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Abstract

The search for predictive models that generalize to the

long tail of sensor inputs is the central difficulty when devel-

oping data-driven models for autonomous vehicles. In this

paper, we use lane detection to study modeling and train-

ing techniques that yield better performance on real world

test drives. On the modeling side, we introduce a novel fully

convolutional model of lane detection that learns to decode

lane structures instead of delegating structure inference to

post-processing. In contrast to previous works, our convo-

lutional decoder is able to represent an arbitrary number

of lanes per image, preserves the polyline representation

of lanes without reducing lanes to polynomials, and draws

lanes iteratively without requiring the computational and

temporal complexity of recurrent neural networks. Because

our model includes an estimate of the joint distribution of

neighboring pixels belonging to the same lane, our formu-

lation includes a natural and computationally cheap defini-

tion of uncertainty. On the training side, we demonstrate

a simple yet effective approach to adapt the model to new

environments using unsupervised style transfer. By train-

ing FastDraw to make predictions of lane structure that are

invariant to low-level stylistic differences between images,

we achieve strong performance at test time in weather and

lighting conditions that deviate substantially from those of

the annotated datasets that are publicly available. We quan-

titatively evaluate our approach on the CVPR 2017 Tusim-

ple lane marking challenge, difficult CULane datasets [29],

and a small labeled dataset of our own and achieve com-

petitive accuracy while running at 90 FPS.

1. Introduction

Previous models of lane detection generally follow the

following three-step template. First, the likelihood that each

pixel is part of a lane is estimated. Second, pixels that clear

a certain threshold probability pmin of being part of a lane

are collected. Lastly, these pixels are clustered, for instance

Figure 1. Best viewed in color. We train a novel convolutional lane

detection network on a public dataset of labeled sunny California

highways. Deploying the model in conditions far from the training

set distribution (left) leads to poor performance (middle). Leverag-

ing unsupervised style transfer to train FastDraw to be invariant to

low-level texture differences leads to robust lane detection (right).

with RANSAC, into individual lanes.

Because the second and third steps in which road struc-

ture is inferred from a point cloud of candidate pixels are

in general not differentiable, the performance of models of

lane detection that follow this template is limited by the per-

formance of the initial segmentation. We propose a new

approach to lane detection in which the network performs

the bulk of the decoding, thereby eliminating the need for

hyper-parameters in post-processing. Our model “draws”

lanes in the sense that the network is trained to predict the

local lane shape at each pixel. At test time, we decode the

global lane by following the local contours as predicted by

the CNN.

A variety of applications benefit from robust lane detec-

tion algorithms that can perform in the wild. If the de-

tector is iterative, the detector can be used as an interac-

tive annotation tool which can be used to decrease the cost

of building high definition maps [16, 1]. For level 5 sys-

tems that depend on high definition maps, online lane de-
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Figure 2. We use a CNN to extract a semantic representation of the input image. This representation is decoded by three separate shallow

convolutional heads: a binary segmentation of pixels that belong to a lane (ph,w,0), and a categorical distribution over the pixels within a

taxicab distance L of the current pixel in the rows above and below (ph,w,1 and ph,w,−1 respectively). Because we include an end token in

the categorical distribution to train to the network to predict endpoints, the categorical distributions are 2L+1+1 = 2L+2 dimensional.

tection is a useful localization signal. Level 2 systems that

are not equipped to handle the computational load required

of high definition maps depend on models of lane detec-

tion equipped with principled methods of determining when

to notify the driver that the lane detection is uncertain. In

pursuit of solutions for these applications, we identify three

characteristics that a lane detection module should possess.

First, the lane detection algorithm must be able to rep-

resent any number of lanes of any length. Whereas vari-

ability in the number of instances of an object in an image

is an aspect of any kind detection problem, variability in

the dimensionality of a single instance is a more unique to

the lane detection problem; unlike bounding boxes which

have a precise encoding of fixed dimensionality, lane seg-

ments can be arbitrary length. Solutions that reduce lanes

to a constant dimensionality - such as by fitting them with

polynomials - lose accuracy on tight curves where accurate

lane detection or localization is important for safe driving.

