salads Joint BNLSTM 18.4 37.0

Breakfast 50 Salads D1,D2 LSTM 00.0 42.5

Breakfast 50 Salads D2,D1 LSTM 25.4 08.5

Breakfast 50 Salads Joint DDLSTM 29.1 46.3

Breakfast MPII Cooking 2 Single None 24.5 38.3

Breakfast MPII Cooking 2 Joint LSTM 26.3 38.8

Breakfast MPII Cooking 2 Joint BNLSTM 22.5 30.9

Breakfast MPII Cooking 2 D1,D2 LSTM 00.0 39.1

Breakfast MPII Cooking 2 D2,D1 LSTM 25.3 01.0

Breakfast MPII Cooking 2 Joint DDLSTM 30.5 40.1

Table 1: Average results, over splits, on pairs of the three

datasets. A comparison of the Dual-Domain LSTM is

compared to BNLSTM and standard LSTM using differ-

ent training approaches (joint training, pre-training on D1

and fine-tuning on D2 and vice versa). None: frame-level

classification without any temporal modelling.

cluding the background class which we have added). Exam-

ple actions include “shake”, “spread”, and “apply plaster”.

5. Experiments

In this section we detail frame-based feature extraction,

and provide comparative analysis against other LSTM ar-

chitectures. In all experiments, frame-based classification

accuracy is reported. Implementation Details: For each

LSTM type, 128 hidden units are used per cell. We use

a batch size of 128 with a 50/50 split between datasets,

so each batch contains 64 sequences from each of the two

datasets being evaluated. A learning rate of 0.01 is used

for 50,000 iterations, and all α values are initialised to 0.75.

Other values between 0.5 and 1 were trialled, but made little

difference.

5.1. Online frame­based Results

We are particularly interested in online action recog-

nition, that is the ability to recognise actions given cur-

rent and past observations, without an insight into future

frames. The input to each of the tested LSTM architectures

are frame-level features extracted from a CNN. For each

split (from each dataset), Inception V2 [41] (initialised with

HMDB51 weights [23]) is trained using the training split to

classify frames individually. This model is then used to ex-

tract features for test images. The activations from the last

layer of the network (i.e. the logits) are extracted to use as

features. Baselines for single datasets are given in Table 1.

It has been shown that directly predicting the next ac-

tion boundary provides better performance on frame-based

classification problems [26]. Following the method for pre-

diction in this work, we first train an LSTM architecture (1

layer deep, history size 200 frames), where the loss for a se-

quence is the KL divergence between Gaussians at the next

action boundary and the current boundary prediction for ev-

ery frame. This boundary prediction and the original fea-

tures are then fed as input to the various LSTM architectures

(3 layers deep with a history of 200 frames), trained using

a softmax loss. Concatenated label vectors, as illustrated

earlier in Fig. 1, are used for all experiments. We evaluate

frame-based action recognition on the three datasets intro-

duced in Section 4.

The following LSTM architectures and training proto-

cols are compared:

• LSTM jointly trained on two datasets.

• LSTM pre-trained on one and fine-tuned on the other.

• BNLSTM [4] jointly trained on two datasets.

• DDLSTM jointly trained on two datasets.

Table 1 gives the results for these experiments, averaged

over all four splits. A corresponding visualisation for these

averages can be seen in Fig. 5. It shows that the DDL-

STM outperforms the jointly trained and fine-tuned LSTMs

as well as the jointly trained BNLSTM across all pairs of

datasets. Compared to the next best performing method

for each dataset pair, where the second best is a differ-

ent method for each case, there are increases of 5.1% and

2.5% for 50 Salads and MPII Cooking 2, 3.7% and 3.8%

for Breakfast and 50 Salads and 4.2% and 1.0% for Break-

fast and MPII Cooking 2. It is expected that MPII Cook-

ing 2, being the largest dataset, would benefit less from

cross-dataset training than the two smaller datasets. Quali-

tative results are shown in Fig. 6, comparing DDLSTM to

the second best performing LSTM architecture in each case.

7857



α0

1
,α0

2
α0

1
,α0

2
α0

1
,α0

2

α1

1
,α1

2
α1

1
,α1

2
α1

1
,α1

2

α2

1
,α2

2
α2

1
,α2

2
α2

1
,α2

2

α0

1

α1

1

α2

1

α2

2

α1

2

α0

2

α2

1
0 10000 20000 30000 40000 50000

0.5

0.6

0.7

0.8

0.9

1.0

α2

2
0 10000 20000 30000 40000 50000

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7: Examples of α progress during training. The graphs on the right show how α’s perform with different initialisations.

