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Figure 1: SYNTHESIZING IMAGERY FROM A SFM POINT CLOUD: From left to right: (a) Top view of a SfM reconstruction

of an indoor scene, (b) 3D points projected into a viewpoint associated with a source image, (c) the image reconstructed using

our technique, and (d) the source image. The reconstructed image is very detailed and closely resembles the source image.

Abstract

Many 3D vision systems localize cameras within a scene

using 3D point clouds. Such point clouds are often obtained

using structure from motion (SfM), after which the images

are discarded to preserve privacy. In this paper, we show,

for the first time, that such point clouds retain enough in-

formation to reveal scene appearance and compromise pri-

vacy. We present a privacy attack that reconstructs color

images of the scene from the point cloud. Our method is

based on a cascaded U-Net that takes as input, a 2D multi-

channel image of the points rendered from a specific view-

point containing point depth and optionally color and SIFT

descriptors and outputs a color image of the scene from

that viewpoint. Unlike previous feature inversion meth-

ods [46, 9], we deal with highly sparse and irregular 2D

point distributions and inputs where many point attributes

are missing, namely keypoint orientation and scale, the de-

scriptor image source and the 3D point visibility. We evalu-

ate our attack algorithm on public datasets [24, 39] and an-

alyze the significance of the point cloud attributes. Finally,

we show that novel views can also be generated thereby en-

abling compelling virtual tours of the underlying scene.

1. Introduction

Emerging AR technologies on mobile devices based on

ARCore [2], ARKit [3], 3D mapping APIs [1], and new

devices such as HoloLens [15] have set the stage for de-

ployment of devices with always-on cameras in our homes,

workplaces, and other sensitive environments. Image-based

localization techniques allow such devices to estimate their

precise pose within the scene [18, 37, 23, 25]. However,

these localization methods requires persistent storage of 3D

models of the scene which contains sparse 3D point clouds

reconstructed using images and SfM algorithms [38].

SfM source images are usually discarded to safeguard

privacy. Surprisingly, however, we show that the SfM point

cloud and the associated attributes such as color and SIFT

descriptors contain enough information to reconstruct de-

tailed comprehensible images of the scene (see Fig. 1 and

Fig. 3). This suggests that the persistent point cloud storage

poses serious privacy risks that have been widely ignored

so far but will become increasingly relevant as localization

services are adopted by a larger user community.

While privacy issues for wearable devices have been

studied [16], to the best of our knowledge, a systematic

analysis of privacy risk of storing 3D point cloud maps has

never been reported. We illustrate the privacy concerns by

proposing the problem of synthesizing color images from

an SfM model of a scene. We assume that the reconstructed

model contains a sparse 3D point cloud with optional at-

tributes such as descriptors, color, point visibility and asso-

ciated camera poses but not the source images.

We make the following contributions: (1) We intro-

duce the problem of inverting a sparse SfM point cloud

and reconstructing detailed views of the scene from arbi-

trary viewpoints. This problem differs from the previously

studied single-image feature inversion problem due to the

need to deal with highly sparse point distributions and a
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higher degree of missing information in the input, namely

unknown keypoint orientation and scale, unknown image

source of descriptors, and unknown 3D point visibilities.

(2) We present a new approach based on three neural net-

works where the first network performs visibility estima-

tion, the second network reconstructs the image and the

third network uses an adversarial framework to further re-

fine the image quality. (3) We systematically analyze vari-

ants of the inversion attack that exploits additional attributes

that may be available, namely per-point descriptors, color

and information about the source camera poses and point

visibility and show that even the minimalist representation

(descriptors only) are prone to the attack. (4) We demon-

strate the need for developing privacy preserving 3D repre-

sentations, since the reconstructed images reveal the scene

in great details and confirm the feasibility of the attack in a

wide range of scenes. We also show that novel views of the

scene can be synthesized without any additional effort and

a compelling virtual tour of a scene can be easily generated.

The three networks in our cascade are trained on 700+

indoor and outdoor SfM reconstructions generated from

500k+ multi-view images taken from the NYU2 [39] and

MegaDepth [24] datasets. The training data for all three

networks including the visibility labels were generated au-

tomatically using COLMAP [38]. Next we compare our

approach to previous work on inverting image features

[46, 9, 8] and discuss how the problem of inverting SfM

models poses a unique set of challenges.