Second, the detection algorithm must run in real-time.

Therefore, although there is variability in the number and

size of lanes in an image, whatever recursion used to iden-

tify and draw these lanes must be fast. Solutions to the

variable dimensionality problem that involve recurrent cells

[15] or attention [35] are therefore a last resort.

Finally, the detection algorithm must be able to adapt

quickly to new scenes. Sensors such as cameras and lidar

that are used in self-driving carry with them a long tail in

the distribution of their outputs. A lane detection algorithm

should be able to adapt to new domains in a scalable way.

We present an approach which addresses these problems

and is competitive with other contemporary lane detection

algorithms. Our contributions are

• A lane detection model that integrates the decoding

step directly into the network. Our network is autore-

gressive and therefore comes equipped with a natural

definition of uncertainty. Because decoding is largely

carried out by the convolutional backbone, we are able

to optimize the network to run at 90 frames per second

on a GTX 1080. The convolutional nature of FastDraw

makes it ideal for multi-task learning [20] or as an aux-

iliary loss [6].

• A simple but effective approach to adapt our model to

handle images that are far from the distribution of im-

ages for which we have public annotations. Qualitita-

tive results are shown in Figure 1 and Figure 6. While

style transfer has been used extensively to adapt the

output distribution of simulators to better match real-

ity [10], we use style transfer to adapt the distribution

of images from publicly available annotated datasets

to better match corner case weather and environmental

conditions.

2. Related Work

Lane Detection Models of lane detection generally in-

volve extracting lane marking features from input im-

ages followed by clustering for post-processing. On well-

maintained roads, algorithms using hand-crafted features

work well [2, 19]. Recent approaches such as those that

achieve top scores on the 2017 Tusimple Lane Detection

Challenge seek to learn these hand-crafted features in a

more end-to-end manner using convolutional neural net-

works. To avoid clustering, treating left-left lane, left lane,

right lane, and right-right lane as channels of the segmenta-

tion has been explored [29]. Projecting pixels onto a ground

plane via a learned homography is a strong approach for

regularizing the curve fitting of individual lanes [28]. Re-

search into improving the initial segmentation has been suc-
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cessful although results are sensitive to the heuristics used

during post-processing [12]. Recent work has improved

segmentation by incorporating a history of images instead

of exclusively conditioning on the current frame [39].

Lane detection is not isolated to dashcam imagery. Mod-

els that detect lanes in dashcams can in general be adapted

to detect lanes in lidar point-clouds, open street maps,

and satellite imagery [16, 23, 4]. The success of seman-

tic segmentation based approaches to lane detection has

benefited tremendously from rapid growth in architectures

that empirically perform well on dense segmentation tasks

[5, 26, 25]. Implicitly, some end-to-end driving systems

have been shown to develop a representation of lanes with-

out the need for annotated data [21, 7].

Style Transfer Adversarial loss has enabled rapid im-

provements in a wide range of supervised and unsupervised

tasks. Pix2Pix [18] was the first to demonstrate success in

style translation tasks on images. Unsupervised style trans-

fer for images [27, 38] and unsupervised machine trans-

lation [24, 3] use back-translation as a proxy for super-

vision. While models of image-to-image translation have

largely been deterministic [27, 38], MUNIT [17] extends

these models to generate a distribution of possible image

translations. In this work, we incorporate images generated

by MUNIT translated from a public dataset to match the

style of our own cameras. We choose MUNIT for this pur-

pose because it is unsupervised and generative. Previous

work has used data from GTA-V to train object detectors

that operate on lidar point clouds [37]. Parallel work has

shown that synthetic images stylized by MUNIT can im-

prove object detection and semantic segmentation [10]. We

seek to leverage human annotated datasets instead of simu-

lators as seeds for generating pseudo training examples of

difficult environmental conditions.

