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Abstract

Nowadays, the majority of state of the art monocular

depth estimation techniques are based on supervised deep

learning models. However, collecting RGB images with as-

sociated depth maps is a very time consuming procedure.

Therefore, recent works have proposed deep architectures

for addressing the monocular depth prediction task as a

reconstruction problem, thus avoiding the need of collect-

ing ground-truth depth. Following these works, we propose

a novel self-supervised deep model for estimating depth

maps. Our framework exploits two main strategies: refine-

ment via cycle-inconsistency and distillation. Specifically,

first a student network is trained to predict a disparity map

such as to recover from a frame in a camera view the asso-

ciated image in the opposite view. Then, a backward cycle

network is applied to the generated image to re-synthesize

back the input image, estimating the opposite disparity. A

third network exploits the inconsistency between the orig-

inal and the reconstructed input frame in order to output

a refined depth map. Finally, knowledge distillation is ex-

ploited, such as to transfer information from the refinement

network to the student. Our extensive experimental evalu-

ation demonstrate the effectiveness of the proposed frame-

work which outperforms state of the art unsupervised meth-

ods on the KITTI benchmark.

1. Introduction

In the last few years, deep learning-based approaches for

depth estimation [4, 20, 24, 37, 12, 42, 27, 31] have at-

tracted a growing interest, motivated, on the one hand, by

their ability to predict very accurate depth maps and, on

the other hand, by the importance of recovering depth in-

formation in several applications, such as robot navigation,

autonomous driving, virtual reality and 3D reconstruction.

Exploiting the availability of very large annotated

Figure 1. Outline of the proposed approach: from the right view

image, we predict the left image from which we re-synthesize the

right image. The inconsistencies are used by the inconsistency-

module to improve the depth estimation. The refined depth maps

are used to improve the Student Network via knowledge distilla-

tion.

datasets, Convolutional Neural Networks (ConvNets)

trained in a supervised setting are now state-of-the-art in

many computer vision tasks such as object detection [10],

instance segmentation [30], human pose estimation [29].

However, a major weakness of these approaches is the

need of collecting large-scale labeled datasets. In the case

of depth estimation, acquiring data is especially costly.

For instance, in the scenario of depth estimation for au-

tonomous driving, it implies driving a car equipped with

a laser LiDaR scanner for hours under diverse lighting and

weather conditions. Self-supervised depth estimation, also

referred to as unsupervised, recently emerged as an inter-

esting paradigm and an effective alternative to supervised

methods [26, 7, 28, 12, 33]. Roughly speaking, in the self-

supervised setting, stereo image pairs are considered as in-

put and a deep predictor is learned in order to estimate the

associated disparity maps. Specifically, the predicted dis-

parity is employed to synthesize, from a frame in a camera

view (e.g. from the left camera), the opposite view through

warping. The deep network is trained via gradient descent

by minimizing the discrepancy between the original and
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the reconstructed image. Importantly, even if stereo images

pairs are required for training, depth can be recovered from

a single image at test time.

In this paper, we follow this research thread and pro-

pose a novel self-supervised deep architecture for monocu-

lar depth estimation. The proposed approach, illustrated in

Fig 1, consists of a first sub-network, referred to as the stu-

dent network, which receives as input an image from a cam-

era view and predicts a disparity map such as to recover the

opposite view. On top of this network, we propose several

contributions. First, from the generated image, we propose

to re-synthesize the input image by estimating the opposite

disparity. The resulting network forms a cycle. Second, a

third network exploits the cycle inconsistency between the

original and the reconstructed input images in order to re-

fine the estimated depth maps. Our intuition is that incon-

sistency maps provide rich information which can be further

exploited, as they indicate where the first two networks fail

to predict disparity pixels. Finally, we propose to use the

principle of distillation in order to transfer knowledge from

the whole network, seen as a teacher, to the student net-

work. Interestingly, our framework produce two outputs,

corresponding to the depth maps estimated respectively by

the student and the teacher networks. This is extremely rel-

evant in practical applications, as the student network can

be exploited in case of low computation power or real-time

constraints.