2. Related Work

In this section, we review existing work on inverting im-

age features and contrast them to inverting SfM point cloud

models. We then broadly discuss image-to-image transla-

tion, upsampling and interpolation, and privacy attacks.

Inverting features. The task of reconstructing images from

features has been explored to understand what is encoded

by the features, as was done for SIFT features by Weinza-

epfel et al. [46], HOG features by Vondrick et al. [45] and

bag-of-words by Kato and Harada [20]. Recent work on

the topic has been primarily focused on inverting and inter-

preting CNN features [49, 48, 29]. Dosovitskiy and Brox

proposed encoder-decoder CNN architectures for inverting

many different features (DB1) [9] and later incorporated ad-

versarial training with perceptual loss functions (DB2) [8].

While DB1 [9] showed some qualitative results on inverting

sparse SIFT, both papers focused primarily on dense fea-

tures. In contrast to these feature inversion approaches, we

focus solely on inverting SIFT descriptors stored along with

SfM point clouds. While the projected 3D points on a cho-

sen viewpoint may resemble single image SIFT features,

there are some key differences. First, our input 2D point

distributions can be highly sparse and irregular, due to the

typical inherent sparsity of SfM point clouds. Second, the

SIFT keypoint scale and orientation are unknown since SfM

methods retain only the descriptors for the 3D points. Third,

each 3D point typically has only one descriptor sampled

from an arbitrary source image whose identity is not stored

either, entailing descriptors with unknown perspective dis-

tortions and photometric inconsistencies. Finally, the 3D

point visibilities are also unknown and we will demonstrate

the importance of visibility reasoning in the paper.

Image-to-Image Translation. Various methods such as

Pix2Pix [19], CycleGan [50], CoGAN [27] and related un-

supervised approaches [7, 26, 34] use conditional adversar-

ial networks to transform between 2D representations, such

as edge to color, label to color, and day to night images.

While such networks are typically dense (without holes)

and usually low-dimensional (single channel or RGB), Con-

tour2Im [5] takes sparse 2D points sampled along gradients

along with low-dimensional input features. In contrast to

our work, these approaches are trained on specific object

categories and semantically similar images. While we use

similar building blocks to these methods (encoder-decoder

networks, U-nets, adversarial loss, and perceptual loss), our

networks can generalize to arbitrary images, and are trained

on large scale indoor and outdoor SfM datasets.

Upsampling. When the input and output domains are iden-

tical, deep networks have shown excellent results on up-

sampling and superresolution tasks for images, disparity,

depth maps and active range maps [4, 28, 43, 36, 17]. How-

ever, prior upsampling methods typically focus on inputs

with uniform sparsity. Our approach differs due to the non-

uniform spatial sampling in the input data which also hap-

pens to be high dimensional and noisy since the input de-

scriptors are from different source images and viewpoints.

Novel view synthesis and image-based rendering. Deep

networks can significantly improve photorealism in free

viewpoint image-based rendering [12, 14]. Additionally,

several works have also explored monocular depth estima-

tion and novel view synthesis using U-Nets [11, 24, 31].

Our approach arguably provides similar photorealistic visu-

ally quality – remarkably, from sparse SfM reconstructions

instead of images. This is disappointing news from a pri-

vacy perspective but could be useful in other settings for

generating photorealistic images from 3D reconstructions.

CNN-based privacy attacks and defense techniques. Re-

cently, McPherson et al. [30] and Vasiljevic et al. [44]

showed that deep models could defeat existing image obfus-

cation methods. Further more, many image transformations

can be considered as adding noise and undoing them as de-

noising, and here deep networks have been quite success-

ful [47]. To defend against CNN-based attacks, attempts at

learning CNN-resistant transformations have shown some
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promise [33, 10, 35, 13]. Concurrent to our work, Speciale

et al. [41] introduced the privacy preserving image-based

localization problem to address the privacy issues we have

brought up. They proposed a new camera pose estimation

technique using an obfuscated representation of the map ge-

ometry which can defend against our inversion attack.