Drawing We take inspiration from work in other do-

mains where targets are less structured than bounding boxes

such as human pose estimation [8] and automated object an-

notation [1]. In human pose estimation, the problem of clus-

tering joints into human poses has been solved by inferring

slope fields between body parts that belong to the same hu-

man [8]. Similarly, we construct a decoder which predicts

which pixels are part of the same lane in addition to a seg-

mentation of lanes. In Polygon-RNN [9] and Sketch-RNN

[13], outlines of objects are inferred by iteratively drawing

bounding polygons. We follow a similar model of learned

decoding while simplifying the recurrence due to the rela-

tive simplicity of the lane detection task and need for real-

time performance.

3. Model

Our model maximizes the likelihood of polylines in-

stead of purely predicting per-pixel likelihoods. In doing

so, we avoid the need for heuristic-based clustering post-

processing steps [2]. In this section, we describe how we

derive our loss, how we decode lanes from the model, and

how we train the network to be robust to its own errors when

conditioning on its own predictions at test time.

3.1. Lane Representation

In the most general case, lane annotations are curves

[0, 1] → R
2. In order to control the orientation of the lanes,

we assume that lane annotations can be written as a function

of the vertical axis of the image. A lane annotation y there-

fore is represented by a sequence of {height, width} pixel

coordinates y = {y1, ..., yn} = {{h1, w1}, ..., {hn, wn}}
where hi+1 − hi = 1.

Given an image x ∈ R
3×H×W , the joint probability

p(y|x) can be factored

p(y|x) = p(y1|x)
n−1∏

i=1

p(yi+1|y1, ..., yi, x). (1)

One choice to predict p(yi+1|y1, ..., yi, x) would be to use

a recurrent neural network [16, 36]. Do decode quickly, we

assume most of the dependency can be captured by condi-

tioning only on the previous decoded coordinate

p(y|x) ≈ p(y1|x)
n−1∏

i=1

p(yi+1|yi, x). (2)

Because we assume hi+1 − hi = 1, we can simplify

p(yi+1|yi, x) = p(∆wi|yi, x) (3)

∆wi = wi+1 − wi. (4)

Lane detection is then reduced to predicting a distribution

over dw/dh at every pixel in addition to the standard per-

pixel likelihood. Decoding proceeds by choosing an initial

pixel coordinate and integrating.

To represent the distribution p(∆wi|yi, x), we could use

a normal distribution and perform regression. However,

in cases where the true distribution is multi-modal such as

when lanes split, a regression output would cause the net-

work to take the mean of the two paths instead of capturing

the multimodality. Inspired by WaveNet [34], we choose to

make no assumptions about the shape of p(∆wi|yi,x) and

represent the pairwise distributions using categorical distri-

butions with support ∆w ∈ {i ∈ Z|−L ≤ i ≤ L}∪{end}
where L is chosen large enough to be able to cover nearly

horizontal lanes and end is a stop token signaling the end

of the lane. At each pixel {h,w}, our network predicts

• ph,w,0 := p(h,w|x) - the probability that pixel {h,w}
is part of a lane.

• ph,w,1 := p({h+ 1,∆w} ∪ end|h,w, x) - the categor-

ical distribution over pixels in the row above pixel i, j
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within a distance L that pixel i+ 1, j + l is part of the

same lane as pixel i, j, or that pixel i, j is the top pixel

in the lane it is a part of.

• ph,w,−1 := p({h−1,∆w}∪end|h,w, x) - the categor-

ical distribution over pixels in the row below pixel i, j
within a distance L that pixel i+ 1, j + l is part of the

same lane as pixel i, j, or that pixel i, j is the bottom

pixel in the lane it is a part of.

Given these probabilities, we can quickly decode a full lane

segment given any initial point on the lane. Given some

initial position h0, w0 on lane y, we follow the greedy re-

cursion

y(h0) = w0 (5)

y(x+ sign) = y(x) + ∆w (6)

∆x = −L+ argmaxpx,y(x),sign (7)

where sign ∈ {−1, 1} depending on if we draw the lane up-

wards or downwards from x0, y0. Note that we can choose

any yi ∈ y as h0, w0 as long as we concatenate the results

from the upwards and downwards trajectories. We stop de-

coding when argmax returns the end token.