Our extensive experiments on two large publicly avail-

able datasets, i.e. the KITTI [8] and the Cityscapes [2]

datasets, demonstrate the effectiveness of the proposed

framework. Notably, by combining the proposed cycle

structure with our inconsistency-aware refinement, our un-

supervised framework outperforms previous usupervised

approaches, while obtaining comparable results with the

state-of-the-art supervised methods on the KITTI dataset.

2. Related Work

In the last decade, deep learning models have greatly im-

proved the performance of depth estimation methods. The

vast majority of methods focus on a supervised setting and

the problem of predicting depth maps is cast as a pixel-

level regression problem [4, 24, 43, 21, 37, 39, 5]. The first

ConvNet approach for monocular depth prediction was pro-

posed in Eigen et al. [4], where the benefit of considering

both local and global information was demonstrated. More

recent works improved the performance of deep models by

exploiting probabilistic graphical models implemented as

neural networks [24, 35, 38, 37]. For instance, Wang et

al. [35] proposed integrating hierarchical Conditional Ran-

dom Fields (CRFs) into a ConvNet for joint depth estima-

tion and semantic segmentation. Xu et al. [38, 37] exploited

CRFs within a deep architecture in order to fuse information

at multiple scales. However, supervised approaches rely on

expensive ground-truth annotations and, consequently, lack

flexibility for deployment in novel environments.

Recently, several works proposed to tackle the depth es-

timation problem within an unsupervised learning frame-

work [19, 27, 33, 41, 31]. For instance, Garg et al. [7] at-

tempted to learn depth maps in an indirect way. They used

a ConvNet to predict the right-to-left disparity map from

the left image and then reconstructed the right image ac-

cording to the predicted disparity. They also introduced

a network architecture operating based on a coarse-to-fine

principle, i.e. they employed an encoder-decoder network

where the decoder first estimates a low resolution disparity

map and then refines it in order to obtain a map at higher

resolution. Improving upon [7], Godard et al. [12] pro-

posed to use a single generative network to estimate both

the left-to-right and the right-to-left disparity maps. Con-

sistency between the two disparities was exploited in form

of a loss in order to better constrain the model. Other recent

works demonstrated that temporal information and, in par-

ticular, considering multiple consecutive frames contribute

to improve depth estimation [34, 40, 11, 42]. In particular,

Zhou et al. [42] exploited temporal information to jointly

learn the depth and the camera ego-motion from monocular

sequences. Similarly, in [11], a deep network was designed

in order to estimate both the depth and the camera pose from

three consecutive frames. In this paper we focus on improv-

ing frame-level unsupervised depth estimation and we do

not exploit any additional information such as supervision

from related tasks (e.g. ego-motion estimation) or temporal

consistency. In this respect, our work can be regarded as

complementary to [42, 11].

The idea of exploiting cycle-consistency for depth es-

timation was recently investigated in [31]. Specifically,

Pilzer et al. [31] introduced a deep architecture for stereo

depth estimation which is organized in form of a cycle: two

sub-networks, corresponding to the two half-cycles, esti-

mate respectively the left-to-right and right-to-left dispari-

ties. They also showed that cycle consistency, together with

an adversarial loss, can greatly improve the quality of the

predicted depth maps. The main difference with our pro-

posal is that the architecture in [31] is designed for stereo

depth estimation whereas we focus on the monocular set-

ting. Moreover, contrary to [31], our architecture exploits

cycle inconsistency both at training and at test time. Si-

multaneously, Tosi et al. [32] proposed disparity refine-

ment and Yang et al. [39] proposed to compute the error

maps between the original input images and their cycle-

reconstructed versions and considered them as an additional

input to a second network which produces refined depth es-

timates. Opposite to our approach, the deep model in [39]

is trained using supervision derived by Stereo Direct Sparse

Odometry [36]. Furthermore, to construct the cycle, we ex-

ploit a backward network and introduce a distillation loss.
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Figure 2. The proposed approach is composed of two modules. A first network Gs predicts the right-to-left disparity map dl from the

right image and synthesizes the left image as described in Sec. 3.4. In the second module, a generator network Gb predicts the left-to-right

disparity map dr in order to re-synthesize the right image. The model obtained in this way forms a cycle. The cycle inconsistency is used

by a third network to predict the final disparity map. We use a set of losses (orange dot arrows) detailed in Sec. 3.4