3. Method

The input to our pipeline is a feature map generated from

a SfM 3D point cloud model given a specific viewpoint i.e.

a set of camera extrinsic parameters. We obtain this fea-

ture map by projecting the 3D points on the image plane

and associating the 3D point attributes (SIFT descriptor,

color, etc.) with the discrete 2D pixel where the 3D point

projects in the image. When multiple points project to the

same pixel, we retain the attributes for the point closest to

the camera and store its depth. We train a cascade of three

encoder-decoder neural networks for visibility estimation,

coarse image reconstruction and the final refinement step

which recovers fine details in the reconstructed image.

Visibility Estimation. Since SfM 3D point clouds are of-

ten quite sparse and the underlying geometry and topology

of the surfaces in the scene are unknown, it is not possi-

ble to easily determine which 3D points should be consid-

ered as visible from a specific camera viewpoint just us-

ing z-buffering. This is because a sufficient number of 3D

points may not have been reconstructed on the foreground

occluding surfaces. This produces 2D pixels in the input

feature maps which are associated with 3D points in the

background i.e. lie on surfaces which are occluded from

that viewpoint. Identifying and removing such points from

the feature maps is critical to generating high-quality im-

ages and avoiding visual artifacts. We propose to recover

point visibility using a data-driven neural network-based

approach, which we refer to as VISIBNET. We also evaluate

two geometric methods which we refer to as VISIBSPARSE

and VISIBDENSE. Both geometric methods however re-

quire additional information which might be unavailable.

Coarse Image Reconstructon and Refinement. Our tech-

nique for image synthesis from feature maps consists of a

coarse image reconstruction step followed by a refinement

step. COARSENET is conditioned on the input feature map

and produces an RGB image of the same width and height

as the feature map. REFINENET outputs the final color im-

age which has the same size, given the input feature map

along with the image output of COARSENET as its input.

3.1. Visibility Estimation

If we did not perform explicit visibility prediction in

our pipeline, some degree of implicit visibility reasoning

would still be carried out by the image synthesis network

COARSENET. In theory, this network has access to the input

depths and could learn to reason about visibility. However,

in practice, we found that this approach to be inaccurate,

especially in regions where the input feature maps contain

a low ratio of visible to occluded points. Qualitative exam-

ples of these failure cases are shown in Figure 5. Therefore

we explored explicit visibility estimation approaches based

on geometric reasoning as well as learning.

VisibSparse. We explored a simple geometric method that

we refer to as VISIBSPARSE. It is based on the “point splat-

ting” paradigm used in computer graphics. By considering

only the depth channel in the input, we apply a min filter

with a k × k kernel on the feature map to obtain a filtered

depth map. Here, we used k = 3 based on empirical test-

ing. Each entry in the feature map whose depth value is no

greater than 5% of the depth value in the filtered depth map

is retained as visible. Otherwise, the point is considered

occluded and the associated entry in the input is removed.

VisibDense. When the camera poses for the source im-

ages computed during SfM and the image measurements

are stored along with the 3D point cloud, it is often possible

to exploit that data to compute a dense scene reconstruc-

tion. Labatut et al. [21] proposed such a method to com-

pute a dense triangulated mesh by running space carving on

the tetrahedral cells of the 3D Delaunay triangulation of the

sparse SfM points. We used this method, implemented in

COLMAP [38] and computed 3D point visibility based on

the reconstructed mesh model using traditional z-buffering.

VisibNet. A geometric method such as VISIBDENSE can-

not be used when the SfM cameras poses and image mea-

surements are unavailable. We therefore propose a general

regression-based approach that directly predicts the visibil-

ity from the input feature maps, where the predictive model

is trained using supervised learning. Specifically, we train

an encoder-decoder neural network which we refer to as

VISIBNET to classify each input point as either “visible”

or “occluded”. Ground truth visibility labels were gener-

ated automatically by leveraging VISIBDENSE on all train,

test, and validation scenes. Using VISIBNET’s predictions

to “cull” occluded points from the input feature maps prior

to running COARSENET significantly improves the quality

of the reconstructed images, especially in regions where the

input feature map contains fewer visible points compared to

the number of points that are actually occluded.