3.2. Architecture

To extract a semantic representation of the input image,

we repurpose Resnet50/18 [14] for semantic segmentation.

The architecture is shown in Figure 2. We use two skip

connections to upscale and concatenate features at a variety

of scales. All three network heads are parameterized by

two layer CNNs with kernel size 3. In all experiments, we

initialize with Resnets pretrained on Imagenet [30].

3.3. Loss

We minimize the negative log likelihood given by (2).

Let θ represent the weights of our network, x ∈ R
3,H,W an

input image, y = {{h1, w1}, ..., {hn, wn}} a ground truth

lane annotation such that hi − hi−1 = 1 and ym ∈ R
1,H,W

a ground truth segmentation mask of the lane. The loss L(θ)
is defined by

Lmask(θ) = − log(p(ym|fθ(x))) (8)

Lsequence(θ) =

−
∑

s∈{−1,1}

n∑

i=1

log(p(wi+s − wi|{hi, wi}, fθ(x))
(9)

L(θ) = Lmask(θ) + Lsequence(θ) (10)

Because the the task of binary segmentation and pairwise

prediction have different uncertainties and scales, we dy-

namically weight these two objectives [20]. We incorporate

Figure 3. In addition to predicting per-pixel likelihoods, we train

our network to output the pixels in the row above (blue) and be-

low (purple) that are in the same lane as the current pixel. We

also train pixels that are offset from annotated lanes to point back

to the annotated lane (b). We include the end token in the cate-

gorical distribution to signal the termination of a lane (c). Given

these predictions, we draw lanes by sampling an initial point then

greedily following arrows up and down until we reach end in ei-

ther direction and concatenating the two results.

a learned temperature σ which is task specific to weigh our

loss:

L(θ) =
1

σ2
mask

Lmask(θ) +
1

σ2
sequence

Lsequence

+ log σ2
maskσ

2
sequence.

(11)

During training, we substitute W = log σ2 into (11) for

numerical stability. Experiments in which we fixed W re-

sulted in similar performance to allowing W to be learnable.

However, we maintain the dynamically weighed loss for all

results reported below to avoid tuning hyperparameters.

3.4. Exposure Bias

Because our model is autoregressive, training ph,w,±1 by

conditioning exclusively on ground truth annotations leads

to drifting at test time [32]. One way to combat this issue

is to allow the network to act on its own proposed decoding

and use reinforcement learning to train. The authors of [1]

take this approach using self-critical sequence training [33]

and achieve good results.

Although we experiment with reinforcement learning,

we find that training the network to denoise lane annota-

tions — also known as augmenting datasets with “synthe-

sized perturbations” [6] — is significantly more sample ef-

ficient. This technique is visualized in Figure 3. To each

ground truth annotation y we add gaussian noise and train

the network to predict the same target as the pixels in y. We
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Figure 4. The top row shows three images xi from the Tusimple

dataset and their annotations. The bottom four rows display sam-

ples from G(xi) with the adjusted Tusimple annotations overlaid.

We use these additional training samples to bias the network to-

wards shape instead of texture [11].

therefore generate training examples

s ∼ ⌊N (0.5, σI)⌋ (12)

p(h,w + s, sign) = y(i+ sign)− w − s+ L (13)

where sign ∈ {−1, 1}. We tune σ as a hyperparameter

which is dependent on dataset and image size. We clamp

the ground truth difference y(i+sign)−w−s+L between

0 and 2L+ 1 and clamp w + s between 0 and the width of

the image.

3.5. Adaptation

The downside of data-driven approaches is that we have

weak guarantees on performance once we evaluate the

model on images far from the distribution of images that

it trained on. For this purpose, we leverage the MUNIT

framework [17] to translate images from public datasets

with ground truth annotations into a distribution of images

we acquire by driving through Massachusetts in a variety of

weather and lighting conditions.