.
Recently, knowledge distillation attracted a lot of atten-

tion [15]. This methodology consists in compressing a large

deep network (usually referred to as the teacher) into a

much smaller model (student) operating on the same modal-

ity. The student network is trained such that its outputs

match those of the teacher. Knowledge distillation has been

exploited for many computer vision tasks such as domain

adaptation [14], object detection [1], learning from noisy

labels [23] or facial analysis [25]. However, to the best of

our knowledge, this work is the first attempt to exploit distil-

lation for depth estimation. We claim that distillation is es-

pecially relevant for depth estimation since, in practical ap-

plications such as autonomous driving, real-time constraints

may impose limitations in term of network size. Note that,

we employ an unusual distillation scenario in which the stu-

dent network is a sub-network of the teacher.

3. Proposed Method

3.1. Overview

The aim of this work is to estimate the depth of a scene

from a single image. However, at training time, we consider

that we dispose of pairs of images {Il, Ir} of size H ×W ,

derived from a stereo pair and corresponding to the same

time instant. Here, Il denotes the left camera view and Ir

is the right camera view. Given Ir, we are interested in

predicting a correspondence map dl ∈ R
H×W , namely the

right-to-left disparity, in which each pixel value represents

the offset of the corresponding pixel between the right and

the left images. Finally, assuming that the images are recti-

fied, the depth at a pixel location (x, y) of the left image can

be recovered from the predicted disparity with dl =
f.b

d(x,y) ,

where b is the distance between the two cameras and f is

the camera focal length.

An overview of the proposed framework is shown in

Fig. 2. A first network Gs predicts the right-to-left disparity

map dl from the right image Ir, and synthesizes the left im-

age by warping Ir according to dl. Roughly speaking, the

network Gs is trained to minimize the discrepancy between

the real and the reconstructed left image (Sec. 3.4).

We employ a second generator network Gb that takes as

input the synthesized left image and predicts a left-to-right

disparity map dr that is used to re-synthesize the right im-

age. The model obtained in this way forms a cycle. This

cycle design has three advantages. First, at training time,

by sharing weights between Gs and Gb, the networks learn

to predict disparity maps from the images of the training

set (in the forward half-cycle Gs) but also from the syn-

thesized images (in the backward half-cycle Gb). In that

sense, the use of the cycle can be seen as a sort of data

augmentation. Second, in order to re-synthesize correctly

the right image, the second network Gb requires a correct

input left image. Thus, Gb imposes a global constraint

on the estimated disparity dl oppositely to standard pixel-

wise discrepancy losses, such as L1 or L2 that act only lo-

cally. Third, by comparing the input right image Ir and

the output right image Îr synthesized after applying our cy-

cle framework, we can measure the cycle inconsistency. At

a given location of the input image, if we observe no in-

consistency, Gs and Gb must have predicted correctly the

disparity maps. Conversely, in case of inconsistency, Gs or

Gb (or both) must have predicted incorrectly the disparity

maps. Note that inconsistencies may also appear on objects

regions that are visible in only one of the two views. In-
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terestingly, these regions are usually located on the object

edges. Therefore, looking at cycle inconsistency also pro-

vides information about object edges that can help to pre-

dict better depth maps. Importantly, this inconsistency can

be measured both at training and testing times, even if at

testing time, we dispose only of the right image.

The main contribution of this work consists in exploit-

ing the cycle inconsistency by training a third network in

order to improve the prediction performance and output a

refined depth map d
′
l. In addition, since employing our

inconsistency-aware network leads to more accurate depth

predictions, we propose to use the disparity maps predicted

by Gi in order to improve Gs training via a knowledge dis-

tillation approach.

Note that, another possible cycle approach, as proposed

in [39], would consist in using a single network to pre-

dict the two disparity maps. The two disparities can be

used to obtain the synthesized left image and then the re-

synthesized right image. Nevertheless, this approach has a

major disadvantage with respect to our approach, i.e., since

only the warping operator in employed between the two

synthesized images, and consequently the receptive field of

Îr in Il is very small. In particular, when implementing the

warping operator via bilinear sampling, the receptive field

of the warping operator in only 2 × 2. Therefore, the right

image reconstruction loss can act on the reconstructed left

image only locally. Conversely, our backward network Gb

imposes a global consistency on dl thanks to its large re-

ceptive field.