3.2. Architecture

A sample input feature map as well as our complete net-

work architecture consisting of VISIBNET, COARSENET,

and REFINENET is shown in Figure 2. The input to our

network is an H×W ×n dimensional feature map consist-

ing of n-dimensional feature vectors with different combi-

nations of depth, color, and SIFT features at each 2D loca-

tion. Except for the number of input/output channels in the
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Figure 2: NETWORK ARCHITECTURE: Our network has three sub-networks – VISIBNET, COARSENET and REFINENET.

The upper left shows that the input to our network is a multi-dimensional nD array. The paper explores network variants where

the inputs are different subsets of depth, color and SIFT descriptors. The three sub-networks have similar architectures. They

are U-Nets with encoder and decoder layers with symmetric skip connections. The extra layers at the end of the decoder

layers (marked in orange) are there to help with high-dimensional inputs. See the text and supplementary material for details.

first/final layers, each sub-network has the same architec-

ture consisting of U-Nets with a series of encoder-decoder

layers with skip connections. Compared to conventional U-

Nets, our network has a few extra convolutional layers at

the end of the decoder layers. These extra layers facilitate

propagation of information from the low-level features, par-

ticularly the information extracted from SIFT descriptors,

via the skip connections to a larger pixel area in the out-

put, while also helping to attenuate visual artifacts resulting

from the highly sparse and irregular distribution of these

features. We use nearest neighbor upsampling followed by

standard convolutions instead of transposed convolutions as

the latter are known to produce artifacts [32].

3.3. Optimization

We separately train the sub-networks in our architecture,

VISIBNET, COARSENET, and REFINENET. Batch normal-

ization was used in every layer, except the final one in each

network. We applied Xavier initialization and projections

were generated on-the-fly to facilitate data augmentation

during training and novel view generation after training.

VISIBNET was trained first to classify feature map points

as either visible or occluded, using ground-truth visibility

masks generated automatically by running VISIBDENSE for

all train, test, and validation samples. Given training pairs

of input feature maps Fx ∈ R
H×W×N and target source

images x ∈ R
H×W×3, VISIBNET’s objective is

LV (x) = −

M
∑

i=1

[

Uxlog
(

(V (Fx) + 1)/2
)

+

(1− Ux)log
(

(1− V (Fx))/2
)]

i
,

(1)

where V : R
H×W×N → R

W×H×1 denotes a differen-

tiable function representing VISIBNET, with learnable pa-

rameters, Ux ∈ R
H×W×1 denotes the ground-truth visibil-

ity map for feature map Fx, and the summation is carried

out over the set of M non-zero spatial locations in Fx.

COARSENET was trained next, using a combination of

an L1 pixel loss and an L2 perceptual loss (as in [22, 8])

over the outputs of layers relu1 1, relu2 2, and relu3 3 of

VGG16 [40] pre-trained for image classification on the Im-

ageNet [6] dataset. The weights of VISIBNET remained

fixed while COARSENET was being trained using the loss

LC = ||C(Fx)−x||1+α

3
∑

i=1

||φi(C(Fx))−φi(x)||
2
2, (2)

where C : RH×W×N → R
H×W×3 denotes a differentiable

function representing COARSENET, with learnable param-

eters, and φ1 : RH×W×3 → R
H

2
×

W

2
×64, φ2 : RH×W×3 →

R
H

4
×

W

4
×128, and φ3 : R

H×W×3 → R
H

8
×

W

8
×256 denote

the layers relu1 1, relu2 2, and relu2 2, respectively, of the

pre-trained VGG16 network.

REFINENET was trained last using a combination of an

L1 pixel loss, the same L2 perceptual loss as COARSENET,

and an adversarial loss. While training REFINENET, the

weights of VISIBNET and COARSENET remained fixed.

For adversarial training, we used a conditional discrimi-

nator whose goal was to distinguish between real source

images used to generate the SfM models and images syn-

thesized by REFINENET. The discriminator trained using

cross-entropy loss similar to Eq. (1). Additionally, to sta-

bilize adversarial training, φ1(R(Fx))1, φ2(R(Fx))1, and
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Desc. Inp. Feat. MAE SSIM

Src. D O S 20% 60% 100% 20% 60% 100%

Si X X X .126 .105 .101 .539 .605 .631

Si X X × .133 .111 .105 .499 .568 .597

Si X × X .129 .107 .102 .507 .574 .599

Si X × × .131 .113 .109 .477 .550 .578

M X × × .147 .128 .123 .443 .499 .524

Table 1: INVERTING SINGLE IMAGE SIFT FEATURES:

The top four rows compare networks designed for differ-

ent subsets of single image (Si) inputs: descriptor (D), key-

point orientation (O) and scale (S). Test error (MAE) and

accuracy (SSIM) obtained when 20%, 60% and all the SIFT

features are used. Lower MAE and higher SSIM values are

better. The last row is for when the descriptors originate

from multiple (M) different and unknown source images.