To perform style transfer on the images in unordered

datasets D and D′, the CycleGAN framework [38] trains

an encoder-generator pair E,G for each dataset D and D′

such that G(E(x)) ≈ x for x ∼ D and difference between

the distributions y ∼ G′(E(x)) and y ∼ D′ is minimized,

with analogous statements for D′. The MUNIT framework

generalizes this model to include a style vector s ∼ N (0, I)
as input to the encoder E. Style translations are therefore

distributions that can be sampled from instead of determin-

istic predictions.

As shown in Figure 4, we use MUNIT to augment our

labeled training set with difficult training examples. Let

D = {xi,yi} be a dataset of images xi and lane annota-

tions yi and D′ = {xi} a corpus of images without labels.

Empirically, we find that style transfer preserves the geo-

metric content of input images. We can therefore generate

new training examples {x′,y′} by sampling from the dis-

tribution D′ ∼ {x′,y′} defined by

x,y ∼ D (14)

x′ ∼ G′(E(x, s))s∼N (0,I) (15)

y′ = y (16)

Although representation of lanes around the world are lo-

cation dependent, we theorize that the distribution of lane

geometries is constant. Unsupervised style transfer allows

us to adjust to different styles and weather conditions with-

out the need for additional human annotation.

4. Experiments

We evaluate our lane detection model on the Tusimple

Lane Marking Challenge and the CULane datasets [29].

The Tusimple dataset consists of 3626 annotated 1280x720

images taken from a dash camera as a car drives on Cal-

ifornia highways. The weather is exclusively overcast or

sunny. We use the same training and validation split as EL-

GAN [12]. In the absence of a working public leaderboard,

we report results exclusively on the validation set. We use

the publicly available evaluation script to compute accuracy,

false positive rate, and true positive rate.

Second, we adopt the same hyperparameters determined

while training on Tusimple and train our network on the

challenging CULane dataset. CULane consists of 88880

training images, 9675 validation images, and 34680 test im-

ages in a diversity of weather conditions scenes. The test set

includes environmental metadata about images such as if

the image is crowded, does not have lane lines, or is tightly

curved. We report evaluation metrics on each of these cases

as is done by CULane [29].

Finally, to evaluate the effectiveness of our model to

adapt to new scenes, we drive in Massachusetts in a di-

versity of weather conditions and record 10000 images of

dash cam data. Using publicly available source code, we

train MUNIT to translate between footage from the Tusim-

ple training set and our own imagery, then sample 10000

images from the generator. We note that upon evaluating

qualitatively the extent to which the original annotations

match the generated images, the frame of the camera is

transformed. We therefore scale and bias the height coor-

dinates of the original annotations with a single scale and
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Figure 5. The standard deviation of the distribution predicted by

FastDraw is plotted as error bars on a variety of images from

Tusimple test set. Our color map is thresholded at a standard de-

viation of 0 and 9 pixels. We find that the network is accurately

growing more uncertain in regions where the exact location of a

lane is not well defined, for instance when the lane marking is

wide, there are shadows, the lane is possibly a false positive, or

the lane is occluded by other vehicles.

bias across all images to develop D′.

w′
i = mwi + b (17)

Samples from the pseudo training example generator are

shown in Figure 4. A speed comparison of FastDraw to

other published models is shown in Table 2. For models

trained on images of size 128 × 256 we use L = 6 pixels

and σ = 2 pixels. For models trained on images of size

352× 640 we use L = 16 pixels and σ = 5 pixels.

5. Results

5.1. Tusimple

We train FastDraw on the Tusimple dataset. We train

for 7 epochs in all experiments with batch size 4 using the

Adam optimizer [22]. We initialize learning rate to 1.0e-4

and halve the learning rate every other epoch. To generate

the candidates for initial points of lanes, we mask the center

of the image and use DBSCAN from scikit-learn [31]

with ǫ = 5 pixels to cluster. Given these initial positions,

we follow the predictions of FastDraw to draw the lane

upwards and downwards.