D1 D2 LSTM Layers D1 Avg D2 Avg

50 Salads MPII Cooking 2 1 45.7 41.3

50 Salads MPII Cooking 2 2 46.6 41.0

50 Salads MPII Cooking 2 3 47.1 41.5

50 Salads MPII Cooking 2 4 46.1 40.6

50 Salads MPII Cooking 2 5 41.0 40.3

50 Salads MPII Cooking 2 10* 39.7 38.0

Breakfast 50 Salads 1 28.4 45.0

Breakfast 50 Salads 2 29.0 45.2

Breakfast 50 Salads 3 29.1 46.3

Breakfast 50 Salads 4 28.6 44.3

Breakfast 50 Salads 5 29.0 46.0

Breakfast 50 Salads 10* 25.5 40.7

Breakfast MPII Cooking 2 1 29.2 40.8

Breakfast MPII Cooking 2 2 29.9 40.1

Breakfast MPII Cooking 2 3 30.5 40.1

Breakfast MPII Cooking 2 4 30.5 38.8

Breakfast MPII Cooking 2 5 30.3 38.4

Breakfast MPII Cooking 2 10* 28.1 35.6

Table 2: Average accuracies over all dataset splits, com-

paring DDLSTM architecture with different depths 1-10.

*Depth 10 used a history of 100 due to memory constraints.

5.2. Discussion

Table 2 gives an evaluation of how the number of lev-

els (or depth) of the DDLSTM architecture affects perfor-

mance. In general, there is a marginal improvement as the

number of levels increases up to 3 with a drop off after-

wards, although we observed one case where there was a

slight drop (MPII Cooking 2 when trained with Breakfast).

Fig. 7 shows an example of how the α values, which

control the dual-domain cross-contamination, change dur-

ing training. In [2], automatic domain alignment layers

were shown to use more cross-contamination for high-level

layers than low-level layers. We sometimes observed anal-

ogous behaviour, such as α0

1
, α1

1
and α2

1
. Here, α0

1
≈ 0.5

indicates no cross-contamination, while α2

1
≈ 1 indicates

total cross-contamination. However, other behaviours were

also seen, such as α0

2
, α1

2
and α2

2
. One possible explanation

is that the DDLSTMs are already being fed high-level fea-

tures, so there is a less drastic deep-to-shallow progression

in terms of what these features represent. This could also be

a reason for there being a small, rather than large, improve-

ment when increasing the depth of the DDLSTM network

(Table 2).

We noted earlier that the method is robust to initialisa-

tions of α values. Fig. 7 also shows how different initiali-

sations converge to similar α values after training. We note

that α values from multiple runs are unlikely to be identical,

given that batches contain random sample orderings.

5.3. Comparison to Published Results

Very few works have attempted online frame-level accu-

racy on these datasets, with most works focusing on offline

classification [16, 37, 25, 19, 38]. To compare to these, we

also evaluate DDLSTM with look-ahead, i.e. allowing it to

see half the training history size into the future when classi-

fying the current frame.

In Table 3, we report results on Breakfast, showing our

method outperforms published results operating online -

note that [7] only provides results on a single split in the

dataset. We use “offline multi-pass” to refer to methods that

iteratively optimise the classification of frames, by multi-

pass segmentation of the whole video. “Offline single pass”

methods have access to future frames, but only as a single

pass, e.g. bi-directional LSTM. “Online” methods classify

each frame as soon as it is seen, with no access to future

frames, e.g. uni-directional LSTM. We do not expect our

single-pass results to outperform multi-pass offline evalua-

tions, but provide these results for completion.

In Table 4, we compare to published offline results

on 50 Salads, using publicly available features from [25].

These use mid-level classes (17 classes plus a background

7858



Method Mode Accuracy

[22] offline multi-pass 56.3

[35] offline multi-pass 43.0

DDLSTM (look-ahead) w/f [22] offline single-pass 26.4

DDLSTM (look ahead) offline single-pass 32.6

[35] online 27.2

[7] (only evaluated on 1/4 splits) online 32.6

[32] online 28.5

DDLSTM w/f [22] online 23.8

DDLSTM online 29.1

Table 3: Comparative analysis on the Breakfast dataset, us-

ing our features as well as with features (w/f) from [22].

The DDLSTM uses the public features from 50 salads [25]

(used in Table 4) as its second domain.