The outputs of our method correspond to the estimated

depth maps dl and d
′
l. While the estimated depth d

′
l corre-

sponding to the teacher model is typically more accurate, in

some applications, e.g. in resource-constrained settings, it

could be convenient to exploit only a small student network.

In the following, we describe the design of our cycled

network. Then, we introduce our novel inconsistency-aware

network. Finally, we present the optimization objective in-

cluding our proposed distillation approach.

3.2. Unsupervised Monocular Cycled Network

In this work, we adopt a setting in which the model

is trained without the need of ground truth depth maps.

This approach is often referred to as unsupervised or self-

supervised depth estimation. Roughly speaking, it consists

in training a network to predict a disparity map that can be

used to generate the left image from the right image. For-

mally speaking, we employ a first network Gs that takes as

input the right image Ir and predicts the right-to-left dis-

parity dl. Following [12], we adopt a U-Net architecture

for Gs. We employ a warping function fw(·) that synthe-

sizes the left view image by sampling from Ir according to

dl:

Îl = fw(dl, Ir). (1)

Importantly, fw(·) is implemented using the bilinear sam-

pler from the spatial transformer network [16] resulting in

a fully differentiable model. Consequently, the network can

be trained via gradient descent by minimizing the discrep-

ancy between Îl and Il (see Sec. 3.4 for details about net-

work training).

Inspired by [31], we employ a second network Gb in or-

der to re-synthesize the right image according to:

Îr = fw(dr, Îl). (2)

where:

dr = Gb(Îl) (3)

The Gb and Gs networks share their encoder parameters.

Note that, differently from the stereo depth model proposed

in [31], our second half-cycle network takes only the syn-

thesized left image as input. This crucial difference allows

the use of this cycle in the monocular setting at testing time.

Concerning the decoder networks, we adopt an architecture

composed of a sequence of up-convolution layers in which

the disparity is estimated and gradually refined from low to

full resolutions similarly to [12]. We obtain the estimated

left and the right disparity maps at each scale d
n
l and d

n
r ,

n ∈ {0, 1, 2, 3}, with sizes [H/2n,W/2n]. More precisely,

d
n
r is computed from the decoder feature map ξr

n of size

[H/2n,W/2n] via a convolutional layer. Then, dn
r is con-

catenated with ξr
n obtaining a tensor that is input to an up-

convolution layer in order to estimate the disparity at the

next resolution d
n−1
r .

3.3. InconsistencyAware Network

We define the inconsistency tensor as the difference be-

tween the input image Ir and the image Îr predicted by the

backward network Gb:

Ir = Ir − Îr (4)

The proposed inconsistency-aware network Gi takes as in-

put the concatenation of Ir, Ir and dl. We employ a net-

work architecture similar to the half-cycle monocular net-

work described in Sec. 3.2. However, we propose to pro-

vide to the encoder network the disparity maps d
n
l , n ∈

{1, 2, 3} estimated by Gs at each scale. More precisely, we

concatenate along the channel axis each disparity d
n
l with

network features of corresponding dimensionality.

The inconsistency-aware network Gi estimates the right-

to-left disparity d
′
l = Gi(Ir, Ir,dl,d

{1,2,3}
l ) and we recon-

struct the left view image Îl
′

by applying the warping func-

tion fw:

Î
′
l = fw(d

′
l, Ir) (5)

Similarly to Gs and Gb, Gi estimates low resolution dispar-

ity maps d′
l

n
, n ∈ {1, 2, 3} that are gradually refined from

low to full resolutions.
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3.4. Network Training and Knowledge Self
Distillation

In this section, we detail the losses employed to train the

proposed network in an end-to-end fashion.