We compare our algorithm quantitatively against

EL-GAN [12]. EL-GAN improves lane detection over

traditional binary segmentation by adding an additional

adversarial loss to the output segmentation. The segmen-

tations therefore approximate the distribution of possible

labels. However, this approach still requires a heuristic

decoder to convert the segmentation into structured lane

objects. FastDraw is competitive with EL-GAN by all

Tusimple metrics as shown in Table 1.

Method Acc (%) FP FN

EL-GAN (basic) 93.3 0.061 0.104

EL-GAN (basic++) 94.9 0.059 0.067

FastDraw Resnet18 94.9 0.061 0.047

FastDraw Resnet50 94.9 0.059 0.052

FastDraw Resnet50 (adapted) 95.2 0.076 0.045

Table 1. We use Tusimple evaluation metrics to compare quanti-

tatively with EL-GAN [12]. FastDraw achieves comparable per-

formance to EL-GAN with fewer layers. We note that while the

accuracy of adapted FastDraw achieves high accuracy, it also has

the highest false positive rate. We reason that the network learns a

stronger prior over lane shape from D′, but the style segmentation

does not always preserve the full number of lanes which results in

the side of the road being falsely labeled a lane in the D′ dataset.

5.2. Uncertainty

Because our network predicts a categorical distribution

at each pixel with domain −L <= l <= L, we can quickly

compute the standard deviation of this distribution and in-

terpret the result as errorbars in the width dimension. We

find that the uncertainty in the network increases in oc-

cluded and shadowy conditions. Example images are shown

in Figure 5. These estimates can be propagated through

the self-driving stack to prevent reckless driving in high-

uncertainty situations.

5.3. Is the learned decoder different from a simple
heuristic decoder?

A simple way to decode binary lane segmentations is to

start at an initial pixel, then choose the pixel in the row

above the initial pixel with the highest probability of be-

longing to a lane. To show that our network is not following

this simple decoding process, we calculate the frequency at

which the network chooses pixels that agree with this sim-

ple heuristic based approach. The results are shown in Table

3. We find that although the output of the two decoders are

correlated, the learned decoder is in general distinct from

the heuristic decoder.

Model Frames-Per-Second

Ours 90.31

H-Net [20] 52.6

CULane [21] 17.5

PolyLine-RNN [9] 5.7

EL-GAN [7] <10

Table 2. Because FastDraw requires little to no post-processing,

the runtime is dominated by the forward pass of the CNN back-

bone which can be heavily optimized.

11587



Figure 6. We demonstrate that our network can perform with high accuracy on the publicly annotated dataset we train on as well as images

collected from a diversity of weather conditions and scenes in Massachusetts. Column 1 shows the “lookup” head argmaxph,w,1, column

2 shows the “lookdown” head argmaxph,w,−1, column 3 shows the per-pixel likelihood ph,w,0, and column 4 shows the decoded lanes on

top of the original image. Columns 4-8 show the analogous visual for adapted FastDraw. Images in the top 4 rows come from the Tusimple

test set. The rest come from our own driving data collected in the wild on Massachusetts highways. We find that the data augmentation

trains the network to draw smoother curves, recognize the ends of lanes better, and find all lanes in the image. Even on Tusimple images,

the annotation improves the per-pixel likelihood prediction. At splits, the network chooses chooses a mode of the distribution instead of

taking the mean.
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|ph,w,1 − argmaxph+1,w+∆w,0| %

< 1 12.6

< 3 58.2

< 5 87.1

Table 3. For a series of decoded polylines, we calculate the dis-

tance between the pixel with maximum likelihood ph±1,w,0 in the

row above {h,w} with the chosen argmaxph,w,±1. We report the

percent of the time that the distance is less than one, three, and

five pixels. We find that the network is in general predicting val-

ues which agree with the ph,w,0 predictions. Deviation from the

naive decoder explains why the network still performs is able to

perform well when the segmentation mask is noisy.