Method Mode Accuracy

Bi-LSTM (1 layer) [25] offline single-pass 55.7

ED-TCN [25] offline single-pass 64.7

DDLSTM (look-ahead) w/f [25] offline single-pass 60.9

LSTM w/f [25] online 57.6

DDLSTM w/f [25] online 59.1

Table 4: Comparative analysis on the 50 salads dataset, us-

ing mid-level classes with features (w/f) from [25]. The

DDLSTM uses the public features from Breakfast [22] as

its second domain (used in Table 3).

class), which is significantly easier than what we report in

Table 1 where we use all 52 lowest-level classes. Our on-

line results and results with look ahead are only slightly

worse than others evaluated offline. We have not found any

published results for online performance on 50 salads mid-

level, or any other results using publicly available features.

5.4. Effect of Related Domain Adaptation

To investigate how much of the DDLSTM’s improve-

ment comes from exploiting related temporal information,

we evaluated whether 50 Salads (split 0) benefits equally

from three large-scale datasets with various levels of do-

main relatedness. We test on THUMOS [17] (features

from [10]), ActivityNet [15] (features from [15]) and EPIC

Kitchens [6] (ImageNet ResNet 50 features). Of these, only

EPIC presents a related ‘kitchen’ domain. THUMOS and

ActivityNet capture actions unrelated to the kitchen domain

and contain very few actions per sequence.

We report results in Table 5. Only by fine-tuning, re-

sults show that the related dataset EPIC provides best per-

formance. We observe no benefit to in jointly training using

DDLSTM with THUMOS or ActivityNet. We however ob-

serve clear improvements when jointly training with EPIC

Kitchens, for both EPIC (by 1.6%) and 50 Salads (by 4%).

We conclude that 1) DDLSTM is particularly suited for re-

lated domains, and that 2) a higher increase in accuracy is

expected for smaller datasets as these leverage missing tem-

D1 D2 Training LSTM Type D1 Acc D2 Acc

ActivityNet 50 Salads Pt/ft LSTM 44.4 42.1

ActivityNet 50 Salads Joint DDLSTM 44.3 42.2

Thumos 50 Salads Pt/ft LSTM 65.9 42.0

Thumos 50 Salads Joint DDLSTM 66.1 42.3

EPIC 50 Salads Pt/ft LSTM 31.5 44.9

EPIC 50 Salads Joint DDLSTM 33.1 48.9

Table 5: Classification accuracy when learning 50 salads

(split 0) from larger datasets. Pt/ft refers to results on D1

when pre-training on D2 and fine tuning on D1 and vice

versa. Figure shows that the large dataset with related do-

main (EPIC) performs better for pre-training, and shows

larger improvement using DDLSTM.

poral knowledge from the larger dataset.

6. Conclusion and Future Work

In this paper, the Dual-Domain LSTM (DDLSTM) was

introduced, which is capable of learning temporal informa-

tion from two domains at the same time. Given batches con-

sisting of samples from both domains, DDLSTM applies a

dual-domain batch normalisation on both input-to-hidden

and hidden-to-hidden LSTM weights. This calculates sep-

arate batch statistics for each domain, but learns a pa-

rameter which determines how much cross-contamination

between domains should be included in a fully differen-

tiable manner. The learnt parameters are shared across

timesteps, but the batch normalisation calculation is per-

formed on data at each timestep separately. We evaluated

the DDLSTM architecture on online action recognition, us-

ing three cooking datasets with multiple actions per video

and framewise labels. DDLSTM was found to outperform

(by a 3.5% average across all datasets) the standard LSTM

(both jointly trained, and pre-trained and fine-tuned) and the

batch-normalised LSTM upon which it builds.

This paper presents a number of opportunities (A-D) for

future investigation. A) Learning from more than two re-

lated datasets/domains at the same time. This would re-

quire modifications to the contribution functions (Equa-

tions 5 and 6) and an increase in the number of αs to

d(d − 1)l, where d and l are the number of datasets and

LSTM layers. B) Automatically adjusting the makeup of

each batch could provide performance improvements, in a

similar fashion to the way α values are leaned for cross-

contamination. C) Using an attention mechanism [34] to

determine which items within a batch are most useful for

cross-contamination. D) Incorporating frame-based domain

adaptation methods into the feature extractor as well as the

LSTM.

Acknowledgement: Research supported by EPSRC LO-

CATE (EP/N033779/1) and uses publicly available data.

7859



References

[1] P. P. Busto and J. Gall. Open Set Domain Adapta-

tion. In International Conference on Computer Vision,

2017. 1

[2] F. M. Carlucci, L. Porzi, B. Caputo, E. Ricci, and S. R.