φ3(R(Fx))1 were concatenated before the first, second, and

third convolutional layers of the discriminator as done in

[42]. REFINENET denoted as R() has the following loss.

LR =||R(Fx)− x||1 + α

3
∑

i=1

||φi(R(Fx))− φi(x)||
2
2

+ β[log(D(x)) + log(1−D(R(Fx)))].

(3)

Here, the two functions, R : RH×W×N+3 → R
H×W×3

and D : RH×W×N+3 → R denote differentiable functions

representing REFINENET and the discriminator, respec-

tively, with learnable parameters. We trained REFINENET

to minimize LR by applying alternating gradient updates

to REFINENET and the discriminator. The gradients were

computed on mini-batches of training data, with different

batches used to update REFINENET and the discriminator.

4. Experimental Results

We now report a systematic evaluation of our method.

Some of our results are qualitatively summarized in Fig.

3, demonstrating robustness to various challenges, namely,

missing information in the point clouds, effectiveness of our

visibility estimation, and the sparse and irregular distribu-

tion of input samples over a large variety of scenes.

Dataset. We use the MegaDepth [24] and NYU [39]

datasets in our experiments. MegaDepth (MD) is an In-

ternet image dataset with ∼150k images of 196 landmark

scenes obtained from Flickr. NYU contains ∼400k images

of 464 indoor scenes captured with the Kinect (we only used

the RGB images). These datasets cover very different scene

content, image resolution, and generate very different dis-

tribution of SfM points and camera poses. Generally, NYU

scenes produce far fewer SfM points than the MD scenes.

Preprocessing. We processed the 660 scenes in MD and

NYU using the SfM implementation in COLMAP [38]. We

Data
Inp. Feat. Accuracy

z D C 20% 60% 100%

MD

X × × .948 .948 .946

X × X .938 .943 .941

X X × .949 .951 .948

X X X .952 .952 .950

NYU

X × × .892 .907 .908

X × X .897 .908 .910

X X × .895 .907 .909

X X X .906 .916 .917

Table 2: EVALUATION OF VISIBNET: We trained four ver-

sion of VISIBNET, each with a different set of input at-

tributes, namely, z (depth), D (SIFT) and C (color) to eval-

uate their relative importance. Ground truth labels were ob-

tained with VisibDense. The table reports mean classifica-

tion accuracy on the test set for the NYU and MD datasets.

The results show that VISIBNET achieves accuracy greater

than 93.8% and 89.2% on MD and NYU respectively and is

not very sensitive to sparsity levels and input attributes.

partitioned the scenes into training, validation, and testing

sets with 441, 80, and 139 scenes respectively. All images

of one scene were included only in one of the three groups.

We report results using both the average mean absolute error

(MAE), where color values are scaled to the range [0,1].

and average structured similarity (SSIM). Note that lower

MAE and higher SSIM values indicate better results.

Inverting Single Image SIFT Features. Consider the sin-

gle image scenario, with trivial visibility estimation and

identical input to [9]. We performed an ablation study in

this scenario, measuring the effect of inverting features with

unknown keypoint scale, orientation, and multiple unknown

image sources. Four variants of COARSENET were trained,

then tested at three sparsity levels. The results are shown

in Table 1 and Figure 4. Table 1 reports MAE and SSIM

across a combined MD and NYU dataset. The sparsity per-

centage refers to how many randomly selected features were

retained in the input, and our method handles a wide range

of sparsity reasonably well. From the examples in Figure 4,

we observe that the networks are surprisingly robust at in-

verting features with unknown orientation and scale; while

the accuracy drops a bit as expected, the reconstructed im-

ages are still recognizable. Finally, we quantify the effect

of unknown and different image sources for the SIFT fea-

tures. The last row of Table 1 shows that indeed the feature

inversion problem becomes harder but the results are still re-

markably good. Having demonstrated that our work solves

a harder problem than previously tackled, we now report

results on inverting SfM points and their features.

