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Figure 1. The bespoke Combined Face & Head Models. Visualisation of the first two shape components along with the mean head shape.

Abstract

Three-dimensional Morphable Models (3DMMs) are

powerful statistical tools for representing the 3D surfaces

of an object class. In this context, we identify an interesting

question that has previously not received research attention:

is it possible to combine two or more 3DMMs that (a) are

built using different templates that perhaps only partly over-

lap, (b) have different representation capabilities and (c)

are built from different datasets that may not be publicly-

available? In answering this question, we make two con-

tributions. First, we propose two methods for solving this

problem: i. use a regressor to complete missing parts of

one model using the other, ii. use the Gaussian Process

framework to blend covariance matrices from multiple mod-

els. Second, as an example application of our approach,

we build a new face-and-head shape model that combines

the variability and facial detail of the LSFM with the full

head modelling of the LYHM. The resulting combined shape

model achieves state-of-the-art performance and outper-

forms existing head models by a large margin. Finally, as an

application experiment, we reconstruct full head represen-

tations from single, unconstrained images by utilizing our

proposed large-scale model in conjunction with the Face-

Warehouse blendshapes for handling expressions.

1. Introduction

Due to their ability of inferring and representing 3D sur-

faces, 3D Morphable Models (3DMMs) have many appli-

cations in computer vision, computer graphics, biometrics,

and medical imaging [4, 15, 1, 26]. Many registered raw

3D images (‘scans’) are required for correctly training a

3DMM, which comes at a very large cost of manual labour

for collecting and annotating such images with meta data.

Sometimes, only the resulting 3DMMs become available to

the research community, and not the raw 3D images. This is

particularly true of 3D images of the human face/head, due

to increasingly stringent data protection regulations. Fur-

thermore, even if 3DMMs have overlapping parts, their res-

olution and ability to express detailed shape variation may

be quite different, and we may wish to capture the best prop-

erties of multiple 3DMMs within a single model. However,

it is currently extremely difficult to combine and enrich ex-

isting 3DMMs with different attributes that describe distinct

parts of an object without such raw data. Therefore, in this

paper, we present a general approach that can be employed

to combine 3DMMs from different parts of an object class

into a single 3DMM. Due to their widespread use in the

computer vision community, we fuse 3DMMs of the human

face and the full human head, as our exemplar, thus creating

the first combined, large-scale, full-head morphable model.

The technique is readily extensible to incorporate detailed
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models of the ear [10] and the body, and indeed is applica-

ble to any object class well-described by 3DMMs.

More specifically, although there have been many mod-

els of the human face both in terms of identity [17, 30, 28]

and expression [8, 29], very few deal with the complete

head anatomy [11]. Building a high-quality, large-scale sta-

tistical model that describes the anatomy of the full human

head paves directions across numerous disciplines. First, it

will assist craniofacial clinicians in diagnosis, surgical plan-

ning, and assessment. Second, generating proportionally

correct head models based on the geometry of the face will

aid computer graphics designers to create realistic avatar-

like representations. Finally, a head model will give oppor-

tunities that aim at reconstructing a full head representation

from data-deficient sources, such as 2D images.

Our key contributions are: (i) a methodology that aims to

fuse shape-based 3DMMs, using the human face and head

as an exemplar. (Note that the texture component of the

3DMM is out-of-scope of this paper and the subject of our

future work.) In particular, we propose both a regression

method based on latent shape parameters, and a covari-

ance combination approach, utilized in a Gaussian process

framework, (ii) a combined large-scale statistical model of

the human head in terms of ethnicity, age and gender that

is significantly more accurate than any other existing head

morphable model - we make this publicly-available for the

benefit of the research community, including versions with

and without eyes and teeth, and (iii) an application experi-

ment in which we utilize the combined 3DMM to perform

full head reconstruction from unconstrained single images,

also utilizing the FaceWarehouse blendshapes to handle fa-

cial expressions.

2. Face and head model literature

The first 3DMM was proposed by Blanz and Vetter [3].