Reconstruction. First, we employ a reconstruction and

stucture similarity loss for each network. Following [12],

we adopt the L1 loss to measure the discrepancy between

the synthesized and the real images and the structure simi-

larity loss LSSIM to measure the discrepancy between the

synthesized and the real images structure. By summing the

losses of the three networks Gs, Gb and Gi, we obtain:

L(0)
rec = λs[αLSSIM (̂Il, Il) + (1− α)||̂Il − Il||1]

+λb[αLSSIM (̂Ir, Ir) + (1− α)||̂Ir − Ir||1]

+λt[αLSSIM (̂I′l, Il) + (1− α)||̂I′l − Il||1]

(6)

where λs, λb and λt are adjustment parameters and α =

0.85. Similarly, we also compute a reconstruction loss L
(n)
rec

for the low resolution disparity maps. Following [11], we

upsample the low resolution d
n
l , dn

r and d
′
l

n
to H ×W and

use the warping operator fw to re-synthesize full resolution

images that are compared with the real images according to

the L1 loss. The total reconstruction loss is:

Lrec =
4

∑

n=0

L(n)
rec (7)

Self-Distillation. Finally, we propose to introduce a knowl-

edge distillation loss. As detailed in the experimental sec-

tion (Sec 4), the inconsistency-aware network outperforms

by a significant margin the simple half-cycle network Gs.

This boost is at the cost of a higher computation complexity.

The idea of the proposed self-distillation loss consists in dis-

tilling knowledge from inconsistency-aware network to the

half-cycle network Gs. Thus, we improve the performance

of Gs without adding any computation complexity at test-

ing time. To do so, we evaluate disparity and feature distil-

lation. For the first, we impose that the network Gd predicts

disparity maps similar to the output of inconsistency-aware

network. It can be seen as a distillation approach where Gs

plays the role of the student and the whole network (com-

posed of Gs, Gb and Gi) is the teacher. However, in our

particular case, the student network is a sub-network of the

teacher. From this perspective, we name this approach self-

distillation. The self-distillation loss is given by:

Ldist = ||dl − S(d′
l)||1 (8)

where S denotes the stop-gradient operation. In particu-

lar, the stop-gradient operation equals the identity function

when computing the forward pass of the back-propagation

algorithm but it has a null gradient when computing the

backward pass. The purpose of the stop-gradient is to avoid

that d′
l converges to dl. On the contrary, the goal is to help

dl to become as accurate as d′
l.

For the second, we impose that the decoder features

ξ′nr , n ∈ 0, 1, 2 of the teacher are similar to the features

ξnr of the student. The self-distillation loss is given by:

Ldist = ||ξnr − S(ξ′nr )||2 (9)

The total training loss is given by:

Ltot = Lrec + λdistLdist (10)

4. Experiments

We evaluate our proposed approach on two publicly

available datasets and compare its performance with state

of the art methods.

4.1. Experimental Setup

Datasets. We perform experiments on two large stereo

images datasets, i.e. KITTI [9] and Cityscapes [3]. Both

datasets are recorded from driving vehicles. Concerning the

KITTI dataset, we employ the training and test split of Eigen

et al. [4]. This split is composed of 22,600 training image

pairs, and 697 test pairs. We consider data-augmentation

with online random flipping of the images during training as

in [12]. For Cityscapes, images were collected with higher

resolution. To train our model we combine images from the

densely and coarse annotated splits to obtain 22,973 image-

pairs as in [31]. The test split is composed of 1,525 image-

pairs of the densely annotated split. The evaluation is per-

formed using the pre-computed disparity maps.

Evaluation Metrics. The quantitative evaluation is per-

formed according to several standard metrics used in pre-

vious works [4, 12, 35]. Let P be the total number of pixels

in the test set and d̂i, di the estimated depth and ground truth

depth values for pixel i. We compute the following metrics:

• Mean relative error (abs rel): 1
P

∑P

i=1
‖d̂i−di‖

di

,

• Squared relative error (sq rel): 1
P

∑P

i=1
‖d̂i−di‖

2

di

,

• Root mean squared error (rmse):
√

1
P

∑P

i=1(d̂i − di)2,

• Mean log 10 error (rmse log):
√

1
P

∑P

i=1 ‖ log d̂i − log di ‖2

• Accuracy with threshold τ , i.e.the percentage of d̂i
such that δ = max(di

d̂i

, d̂i

di

) < ατ . We employ α =

1.25 and τ ∈ [1, 2, 3] following [4].