Bulò. AutoDIAL: Automatic DomaIn Alignment Lay-

ers. In International Conference on Computer Vision,

2017. 1, 2, 4, 7

[3] J. Carreira and A. Zisserman. Quo Vadis, Action

Recognition? A New Model and the Kinetics Dataset.

In Computer Vision and Pattern Recognition, 2017. 2,

5

[4] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre,

and A. Courville. Recurrent Batch Normalization. In

arXiv, 1603.09025, 2016. 1, 2, 3, 4, 6

[5] G. Csurka, F. Baradel, and B. Chidlovskii.

Discrepancy-Based Networks for Unsupervised

Domain Adaptation : A Comparative Study. In

International Conference on Computer Vision, 2017.

2

[6] D. Damen, H. Doughty, G. M. Farinella, S. Fidler,

A. Furnari, E. Kazakos, D. Moltisanti, J. Munro,

T. Perrett, W. Price, and M. Wray. Scaling egocen-

tric vision: The epic-kitchens dataset. In European

Conference on Computer Vision, 2018. 1, 8

[7] R. De Geest and T. Tuytelaars. Modeling temporal

structure with LSTM for online action detection. In

Winter Conference on Applications of Computer Vi-

sion, 2018. 7, 8

[8] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venu-

gopalan, S. Guadarrama, K. Saenko, and T. Dar-

rell. Long-Term Recurrent Convolutional Networks

for Visual Recognition and Description. Transac-

tions on Pattern Analysis and Machine Intelligence,

39(4):677–691, 2017. 1

[9] Y. Du, W. Wang, and L. Wang. Hierarchical Recurrent

Neural Network for Skeleton Based Action Recogni-

tion. In Computer Vision and Pattern Recognition,

2015. 1

[10] J. Gao, Z. Yang, and R. Nevatia. Cascaded boundary

regression for temporal action detection. In British

Machine Vision Conference, 2017. 8

[11] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic

Flow Kernel for Unsupervised Domain Adaptation. In

Computer Vision and Pattern Recognition, 2012. 2

[12] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Ste-

unebrink, and J. Schmidhuber. LSTM: A Search

Space Odyssey. Transactions on Neural Networks and

Learning Systems, 28(10):2222–2232, 2017. 2

[13] A. Gretton, K. M. Borgwardt, M. J. Rasch,

B. Schölkopf, and A. J. Smola. A Kernel Method for

the Two-Sample-Problem. In Advances in Neural In-

formation Processing Systems, 2006. 1

[14] P. Haeusser, T. Frerix, A. Mordvintsev, and D. Cre-

mers. Associative Domain Adaptation. In Interna-

tional Conference on Computer Vision, 2017. 2

[15] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C.