They were the first to to recognize the generative capabili-

ties of a 3DMM and they proposed a technique to capture

the variations of 3D faces. Only 200 scans were used to

build the model (100 male and 100 female) where dense

correspondences were computed based on optical flow that

depends on an energy function that describes both the shape

and texture. The Basel Face Model (BFM) is the most

widely-used and well-known 3DMM, which was built by

Paysan et al. [23] and utilizes a better registration method

than the original Blanz-Vetter 3DMM. They use a known

template mesh in which all the vertices have known posi-

tions and then they register it to the training scans by utiliz-

ing an optimal step Non-rigid Iterative Closest Point algo-

rithm (NICP) [2]. Standard PCA was employed as a dimen-

sionality reduction technique to construct their model.

Recently, Booth et al. [7] built a Large-scale Face Model

(LSFM) by utilizing nearly 10, 000 face scans. The model is

constructed by applying a weighted version of the optimal-

step NICP algorithm [13], followed by a Generalized Pro-

crustes Analysis (GPA) and standard PCA. Due to the large

number of facial scans, a robust automated procedure was

carried out including 3D landmark localization and error

pruning of badly registered scans. This work was the first

to introduce bespoke models in terms of age, gender and

ethnicity, and is the most information-rich 3DMM of face

shapes in neutral expression produced to date.

Li et al [20] used a total of 3, 800 head scans from the US

and European CEASAR body scan database [25] to build a

statistical model of the entire head. The aim of this work fo-

cuses mainly on the temporal registration of 3D scans rather

than on the topology of the head area. The data consists of

full body scans and the resolution in which the head topol-

ogy was recorded in is insufficient to depict correctly the

shape of each individual human head. In addition, the tem-

plate used for registration in this method is extremely sparse

with only 5, 000 vertices which makes it difficult to accu-

rately represent the entire head. Moreover, the registration

process incorporates coupling weights for the back of head

and the back of the neck, which constrains drastically the

actual statistical variation of the entire head area. An exten-

sion of this work is proposed in [24] in which a non-linear

model is constructed using convolution mesh autoencoders

focusing on facial expressions, but still it lacks the statis-

tical variation of the full cranium. Similarly, in the work

of Hu and Saito [16], a full head model is created from

single images mainly for real-time rendering. The work

aims at creating a realistic avatar model which includes 3D

hair estimation. The head topology is considered to be un-

changed for all subjects and only the face part of the head is

a statistically-correct representation.

The most accurate craniofacial 3DMM of the human

head both in terms of shape and texture, is the Liverpool-

York Head model (LYHM) [11]. In this work, global cran-

iofacial 3DMMs and demographic sub-population 3DMMs

were built from 1,212 distinct identities. Although this work

is the first that describes the statistical correlation between

the cranium and the face part, it lacks detail of the facial

characteristics, as the spatial resolution of the facial region

is not significantly higher than the cranial region. In ef-

fect, the variance of the cranial and neck areas dominates

that of the facial region in the PCA parameterization. Also,

although the model describes how the cranium is affected

given the age of the subject, it is biased in terms of ethnic-

ity, due to the lack of ethnic diversity in the dataset.

3. Face and head shape combination

In this section, we propose two methods to combine the

LSFM face model with the LYHM full head model. The

first approach, utilizes the latent PCA parameters and solves

a linear least squares problem to approximate the full head

shape, whereas the second constructs a combined covari-
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ance matrix that is later utilized as a kernel in a Gaussian

Process Morphable Model (GPMM) [22].

3.1. Regression modelling

Figure 2 illustrates the three-stage regression modeling

pipeline, which comprises 1) regression matrix calculation,

2) model combination and 3) full head model registration

followed by PCA modeling. Each stage is now described.