4.2. Baselines for Ablation.

To perform the ablation study presented in Sec.4.3, we

consider the following baselines:
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• half-cycle: our basic building block, uses the forward

branch that takes Ir as input and generates dl to re-

construct the other stereo view Îl. Neither cycle-

consistency nor self-distillation are used in this model.
• cycle: a backward network is added to the half-cycle

model in order to reconstruct Îr from the estimated Îl.

Note that the backward network is used only at training

time. At test time, the output is the same as for the

half-cycle model.
• teacher, we stack the inconsistency-aware network af-

ter the cycle as described in Sec 3.3.
• student: the output of the inconsistency-aware network

is distilled in order to refine the first half-cycle. At test

time, the output and the computation complexity are

the same as in the half-cycle model.

In Tables 1, 2 and 3 we indicate with HC, C, T and S, the

half-cycle, cycle, teacher and student respectively; feat and

disp denote self-distillations of features and disparities.

Training Procedure. The whole network is trained follow-

ing an iterative procedure. First, we start by training the

forward half-cycle network for 10 epochs. In a second step,

we train the backward network decoder for 5 epochs with-

out updating the first half-cycle network. The whole cy-

cle is then jointly trained for further 10 epochs. Then, the

inconsistency-aware module is pretrained for 5 epochs. Fi-

nally, the whole network is jointly fine-tuned for 10 epochs.

Parameters. The model is implemented with the deep

learning library TensorFlow. Similarly to [12], the input

images are down-sampled to a resolution of 512×256 from

the original sizes which are 1226×370 for the KITTI dataset

and for CityScapes. In all our experiments we use a batch

size equal to 8 stereo image pairs and the Adam optimizer

with learning rate set to 10−5 following the recommenda-

tions of [22].

The half-cycle and cycle networks are trained with the

following loss parameters λs = 1, λb = 0.1 and λt = 0.

When training the teacher network we use λs = 0, λb = 0
and λt = 1. We weight the distillation loss Ldist with

λdist = 0.005 and λdist = 0.1 respectively, if feature distil-

lation or disparity distillation is applied. The joint training

of the full network is done with learning rate lr = 10−5,

loss parameters λs = 1, λb = 0.1, λt = 1 and λdist equal

to 0.005 in the case feature distillation and 0.1 in the case

of disparity distillation, respectively.

4.3. Results

Ablation Study. To demonstrate the validity of the pro-

posed contributions we first conduct an ablation study on

the KITTI dataset [9] and the CityScapes dataset [3]. Re-

sults are shown in Table 1 and Table 3, respectively.

We split the ablation in two parts where we employ two

different reconstruction loss variants. For the first part, as

in [12], we use a multi-scale reconstruction loss where the

Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

HC 0.1487 1.2942 5.800 0.246 0.805 0.925 0.965

C 0.1451 1.2943 5.850 0.242 0.796 0.924 0.967

T feat 0.1220 1.0433 5.321 0.229 0.834 0.933 0.968

T disp 0.1234 1.0509 5.283 0.228 0.834 0.934 0.968

S feat 0.1438 1.2806 5.834 0.241 0.797 0.926 0.968

S disp 0.1438 1.2551 5.771 0.238 0.797 0.927 0.969

[11] L1 loss

T feat 0.1017 0.8930 4.768 0.206 0.878 0.946 0.972

T disp 0.0983 0.8306 4.656 0.202 0.882 0.948 0.973

S feat 0.1474 1.2416 5.849 0.241 0.788 0.923 0.968

S disp 0.1424 1.2306 5.785 0.239 0.795 0.924 0.968

Table 1. Ablation study on KITTI dataset using the training and

testing split proposed by Eigen et al. [4]. The upper part shows

the results with the multiscale reconstruction L1 loss in [12], the

bottom part with the L1 loss proposed in [11].

Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

1-CN C 0.1533 1.3326 5.837 0.240 0.785 0.919 0.967

1-CN S disp 0.1503 1.2622 5.868 0.243 0.783 0.918 0.967

Ours S disp 0.1438 1.2551 5.771 0.238 0.797 0.927 0.969

1-CN T disp 0.1478 1.3609 5.952 0.243 0.793 0.921 0.966

Ours T disp 0.1234 1.0509 5.283 0.228 0.834 0.934 0.968

Table 2. Ablation study where our two-network cycle is replaced

by the single-network cycle from Yang et al. [39] (referred as to

1-CN).

Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

HC 0.4676 7.3992 5.741 0.493 0.735 0.890 0.945

C 0.4523 6.2604 5.381 0.557 0.736 0.888 0.946

T feat 0.4087 5.8777 4.394 0.334 0.846 0.940 0.967

T disp 0.3988 5.8752 4.293 0.316 0.848 0.941 0.968

S feat 0.4494 6.2599 5.343 0.421 0.739 0.891 0.947

S disp 0.4467 5.9012 5.297 0.473 0.736 0.890 0.946

[11] L1 loss

T feat 0.3878 5.8190 4.123 0.397 0.861 0.945 0.969

T disp 0.3846 6.2007 4.476 0.318 0.864 0.945 0.969

S feat 0.4455 6.2748 5.366 0.468 0.739 0.891 0.946

S disp 0.4305 5.9552 5.281 0.519 0.740 0.891 0.946

Table 3. Ablation study on the Cityscapes dataset. The upper

part shows the results with the multiscale reconstruction L1 loss

in [12], the bottom part with the L1 loss proposed in [11].

smaller scale reconstruction is compared with a downsam-

pled version of the stereo image. In contrast with that, for

the second part, we employ a more effective reconstruc-

tion loss, upsampling to input scale all the disparities before

warping as described in Sec. 3.4.

In Table 1 it is interesting to note that our intuition of

self-constraining the monocular student network with cy-

cled design improves, without requiring additional losses,

in several of the metrics compared to the simple forward

branch. This comes at the cost of doubling the forward

propagation time at training but not at testing time. More-

over, the monocular cycled structure has the big advantage

of automatically computing the inconsistency of the recon-

struction both at training and testing time. Therefore, stack-

ing a network aware of the inconsistencies and previous es-

timations, the teacher network, improves the performance.

We observe that our proposed inconsistency-aware network

brings an important improvement consistent over all the

metrics, e.g. 14% and 18% in Abs Rel and Sq Rel, respec-
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RGB Image Eigen et al. [4] Garg et al. [7] Godard et al. [12] Pilzer et al. [31] Ours GT Depth Map

Figure 3. Qualitative comparison of different state-of-the-art models with our teacher network on the KITTI testing split proposed by [4].

The sparse KITTI ground truth depth maps are interpolated with bilinear interpolation for better visualization.

Method Sup Video
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Eigen et al. [4] Y N 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Xu et al. [37] Y N 0.132 0.911 - 0.162 0.804 0.945 0.981

Jiang et al.[17] Y N 0.131 0.937 5.032 0.203 0.827 0.946 0.981

Gan et al. [6] Y N 0.098 0.666 3.933 0.173 0.890 0.964 0.985

Guo et al. [13] Y N 0.097 0.653 4.170 0.170 0.889 0.967 0.986

Yang et al. [39] Y Y 0.097 0.734 4.442 0.187 0.888 0.958 0.980

Zou et al.[44] N Y 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Godard et al.[11] N Y 0.115 1.010 5.164 0.212 0.858 0.946 0.97

Zhou et al. [42] N N 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [7] N N 0.169 1.08 5.104 0.273 0.740 0.904 0.962

Kundu et al. [18], 50m N N 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Godard et al. [12] N N 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Pilzer et al. [31] N N 0.152 1.388 6.016 0.247 0.789 0.918 0.965

Ours Student N N 0.1424 1.2306 5.785 0.239 0.795 0.924 0.968

Ours Teacher N N 0.0983 0.8306 4.656 0.202 0.882 0.948 0.973

Table 4. Comparison with the state of the art. Training and testing are performed on the KITTI [9] dataset. Supervised and semi-supervised

methods are marked with Y in the supervision (Sup.) column, unsupervised methods with N. Methods using a frame sequence in input

and, thus, exploiting temporal information either at training or testing time, are marked with Y in the Video column. Numbers are obtained

on Eigen [4] test split with Garg [7] image cropping. Depth predictions are capped at the common threshold of 80 meters, if capped at 50

meters we specify it. Best scores among static unsupervised methods are in bold. Best scores among other method categories are in italic.

tively, comparing cycle and teacher.