ResNet-50 [29] FastDraw Resnet50

Normal 87.4 85.9

Crowded 64.1 63.6

Night 60.6 57.8

No line 38.1 40.6

Shadow 60.7 59.9

Arrow 79.0 79.4

Dazzle 54.1 57.0

Curve 59.8 65.2

Crossroad 2505 7013

Table 4. We compare FastDraw trained on CULane dataset to

Resnet-50 on the CULane test set. We do not filter the lane pre-

dictions from FastDraw and achieve competitive results. While

these scores are lower than those of SCNN [29], we emphasize

that architectural improvements such as those introduced in [29]

are complementary to the performance of the FastDraw decoder.

5.4. CULane

We train FastDraw on the full CULane training dataset

[29]. We use identical hyperparameters to those determined

on Tusimple with an exponential learning rate schedule with

period 1000 gradient steps and multiplier 0.95. FastDraw

find the model achieves competitive performance with the

CULane Resnet-50 baseline. IoU at an overlap of 0.5 as

calculated by the open source evaluation provided by [29]

is shown in Table 4. Of note is that FastDraw outperforms

the baseline on curves by a wide margin as expected given

that CULane assumes lanes will be well represented by cu-

bic polynomials while FastDraw preserves the polyline rep-

resentation of lanes.

5.5. Massachusetts

We evaluate the ability of FastDraw to generalize to new

scenes. In Figure 6 we demonstrate qualitatively that the

network trained on style transferred training examples in

addition to the Tusimple training examples can generalize

well to night scenes, evening scenes, and rainy scenes.

We emphasize that no additional human annotation was

Figure 7. We label lane boundaries in a 300 image dataset of “long

tail” images to quantitatively evaluate the effect of the data aug-

mentation. The precision/recall tradeoff for models trained on

the augmented dataset is much better than the tradeoff of mod-

els trained without. The effect of the adaptation is demonstrated

qualitatively in Figure 6.

required to train FastDraw to be robust to these difficult

environments.

Additionally, we plot the precision/recall trade-off of

FastDraw models trained with and without adaptation in

Figure 7. We use the same definition of false positive and

false negative as used in the Tusimple evaluation. The

augmentation compiles models that are markedly more

robust to scene changes. We believe that these results echo

recent findings that networks trained to do simple tasks

on simple datasets learn low-level discriminative features

that do not generalize [11]. Unsupervised style transfer

for data augmentation is offered as a naive but effective

regularization of this phenomenon.

6. Conclusion

We demonstrate that it is possible to build an accurate

model of lane detection that can adapt to difficult environ-

ments without requiring additional human annotation. The

primary assumptions of our model is that lanes are curve

segments that are functions of the height axis of an image

and that a lane can be drawn iteratively by conditioning ex-

clusively on the previous pixel that was determined to be

part of the lane. With these assumptions, we achieve high

accuracies on the lane detection task in standard and diffi-

cult environmental conditions.

References

[1] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient in-

teractive annotation of segmentation datasets with polygon-

rnn++. CoRR, abs/1803.09693, 2018. 1, 3, 4

[2] M. Aly. Real time detection of lane markers in urban streets.

CoRR, abs/1411.7113, 2014. 2, 3

[3] M. Artetxe, G. Labaka, E. Agirre, and K. Cho. Unsupervised

neural machine translation. CoRR, abs/1710.11041, 2017. 3

11589



[4] S. M. Azimi, P. Fischer, M. Körner, and P. Reinartz. Aerial

lanenet: Lane marking semantic segmentation in aerial im-

agery using wavelet-enhanced cost-sensitive symmetric fully

convolutional neural networks. CoRR, abs/1803.06904,

2018. 3

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. CoRR, abs/1511.00561, 2015. 3

[6] M. Bansal, A. Krizhevsky, and A. S. Ogale. Chauffeurnet:

Learning to drive by imitating the best and synthesizing the

worst. CoRR, abs/1812.03079, 2018. 2, 4

[7] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,

J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learn-

ing for self-driving cars. CoRR, abs/1604.07316, 2016. 3

[8] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), Jul 2017. 3

[9] L. Castrejón, K. Kundu, R. Urtasun, and S. Fidler. An-

notating object instances with a polygon-rnn. CoRR,

abs/1704.05548, 2017. 3

[10] A. Dundar, M. Liu, T. Wang, J. Zedlewski, and J. Kautz.