For stage 1, let us denote the 3D mesh (shape) of an ob-

ject with N points as a 3N × 1 vector

S = [xT
1 . . .xT

N ]T = [x1, y1, z1, . . . xN , yN , zN ]T (1)

The LYHM is a PCA generative head model with Nh points,

described by an orthonormal basis after keeping the first nh

principal components Uh ∈ R3Nh×nh and the associated

λh eigenvalues. This model can be used to generate novel

3D head instances as follows:

Sh(ph) = mh +Uhph (2)

where ph =
[

ph1
. . . phnh

]T

are the nh shape parame-

ters. Similarly the LSFM face model with Nf number of

points, is described by a corresponding orthonormal basis

after keeping the nf principal components Uf ∈ R3Nf×nf

and the associated λf eigenvalues. The model generates

novel 3D faces instances by:

Sf (pf ) = mf +Ufpf (3)

where pf =
[

pf1 . . . pfnf

]T

are the nf shape parameters.

In order to combine the two models, we synthesize data

directly from the latent eigenspace of the head model (Uh)

by drawing random samples from a Gaussian distribution

defined by the principal eigenvalues of the head model. The

standard deviation for each of the distributions is equal to

the square root of the eigenvalue. In that way we produce

randomly nr distinct shape parameters.

After generating the random full head instances we apply

non-rigid registration (NICP) [13] between the head meshes

and the cropped mean face of the LSFM face model. We

perform this task in each one of the nr meshes in order to

get the facial part of the full head instance and describe it

in terms of the LSFM topology. Once we acquire those reg-

istered meshes we project them to the LSFM subspace and

we retrieve the corresponding shape parameters. Thus, for

each one of the randomly produced head instances, we have

a pair of shape parameters (ph,pf ) corresponding to the

full head representation and to the facial area respectively.

By utilizing those pairs we construct a matrix Ch ∈
R

nh×nr where we stack all the head shape parameters and a

matrix Cf ∈ Rnf×nr where we stack the face shape param-

eters from the LSFM model. We would like to find a matrix

Wh,f ∈ Rnh×nf to describe the mapping from the LSFM

face shape parameters pf to the corresponding LYHM full

head shape parameters ph. We solve this by formulating a

linear least square problem that minimizes:

‖Ch −Wh,fCf‖
2

(4)

By utilizing the normal equation, the solution of Eq. 4 is

readily given by:

Wh,f = ChC
T
f

(

CfC
T
f

)−1
(5)

where CT
f

(

CfC
T
f

)

−1

is the right pseudo-inverse of Cf .

Given a 3D face instance Sf , we derive the 3D shape of the

full head, Sh, as follows:

Sh = mh +UhWh,fU
T
f (Sf −mf ) (6)

In this way we can map and predict the shape of the cranium

region for any given face shape in terms of LYHM topology.

In stage 2 (Fig. 2), we employ the large MeIn3D database

[7] which includes nearly 10, 000 3D face images, and we

utilize the Wh,f regression matrix to construct new full

head shapes that we later combine with the real facial scans.

We achieve this by discarding the facial region of the the

full head instance which has less detailed information and

we replace it with the registered LSFM face of the MeIn3D

scan. In order to create a unique instance we merge the

meshes together by applying a NICP framework, where we

deform only the outer parts of the facial mesh to match with

the cranium angle and shape so that the result is a smooth

combination of the two meshes. Following the formulation

in [13], this is accomplished by introducing higher stiffness

weights in the inner mesh (lower on the outside) while we

apply the NICP algorithm. To compute those weights we

measure the Euclidean distance of a given point from the

nose tip of the mesh and we assign a relative weight to that

point. The bigger the distance from the nose tip, the smaller

the weight of the point.

One of the drawbacks of the LYHM is the arbitrary neck

circumference, where the neck tends to get broader when

the general shape of the head increases. In stage 3 (Fig. 2),

we aim at excluding this factor from our final head model

by applying a final NICP step between the merged meshes

and our head template St. We utilized the same framework

as before with the point-weighted strategy where we assign

weights to the points based on their Euclidean distance from

the center of the head mass. This helps us avoid any in-

consistencies of the neck area that might appear from the

regression scheme. For the area around the ear, we have in-

troduced 50 additional landmarks to control the registration

and preserve the general shape of the ear area.