Student-teacher distillation leads to a consistent im-

provement over all metrics, demonstrating that self-

distillation improves the student, while keeping the perfor-

mance of teacher constant. Regarding the two distillation

strategies, we found that network with disparity distillation

converges faster than that with the feature distillation. This

is not unexpected, given the much more compact size of the

disparity compared to the several channels of the features.

For demonstrating the validity of the design of our cy-

cle network, we perform an ablation study where our two-

network cycle structure is replaced by the single-network

cycle proposed by Yang et al. [39]. In this experiment, we

use our proposed inconsistency-aware module to exploit the

inconsistency estimated by the single network cycle in [39].

Contrary to [39], we trained the models without supervi-

sion in order to compare the two different approaches in

the unsupervised setting. We use the L1 loss from [12]

for fair comparison. Results are reported in Table 2. We

observe that the inconsistency estimates obtained with the

single-network cycle of [39] are associated with worse per-

formance with respect to those of our method.
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Figure 4. Qualitative comparison of different baseline models of the proposed approach on the Cityscapes testing dataset.

We also performed an ablation study on the Cityscapes

dataset in Table 3, following the evaluation procedure pro-

posed in [31]. The results confirm the trends observed on

KITTI. The cycle network improves over the half-cycle in

five metrics out of seven. The teacher, effectively exploit-

ing inconsistencies, is associated with an improvement on

all error metrics (ranging from 7% to 20%). Distillation fur-

ther provides a boost in performance of about 1.5% to 5%.

In the second part of the ablation study, the teacher further

improves its estimations gaining over 20% over the initial

cycle setting. More interesting is the gain in performance of

the student that improves from 2% to 5%.

In Fig. 4, we present qualitative results for Cityscapes.

half-cycle and cycle images are smooth and do not present

artifacts. The teacher provides more accurate depth maps

with sharper edges for small objects and better background

estimations (e.g. third row, people in the back). After dis-

tillation also the student inherits this ability and we observe

more detailed predictions compared to the original cycle.

4.4. Comparison with StateoftheArt

In Table 4 we compare with several state-of-the-

art works, considering both supervised learning-based (

Eigen et al. [4], Xu et al. [37], Jiang et al. [17], Gan et

al. [6], Guo et al. [13], Yang et al. [39]) and unsupervised

learning-based (Zhou et al. [42], Garg et al. [7], Kundu et

al. [18], Godard et al. [12], Pilzer et al. [31], Godard et

al. [11] and Zou et al.[44]) methods.

The teacher network reaches state-of-the-art perfor-

mance for the frame-level unsupervised setting, even im-

proving over the state-of-the-art method that use depth su-

pervision as [37], and is competitive with those using depth

and video clues [6, 13, 39]. Note that Yang et al. [39] con-

sider a similar setting to ours proposing to use errors to

refine the depth estimation with a stacked network. Our

method has several advantages though: it is unsupervised,

it does not consider multiple video frames and it avoids

the use of several losses whose hyper-parameters are hard

to tune. Furthermore, as demonstrated by our experiments

in Table 2, our approach adopts a more effective network

structure for computing cycle inconsistencies. The student

network, after distillation, improves on unsupervised ap-

proaches with similar network capacity like [7, 12, 31] and

it is only outperformed by previous unsupervised methods

that exploit additional information during training like [11].

Qualitative results in Figure 3 show that our model pre-

dicts more accurately challenging areas, i.e. sky, trees in

background and shadowed areas difficult to interpret, com-

pared to competitive unsupervised models [7, 12, 31]. Note

that small details are better reconstructed by [12] but, over-

all, our estimations look smoother and have fewer large er-

rors, as the train windshield in row seven.

5. Conclusions

We proposed a monocular depth estimation network

which computes the inconsistencies between input and

cycle-reconstructed images and exploit them to generate

state-of-the-art depth predictions through a refinement net-

work. We proved that distillation is an effective paradigm

for depth estimation and improve the student network per-

formance by transferring information from the refinement

network. In future work we plan to further improve the

distillation process by accounting for teacher and student

confidence in the estimates. In this way we expect to bet-

ter guide the learning process and correct more effectively

prediction inconsistencies.
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