4.1. Visibility Estimation

We first independently evaluate the performance of the

proposed VISIBNET model and compare it to the geomet-
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Figure 3: QUALITATIVE RESULTS: Each result is a 3× 1 set of square images, showing point clouds (with occluded points

in red), image reconstruction and original. The first four columns (top and bottom) show results from the MegaDepth dataset

(internet scenes) and the last four columns (top and bottom) show results from indoor NYU scenes. Sparsity: Our network

handles a large variety in input sparsity (density decreases from left to right). In addition, perspective projection accentuates

the spatially-varying density differences, and the MegaDepth outdoor scenes have concentrated points in the input whereas

NYU indoor scenes have far samples. Further, the input points are non-homogeneous, with large holes which our method

gracefully fills in. Visual effects: For the first four columns (MD scenes) our results give the pleasing effect of uniform

illumination (see top of first column). Since our method relies on SfM, moving objects are not recovered. Scene diversity:

The fourth column is an aerial photograph, an unusual category that is still recovered well. For the last four columns (NYU

scenes), despite lower sparsity, we can recover textures in common household scenes such as bathrooms, classrooms and

bedrooms. The variety shows that our method does not learn object categories and works on any scene. Visibility: All scenes

benefit from visibility prediction using VISIBNET which for example was crucial for the bell example (lower 2nd column).

ric methods VISIBSPARSE and VISIBDENSE. We trained

four variants of VISIBNET designed for different subsets of

input attributes to classify points in the input feature map

as “visible” or “occluded”. We report classification accu-

racy separately on the MD and NYU test sets even though

the network was trained on the combined training set (see

Table 2). We observe that VISIBNET is largely insensitive

to scene type, sparsity levels, and choice of input attributes

such as depth, color, and descriptors. The VISIBNET vari-

ant designed for depth only has 94.8% and 89.2% mean

classification accuracy on MD and NYU test sets, respec-

tively, even when only 20% of the input samples were used

to simulate sparse inputs. Table 3 shows that when points

predicted as occluded by VISIBNET are removed from the

input to COARSENET, we observe a consistent improve-

ment when compared to COARSENET carrying both the

burdens of visibility and image synthesis (denoted as Im-

plicit in the table). While the improvement may not seem

numerically large, in Figure 5 we show insets where visual

artifacts (bookshelf above, building below) are removed.
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(a) Input (b) SIFT (c) SIFT + s (d) SIFT + o (e) SIFT + s + o (f) Original

Figure 4: INVERTING SIFT FEATURES IN A SINGLE IMAGE: (a) 2D keypoint locations. Results obtained with (b) only

descriptor, (c) descriptor and keypoint scale, (d) descriptor and keypoint orientation, (e) descriptor, scale and orientation. (f)

Original image. Results from using only descriptors (2nd column) are only slightly worse than the baseline (5th column).

(a) Input (b) Pred. (VisibNet) (c) Implicit (d) VisibNet (e) VisibDense (f) Original

Figure 5: IMPORTANCE OF VISIBILITY ESTIMATION: Examples showing (a) input 2D point projections (in blue), (b) pre-

dicted visibility from VISIBNET – occluded (red) and visible (blue) points, (c–e) results from IMPLICIT (no explicit visibility

estimation), VISIBNET (uses a CNN) and VISIBDENSE (uses z-buffering and dense models), and (f) the original image.

4.2. Relative Significance of Point Attributes

We trained four variants of COARSENET, each with a

different set of the available SfM point attributes. The goal

here is to measure the relative importance of each of the at-

tributes. This information could be used to decide which

optional attributes should be removed when storing SfM

model to enhance privacy. We report reconstruction error on

the test set for both indoor (NYU) and outdoor scenes (MD)

for various sparsity levels in Table 4 and show qualitative

evaluation on the test set in Figure 6. The results indicate

that our approach is largely invariant to sparsity and capable

of capturing very fine details even when the input feature

map contains just depth, although, not surprisingly, color

and SIFT descriptors significantly improves visual quality.