After implementing the aforementioned pipeline for

each one of the 10, 000 meshes, we perform PCA on the
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Figure 2. The regression modeling pipeline. 1) The left part illustrates the matrix formulation from the original LYHM head model; 2) the

central part demonstrates how we utilize the MeIn3D database to produce highly-detailed head shapes; 3) the final part on the right depicts

the registration framework along with the per-vertex template weights and the statistical modeling.

points of the mesh and we acquire a new generative full

head model that exhibits more detail in the face area in com-

bination with bespoke head shapes.

3.2. Gaussian process modeling

Gaussian processes for model combination is a less com-

plicated and more robust technique that does not generate

irregular head shapes due to poor regression values.

The concept of Gaussian Process Morphable Models

(GPMMs) was recently introduced in [22, 14, 18]. The

main contribution of GPMMs is the generalization of clas-

sic Point Distribution Models (such as are constructed using

PCA), with the help of Gaussian processes. A shape is mod-

eled as a deformation u from the reference shape SR i.e. a

shape can be represented as:

S = {x+ u(x)|x ∈ SR} (7)

where u is a deformation function u : Ω → R
3 with

Ω ⊇ SR. The deformations are modeled as a Gaussian

process u ∼ GP (µ, k). Where µ : Ω → R
3 is the mean de-

formation and k : Ω × Ω → R
3×3 is a covariance function

or kernel.

The Gaussian process model is capable of operation out-

side of the space of valid face shapes. This depends highly

on the kernels chosen for this task. In the classic ap-

proaches, the deformation function is learned through a se-

ries of typical example surfaces S1, . . . ,Sn where a set of

deformation fields is learned {u1, . . . , un}, ui(x) : Ω →
R

d where ui(x) denotes the deformation field that maps a

point x on the reference shape to the corresponding point

on the ith-training surface.

A Gaussian process GP (µPDM , kPDM ) that models

this characteristic deformations is obtained by estimating

the empirical mean:

µPDM (x) =
1

n

n
∑

i=1

ui(x) (8)

and the covariance function:

kPDM (x,y) =
1

1− n

n
∑

i=1

(ui(x)− µPDM (x))

(ui(y)− µPDM (y))
T

(9)

This kernel is defined as the empirical/sample covariance

kernel. This specific Gaussian process model is a contin-

uous analog to a PCA model and it operates in the facial

deformation spectrum. For each one of the models (LYHM,

LSFM), we know the principal orthonormal basis and the

eigenvalues. Hence the covariance matrix for each model is

defined:

Kh = UhΛhU
T
h

Kf = UfΛfU
T
f

(10)

where Kh ∈ R
3Nh×3Nh and Kf ∈ R

3Nf×3Nf are the

covariance matrices, and the Λh ∈ R
3nh×3nh and Λf ∈

R
nf×nf are diagonal matrices with the eigenvalues in their

the main diagonal of the head and face model respectively.

We aim at constructing a universal covariance matrix

KU ∈ R3NU×3NU that accommodates the high detailed fa-

cial properties of the LSFM and the head distribution from

the LYHM. We keep, as a reference, the mean of the head

model and we non-rigidly register the mean face of the

LSFM. Both PCA models must be in the same scale space

for this method to work, which was not necessary for the

10937



regression method. Similarly, we register our head template

St by utilizing the same pipeline as before for full head reg-

istration, which is going to be used as the reference mesh

for the new joined covariance matrix.

For each point pair i, j in St, there exists a local covari-

ance matrix K
i,j
U ∈ R3×3. In order to calculate its value,

we begin by projecting the points onto the mean head mesh.

If both points lie outside the face area that the registered

mean mesh of LSFM covers, we identify their exact lo-

cation in the mean head mesh in terms of barycentric co-

ordinates (ci1, c
i
2, c

i
3) for the ith point and (cj1, c

j
2, c

j
3) for

the jth point with respect to their corresponding triangles

ti = [vT
1 ,v

T
2 ,v

T
3 ]

T , tj = [kT
1 ,k

T
2 ,k

T
3 ]

T .