Niebles. ActivityNet: A Large-Scale Video Bench-

mark for Human Activity Understanding. In Com-

puter Vision and Pattern Recognition, 2015. 5, 8

[16] D. A. Huang, L. Fei-Fei, and J. C. Niebles. Connec-

tionist temporal modeling for weakly supervised ac-

tion labeling. In European Conference on Computer

Vision, 2016. 7

[17] H. Idrees, A. R. Zamir, Y. G. Jiang, A. Gorban,

I. Laptev, R. Sukthankar, and M. Shah. The THU-

MOS challenge on action recognition for videos in

the wild. Computer Vision and Image Understanding,

155:1–23, 2017. 5, 8

[18] S. Ioffe and C. Szegedy. Batch Normalization: Accel-

erating Deep Network Training by Reducing Internal

Covariate Shift. In International Conference on Ma-

chine Learning, 2015. 2

[19] S. Jiao. Global for Coarse and Part for Fine: A Hierar-

chical Action Recognition Framework. International

Conference on Image Processing, pages 2630–2634,

2018. 7

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-

geNet Classification with Deep Convolutional Neural

Networks. In Advances In Neural Information Pro-

cessing Systems, 2012. 2

[21] H. Kuehne, A. Arslan, and T. Serre. The Language

of Actions: Recovering the Syntax and Semantics of

Goal-Directed Human Activities. In Computer Vision

and Pattern Recognition, 2014. 1, 5

[22] H. Kuehne, J. Gall, and T. Serre. An end-to-end gen-

erative framework for video segmentation and recog-

nition. In Winter Conference on Applications of Com-

puter Vision, 2016. 8

[23] H. Kuehne, T. Serre, H. Jhuang, E. Garrote, T. Poggio,

and T. Serre. HMDB: A Large Video Database for Hu-

man Motion Recognition. In International Conference

on Computer Vision, 2011. 5, 6

[24] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and

Y. Bengio. Batch Normalized Recurrent Neural Net-

works. In International Conference on Acoustics,

Speech and Signal Processing, 2016. 2

[25] C. Lea, M. D. F. Ren, A. Reiter, and G. D. Hager. Tem-

poral Convolutional Networks for Action Segmenta-

7860



tion and Detection. In Computer Vision and Pattern

Recognition, 2017. 7, 8

[26] Y. Li, C. Lan, J. Xing, W. Zeng, C. Yuan, and

J. Liu. Online Human Action Detection using

Joint Classification-Regression Recurrent Neural Net-

works. In European Conference on Computer Vision,

2016. 6

[27] J. Liu, G. Wang, L. Y. Duan, K. Abdiyeva, and A. C.

Kot. Skeleton-Based Human Action Recognition with

Global Context-Aware Attention LSTM Networks.

Transactions on Image Processing, 27(4):1586–1599,

2018. 1

[28] M. Long, J. Wang, G. Ding, J. Sun, and P. S.

Yu. Transfer Feature Learning with Joint Distribution

Adaptation. In Computer Vision and Pattern Recogni-

tion, 2013. 1

[29] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert.

Cross-stitch Networks for Multi-task Learning. In

Computer Vision and Pattern Recognition, 2016. 2

[30] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond Short

Snippets: Deep Networks for Video Classification. In

Computer Vision and Pattern Recognition, 2015. 2

[31] W. Nie, A. Liu, J. Yu, Y. Su, L. Chaisorn, Y. Wang, and

M. S. Kankanhalli. Multi-View Action Recognition by

Cross-Domain Learning. In International Workshop

on Multimedia Signal Processing, 2014. 2

[32] T. Perrett and D. Damen. Recurrent Assistance :

Cross-Dataset Training of LSTMs on Kitchen Tasks.

In International Conference on Computer Vision:

Workshop on Assistive Computer Vision and Robotics,

2017. 1, 8

[33] T. Perrett and M. Mirmehdi. Cost-Based Feature

Transfer for Vehicle Occupant Classification. In Asian

Conference on Computer Vision Workshop on Tech-

nology for Smart Vehicles, 2013. 1

[34] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and

G. W. Cottrell. A dual-stage attention-based recur-

rent neural network for time series prediction. In In-

ternational Joint Conference on Artificial Intelligence,

2017. 8

[35] A. Richard, H. Kuehne, A. Iqbal, and J. Gall.

NeuralNetwork-Viterbi: A framework for weakly su-

pervised video learning. In Computer Vision and Pat-

tern Recognition, 2018. 8

[36] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele.

A Database for Fine Grained Activity Detection of

Cooking Activities. In Computer Vision and Pattern

Recognition, 2012. 1, 5

[37] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and

M. Shao. A Multi-stream Bi-directional Recurrent

Neural Network for Fine-Grained Action Detection.

In Computer Vision and Pattern Recognition, 2016. 7

[38] H. Song, X. Wu, B. Zhu, Y. Wu, M. Chen, and Y. Jia.

Temporal Action Localization in Untrimmed Videos

using Action Pattern Trees. In Computer Vision and

Pattern Recognition, 2018. 7

[39] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A

Dataset of 101 Human Actions Classes From Videos

in The Wild. arXiv 1212.0402, 2012. 5

[40] S. Stein and S. J. McKenna. Combining Embedded

Accelerometers with Computer Vision for Recogniz-

ing Food Preparation Activities. In International Joint

Conference on Pervasive and Ubiquitous Computing,

2013. 1, 5

[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and

Z. Wojna. Rethinking the Inception Architecture for

Computer Vision. In Computer Vision and Pattern

Recognition, 2016. 6

[42] H. Venkateswara, J. Eusebio, S. Chakraborty, and

S. Panchanathan. Deep Hashing Network for Unsu-

pervised Domain Adaptation. In Computer Vision and

Pattern Recognition, 2017. 2

[43] Z. Wu, Y.-G. Jiang, J. Wang, J. Pu, and X. Xue.

Exploring Inter-feature and Inter-class Relationships

with Deep Neural Networks for Video Classifica-

tion. In ACM International Conference on Multime-

dia, 2014. 2

[44] V. W. Zheng, D. H. Hu, and Q. Yang. Cross-Domain

Activity Recognition. In International Conference on

Ubiquitous Computing, 2009. 2

7861