4.3. Significance of RefineNet

In Figure 7 we qualitatively compare two scenes where

the feature maps had only depth and descriptors (left) and

when it had all the attributes (right). For privacy preser-

vation, these results are sobering. While Table 4 showed

that COARSENET struggles when color is dropped (sug-

gesting an easy solution of removing color for privacy),

Figure 7 (left) unfortunately shows that REFINENET recov-

ers plausible colors and improves results a lot. Of course,

REFINENET trained on all features also does better than

COARSENET although less dramatically (Figure 7 (right)).
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Data
Visibility MAE SSIM

Est. 20% 60% 100% 20% 60% 100%

MD

Implicit .201 .197 .195 .412 .436 .445

VisibSparse .202 .197 .196 .408 .432 .440

VisibNet .201 .196 .195 .415 .440 .448

VisibDense .201 .196 .195 .417 .442 .451

NYU

Implicit .121 .100 .094 .541 .580 .592

VisibSparse .122 .100 .094 .539 .579 .592

VisibNet .120 .098 .092 .543 .583 .595

VisibDense .120 .097 .090 .545 .587 .600

Table 3: IMPORTANCE OF VISIBILITY ESTIMATION: Both

sub-tables show results obtained using IMPLICIT i.e. no

explicit occlusion reasoning where of burden of visibility

estimation implicitly falls on COARSENET, VisibNet and

the geometric methods VISIBSPARSE and VISIBDENSE.

Lower MAE and higher SSIM values are better.

Data
Inp. Feat. MAE SSIM

z D C 20% 60% 100% 20% 60% 100%

MD

X × × .258 .254 .253 .264 .254 .250

X × X .210 .204 .202 .378 .394 .403

X X × .228 .223 .221 .410 .430 .438

X X X .201 .196 .195 .414 .439 .448

NYU

X × × .295 .290 .289 .244 .209 .197

X × X .148 .121 .111 .491 .528 .546

X X × .207 .179 .171 .493 .528 .539

X X X .121 .099 .093 .542 .582 .594

Table 4: EFFECT OF POINT ATTRIBUTES: Performance of

four networks designed for different sets of input attributes

– z (depth), D (SIFT) and C (color), on MD and NYU. Input

sparsity is simulated by applying random dropout to input

samples during training and testing.

z z + D z + C z + D + C orig

Figure 6: EFFECT OF POINT ATTRIBUTES: Results ob-

tained with different attributes. Left to right: depth [z],

depth + SIFT [z + D], depth + color [z + C], depth + SIFT

+ color [z + D + C] and the original image. (see Table 4).

4.4. Novel View Synthesis

Our technique can be used to easily generate realistic

novel views of the scene. While quantitatively evaluating

z + D z + D + C

Figure 7: IMPORTANCE OF REFINENET: (Top row)

COARSENET results. (Bottom Row) REFINENET results.

(Left) Networks use depth and descriptors (z + D). (Right)

Networks use depth, descriptor and color (z + D + C).

Figure 8: NOVEL VIEW SYNTHESIS: Synthesized images

from virtual viewpoints in two NYU scenes [39] helps to

interpret the cluttered scenes (see supplementary video).

such results is more difficult (in contrast to our experiments

where aligned real camera images are available), we show

qualitative results in Figure 8 and generate virtual tours

based on the synthesized novel views1. Such novel view

based virtual tours can make scene interpretation easier for

an attacker even when the images contain some artifacts.

5. Conclusion

In this paper, we introduced a new problem, that of in-

verting a sparse SfM point cloud and reconstructing color

images of the underlying scene. We demonstrated that sur-

prisingly high quality images can be reconstructed from the

limited amount of information stored along with sparse 3D

point cloud models. Our work highlights the privacy and

security risks associated with storing 3D point clouds and

the necessity for developing privacy preserving point cloud

representations and camera localization techniques, where

the persistent scene model data cannot easily be inverted to

reveal the appearance of the underlying scene. This was

also the primary goal in concurrent work on privacy pre-

serving camera pose estimation [41] which proposes a de-

fense against the type of attacks investigated in our paper.

Another interesting avenue of future work would be to ex-

plore privacy preserving features for recovering correspon-

dences between images and 3D models.

1see the video in the supplementary material.
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