Each vertex pair (v, k) in between the triangles, has an

individual covariance matrix K
v,k
h ∈ R

3×3 with K
v,k
h ⊇

Kh. Therefore, we blend those local vertex-covariance ma-

trices to acquire our final local K
i,j
U as follows:

K
i,j
U =

∑3
v=1

∑3
k=1 w

i,j
v,kK

v,k
h

∑3
v=1

∑3
k=1 w

i,j
v,k

(11)

where w
i,j
v,k =

civ+cj
k

2 is a weighting scheme based on the

barycentric coordinates of the (i, j) points. An illustration

of the aforementioned methodology can be seen in Figure 3.

++

Mean face LSFM

Mean Head LYHM

Template St

k2

k1

k3

j

tj

c1 c2

c3
NICP 

registration on 

the LYHM 

domain  
v1

v2

v3

i

ti

c1

c2

c3

Figure 3. A graphical representation of the non-rigid registration

of all mean meshes along with our head template St and the cal-

culation of the local covariance matrix K
i,j

U based on the locations

of the ith and jth points.

In the case where the points lie in the face area, we ini-

tially repeat the same procedure by projecting and calculat-

ing a blended covariance matrix K
i,j
f given the mean face

mesh of LSFM, followed by a blended covariance matrix

K
i,j
h calculated given the mean head mesh of LYHM. We

formulate the final local covariance matrix as:

K
i,j
U = ρi,jK

i,j
h + (1− ρi,j)K

i,j
f (12)

where ρi,j =
ρi+ρj

2 is a normalized weight, based on the

Euclidean distances (ρi, ρj) of the (i, j) points from the

nose-tip of the registered meshes. We apply this weighting

scheme to smoothly blend the properties of the head and

face model and to avoid the discontinuities that appear on

the borders of the face and head area.

Lastly, when the points belong to different areas i.e. (ith
point on face, jth point on head) we simply follow the first

method that exploits just the head covariance matrix Kh,

since the correlation of the face/head shape only exist in

the LYHM. After repeating the aforementioned methodol-

ogy for every point pair in St and calculating the entire

joined covariance matrix KU , we are able to sample new

instances from the Gaussian process morphable model.

3.3. Model Refinement

To refine our model, we begin by exploiting the already

trained GPMM of the previous section. With our head tem-

plate St and the universal covariance matrix KU , we define

a kernel function:

kU (x,y) = K
CP (St,x),CP (St,y)
U (13)

where x and y are two given points from the domain where

the Gaussian process is defined and the function CP (St,x)
returns the index of the closest point of x on the surface St.

We then define our GPMM as:

GPU (µU , kU ) (14)

where µU (x) = [0, 0, 0]T . For each scan in the MeIn3D

dataset, we first try to reconstruct a full head registra-

tion with our GPMM using Gaussian Process Regression

[22, 14]. Given a set of observed deformations X sub-

ject to Gaussian noise ǫ ∼ N (0, σ2), Gaussian process

regression computes a posterior model GPp(µp, kp) =
posterior(GP,X). The landmark pairs between a refer-

ence mesh and the raw scan define a set of sparse mappings,

which tells us exactly how the points on the reference mesh

will deform. Any sample from this posterior model will

then have fixed deformations on our observed points i.e. fa-

cial landmarks. The mean µp and covariance kp are com-

puted as:

µp(x) = µ(x) +KX(x)T (KXX + σ2I)−1X (15)

kp(x,y) = ku(x,y)−KX(x)T (KXX + σ2I)−1KX(y)
(16)

where

KX(x) = (kU (x,xi)), ∀ xi ∈ X (17)

KXX = (kU (xi,xj)), ∀ xi,xj ∈ X (18)

For a scan S with landmarks LS = {l1, ...ln}, we first

compute a posterior model based on the sparse deforma-

tions defined by the landmarks:

GP0
p(µ

0
p, k

0
p) = posterior(GPU ,LS − LSt

) (19)
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Figure 4. The model refinement pipeline. We start with the GP model defined by the universal covariance matrix. For each scan in the

MeIn3D dataset we obtain full head reconstruction with GP Regression using the sparse landmarks and dense ICP algorithm. We then

non-rigidly align the face region of the full head reconstruction to the scan, and build a new sample covariance matrix to update our model.