Domain stylization: A strong, simple baseline for synthetic

to real image domain adaptation. CoRR, abs/1807.09384,

2018. 2, 3

[11] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-

mann, and W. Brendel. Imagenet-trained cnns are biased to-

wards texture; increasing shape bias improves accuracy and

robustness. CoRR, abs/1811.12231, 2018. 5, 8

[12] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hof-

mann. El-gan: Embedding loss driven generative adversarial

networks for lane detection, 2018. 3, 5, 6

[13] D. Ha and D. Eck. A neural representation of sketch draw-

ings. CoRR, abs/1704.03477, 2017. 3

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. 4

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735–1780, Nov. 1997. 2

[16] N. Homayounfar, W.-C. Ma, S. Kowshika Lakshmikanth,

and R. Urtasun. Hierarchical recurrent attention networks

for structured online maps. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018. 1,

3

[17] X. Huang, M. Liu, S. J. Belongie, and J. Kautz. Mul-

timodal unsupervised image-to-image translation. CoRR,

abs/1804.04732, 2018. 3, 5

[18] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. CoRR,

abs/1611.07004, 2016. 3

[19] S. Jung, J. Youn, and S. Sull. Efficient lane detection based

on spatiotemporal images. IEEE Transactions on Intelligent

Transportation Systems, 17(1):289–295, Jan 2016. 2

[20] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using

uncertainty to weigh losses for scene geometry and seman-

tics. CoRR, abs/1705.07115, 2017. 2, 4

[21] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. Allen,

V. Lam, A. Bewley, and A. Shah. Learning to drive in a day.

CoRR, abs/1807.00412, 2018. 3

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014. 6

[23] A. Laddha, M. K. Kocamaz, L. E. Navarro-Serment, and

M. Hebert. Map-supervised road detection. In 2016 IEEE

Intelligent Vehicles Symposium (IV), pages 118–123, June

2016. 3

[24] G. Lample, L. Denoyer, and M. Ranzato. Unsupervised ma-

chine translation using monolingual corpora only. CoRR,

abs/1711.00043, 2017. 3

[25] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. CoRR, abs/1612.03144, 2016. 3

[26] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Fo-

cal loss for dense object detection. CoRR, abs/1708.02002,

2017. 3

[27] M. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-

image translation networks. CoRR, abs/1703.00848, 2017.

3

[28] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans,

and L. V. Gool. Towards end-to-end lane detection: an

instance segmentation approach. CoRR, abs/1802.05591,

2018. 2

[29] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as

deep: Spatial CNN for traffic scene understanding. CoRR,

abs/1712.06080, 2017. 1, 2, 5, 8

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017. 4

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011. 6

[32] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Se-

quence level training with recurrent neural networks. CoRR,

abs/1511.06732, 2016. 4

[33] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel.

Self-critical sequence training for image captioning. CoRR,

abs/1612.00563, 2016. 4

[34] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,

O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and

K. Kavukcuoglu. Wavenet: A generative model for raw au-

dio. CoRR, abs/1609.03499, 2016. 3

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all

you need. CoRR, abs/1706.03762, 2017. 2

[36] Z. Wang, W. Ren, and Q. Qiu. Lanenet: Real-time lane de-

tection networks for autonomous driving, 2018. 3

[37] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer. Squeeze-

segv2: Improved model structure and unsupervised domain

adaptation for road-object segmentation from a lidar point

cloud, 2018. 3

11590



[38] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. CoRR, abs/1703.10593, 2017. 3, 5

[39] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang.

Robust lane detection from continuous driving scenes using

deep neural networks. CoRR, abs/1903.02193, 2019. 3

11591