We then refine the posterior model with Iterative Closest

Point algorithm. More specifically, at each iteration i we

compute the current regression result as Si
reg = {x +

µi−1
p (x)|x ∈ St}, which is the reference shape wrapped

with the mean deformation of the posterior model GPi−1
p .

We then find the closest points Ui for each point in Si
reg on

S, and update our posterior model as:

GPi+1
p (µi+1

p , ki+1
p ) = posterior(GP0

p,U
i − Si

reg) (20)

Since the raw scans in the MeIn3D database can be noisy,

we exclude a pair of correspondence (x,U(x)) if U(x) is

on the edge of S or the distance between x and U(x) exceed

a threshold. After the final iteration we obtain the regression

result Sreg = {x+µfinal
p (x)|x ∈ St}. We then non-rigidly

align the face region of Sreg to the face region of the raw

scan to obtain our final reconstruction.

In practice, we noticed that the reconstructions often pro-

duce unrealistic head shapes. We therefore modify the co-

variance matrix KU before the Gaussian process regression.

We first compute the principal components by decompos-

ing KU , then reconstruct the covariance matrix using Eq.

10 with fewer statistical components. With the full head re-

constructions from the MeIn3D dataset, we then compute a

new sample covariance matrix, and repeat the previous GP

regression process to refine the reconstructions. Finally we

perform PCA on the refined reconstructions to obtain our

final refined model.

4. Intrinsic evaluation of CFHM models

We name our combined full head model as the Combined

Face & Head Model (CFHM) and now show its compar-

ative performance. Following common practice, we eval-

uate our CFHM variations compared to LYHM by utiliz-

ing, compactness, generalization and specificity [12, 9, 5].

For all the subsequent experiments we utilise the original

head scans of [11] from which we have chosen 300 head

meshes that were excluded from the training procedure.

This test set was randomly chosen within demographic con-

strains to ensure ethnic, age and gender diversity. We name

our model variations as: CFHM-reg built by the regres-

sion method, CFHM-GP built by the Gaussian processes

kernels framework and finally, CFHM-ref built after refine-

ment with Gaussian process regression. Also, we present

bespoke modes in terms of age and ethnicity, constructed

by the Gaussian processes kernels method coupled with re-

finement.

The top graphs in Figure 5 present the compactness mea-

sures of the CFHM models compared to LYHM. Compact-

ness calculates the percentage of variance of the training

data that is explained by the model, when certain number

of principal components are retained. The models CFHM-

reg, CFHM-GP express higher compactness compared to

the model after the refinement. The compactness ability of

the all proposed methods is far greater than the LYHM as it

can be seen by the graph. Both global and bespoke CFHM

models can be considered sufficiently compact.

The center row of Fig. 5 illustrates the generalization

error which demonstrates the ability of the models to rep-

resent novel head shapes that are unseen during training.

To compute the generalization error for a given number of

principal components retained, we compute the per-vertex

Euclidian distance between every sample of the test set and

its corresponding model projection and then take the av-

erage value over all vertices and test samples. All of the

proposed models exhibit far greater generalization capabil-

ity compared to LYHM. The refined model CFHM-ref tends

to generalize better than the other approaches, especially in

the range of 20 to 60 components. Additionally, we plot

the generalization error of the bespoke models against the

CFHM-ref in center Figure 5 (b). In order to derive a cor-

rect generalization measure for the bespoke CFHM-ref, for
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every mesh we use its demographic information, we project

it on the subspace of the corresponding bespoke model and

then we compute an overall average error. We observe that

the CFHM-ref mostly outperforms the bespoke generaliza-

tion models, which might be attributed to the fact that many

of the specific models are trained from smaller cohorts, and

so run out of interesting statistical variance.

Lastly, the bottom graphs of Figure 5 show the specificity

measures of the introduced models, which evaluate the va-

lidity of synthetic faces generated by a model. We ran-

domly synthesize 5,000 faces from each model for a fixed

number of components and measure how close they are to

the real faces based on a standard per-vertex Euclidean dis-

tance metric. We observe that the model which holds the

best error results is the proposed refined model CFHM-ref.

The LYHM model demonstrates better specificity error than

the CFHM-reg, CFHM-GP models only in the first 20 com-

ponents. Both of the proposed combined models exhibit

steady error measures (≈ 3.8) after keeping components

greater than 20. This is due to the higher compactness that

both combined models demonstrate, which enables them to

maintain certain specificity error after the 20 components.

For all bespoke models we observe that the specificity er-

rors attain particularly low values, in the range of 1to 4 mm.

This is evidence that the synthetic faces generated by both

global and bespoke CFHM models are realistic enough.

Our results show that our combination techniques yield

models that are capable of exhibiting improved intrinsic

characteristics compared to the original LYHM head model.

5. Head reconstruction from single images

As an application experiment, we outline a methodology

that enables us to reconstruct the entire head shape from

unconstrained single images. We strictly utilize only one

view/pose for head reconstruction in contrast to [21] where

multiple images were utilized. We achieve this by regress-

ing from a latent space that represents the 3D face and ear

shape to the latent space of the full head models constructed

by the proposed methodologies. We begin by building a

PCA model of the inner face along with 50 landmarks on

each ear as described in [27]. We utilize the 10, 000 head

meshes produced by our proposed methods. After building

the face-ear PCA model, we project each one of the face-ear

examples to get the associated shape parameters pe/f . Sim-

ilarly, we project the full head mesh of the same identity to

the full head PCA model in order to the acquire the latent

shape parameters of the entire head ph. Similarly, as in sec-

tion 3.1, we construct a regression matrix which works as a

mapping from the latent space of the ear/face shape to the

full head representation.

In order to reconstruct the full head shape from 2D im-

ages we begin by fitting a face 3DMM utilizing the In-the-

Wild feature-based texture algorithm proposed in [6]. Af-

(a) (b)

Figure 5. Characteristics of the CFHM models compared to

LYHM. Top: compactness; Center: generalization; Bottom: speci-

ficity. Left column (a): different methods, Right column (b):

demographic-specific 3DMMs based on the CFHM-ref model.

terwards, we implement an ear detector and an Active Ap-

pearance Model (AAM) as proposed in [27] to localize the

ear landmarks in the 2D image domain. Since we have fit-

ted a 3DMM in the image space, we already know the cam-

era parameters,i.e., focal length, rotation, translation. To

this effect, we can easily retrieve the ear landmarks in the

3D space by solving an inverse perspective-n-point problem

[19] given the camera parameters and the depth values of

the fitted mesh. We mirror the 3D landmarks with respect to

the z-axis to obtain the missing landmarks of the occluded

ear. After acquiring the facial part and the ear landmarks

we are able to attain the full head representation with the

help of the regression matrix. Since each proposed method

estimates a slightly different head shape for the 10, 000 face

scans, we repeat the aforementioned procedure by building

bespoke regression matrices for each head model. Some

qualitative results can be seen in Figure 6.

We evaluate quantitatively our methodology by render-

ing 30 distinct head scans from our test set in frontal and

side poses varying from 20 to −20 degrees around the y-

axis in order for the ears to be visible in the image space.

We apply our previous procedure, where we fit a 3DMM

face and we detect the ear landmarks in the image plane.

Then for each method we exploit the bespoke regression

matrix to predict the entire head shape. We measure the

per-vertex error between the recovered head shape and the
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actual ground-truth head scan by projecting each point of

the fitted mesh to the ground-truth and measuring the Eu-

clidean distance. Fig 7 shows the cumulative error distri-

bution for this experiment, for the four models under test.

Table 1 and 2 report the corresponding Area Under Curve

(AUC) and failure rates for the fitted and the actual ground

truth 3D facial meshes respectively. In both situations, the

LYHM struggles to recover the head shapes. CFHM-reg

and CFHM-GP perform equally, whereas the model after

refinement attains the best results. Finally, Fig. 8 illustrates

regression of the full head shape, when only the face of the

imaged subject is visible.

Figure 6. Qualitative results of our in-the-wild 3D head reconstruc-

tion. While the facial texture is reconstructed from the image do-

main, the eyes, the inner mouth and the head texture were created

by an artist for a more realist representation.

6. Conclusion

We presented a pipeline to fuse multiple 3DMMs into

a single 3DMM and used it to combine the LSFM face

model and the LYHM head model. The resulting 3DMM

captures all the desirable properties of both constituent

3DMMs; namely high facial detail of the facial model and

the full cranial shape variations of the head model. The aug-

a) b)

Figure 7. Accuracy results for head shape estimation, as cumula-

tive error distributions of the normalized dense vertex errors. a)

accuracy results based on the fitted facial meshes to rendered im-

ages, b) accuracy results based on the actual ground truth 3D facial

meshes. Tables 1 and 2 report additional measures.

Method AUC Failure Rate (%)

CFHM-ref 0.751 3.64

CFHM-reg 0.693 6.88

CFHM-GP 0.681 7.55

LYHM [11] 0.605 19.21

Table 1. Head shape estimation accuracy results for the fitted facial

meshes of our test set. Metrics are Area Under the Curve (AUC)

and Failure Rate of the Cumulative Error Distributions of Fig. 7.

Method AUC Failure Rate (%)

CFHM-ref 0.880 0.62

CFHM-GP 0.844 2.46

CFHM-reg 0.831 1.69

LYHM [11] 0.739 14.10

Table 2. Head shape estimation accuracy results for the actual

ground truth 3D facial meshes of our test set. Metrics are AUC

and Failure Rate of the Cumulative Error Distributions of Fig. 7.

Figure 8. Regressing the full head when only face (left) is visible.

mented model is capable of representing and reconstructing

any given face/head shape due to the high variation of fa-

cial and head appearances existing in the original models.

We demonstrated that our methodology yielded a statisti-

cal model that is considerably superior to the original con-

stituent models. Finally we illustrated the model’s utility in

full head reconstruction from a single images.
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[22] Marcel Lüthi, Thomas Gerig, Christoph Jud, and Thomas

Vetter. Gaussian process morphable models. IEEE transac-

tions on pattern analysis and machine intelligence, 2017. 3,

4, 5

[23] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami

Romdhani, and Thomas Vetter. A 3d face model for pose and

illumination invariant face recognition. In Advanced video

and signal based surveillance, 2009. AVSS’09. Sixth IEEE

International Conference on, pages 296–301, 2009. 2

[24] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J Black. Generating 3d faces using convolutional

mesh autoencoders. arXiv preprint arXiv:1807.10267, 2018.

2

[25] Kathleen M Robinette, Sherri Blackwell, Hein Daanen,

Mark Boehmer, and Scott Fleming. Civilian american and

european surface anthropometry resource (caesar), final re-

port. volume 1. summary. Technical report, 2002. 2

[26] Femke CR Staal, Allan JT Ponniah, Freida Angullia, Clifford

Ruff, Maarten J Koudstaal, and David Dunaway. Describ-

ing crouzon and pfeiffer syndrome based on principal com-

ponent analysis. Journal of Cranio-Maxillofacial Surgery,

43(4):528–536, 2015. 1

[27] Yuxiang Zhou and Stefanos Zaferiou. Deformable models

of ears in-the-wild for alignment and recognition. In 2017

10942



12th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2017), pages 626–633, 2017. 7

[28] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and

Stan Z Li. Face alignment across large poses: A 3d solu-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 146–155, 2016. 2

[29] Xiangyu Zhu, Zhen Lei, Junjie Yan, Dong Yi, and Stan Z

Li. High-fidelity pose and expression normalization for face

recognition in the wild. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

787–796, 2015. 2

[30] Xiangyu Zhu, Junjie Yan, Dong Yi, Zhen Lei, and Stan Z

Li. Discriminative 3d morphable model fitting. In Automatic

Face and Gesture Recognition (FG), 2015 11th IEEE Inter-

national Conference and Workshops on, volume 1, pages 1–

8, 2015. 2

10943


