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Abstract

Consensus maximization is a key strategy in 3D vision

for robust geometric model estimation from measurements

with outliers. Generic methods for consensus maximiza-

tion, such as Random Sampling and Consensus (RANSAC),

have played a tremendous role in the success of 3D vision,

in spite of the ubiquity of outliers. However, replicating

the same generic behaviour in a deeply learned architec-

ture, using supervised approaches, has proven to be diffi-

cult. In that context, unsupervised methods have a huge po-

tential to adapt to any unseen data distribution, and there-

fore are highly desirable. In this paper, we propose for the

first time an unsupervised learning framework for consen-

sus maximization, in the context of solving 3D vision prob-

lems. For that purpose, we establish a relationship be-

tween inlier measurements, represented by an ideal of in-

lier set, and the subspace of polynomials representing the

space of target transformations. Using this relationship, we

derive a constraint that must be satisfied by the sought in-

lier set. This constraint can be tested without knowing the

transformation parameters, therefore allows us to efficiently

define the geometric model fitting cost. This model fitting

cost is used as a supervisory signal for learning consen-

sus maximization, where the learning process seeks for the

largest measurement set that minimizes the proposed model

fitting cost. Using our method, we solve a diverse set of

3D vision problems, including 3D-3D matching, non-rigid

3D shape matching with piece-wise rigidity and image-to-

image matching. Despite being unsupervised, our method

outperforms RANSAC in all three tasks for several datasets.

1. Introduction

In 3D vision, problems such as Structure-from-Motion

(SfM) [26, 16, 12] and image registration [17, 30] are ge-

ometrically solved from noisy measurements with outliers.

In that context, consensus maximization among inlier mea-

surements, is very often a crucial step. Typically, the max-

imum consensus is searched using the Random Sampling

and Consensus (RANSAC) algorithm [13] or its deriva-

tives [35, 44, 37]. During this process, almost all geo-

metric models are represented by a system of polynomi-

als whose common root specifies the desired transforma-

tion parameters. Polynomial-based geometric model repre-

sentations, when used with RANSAC, offer accurate trans-

formation parameters, therefore are used for a diverse set

of problems [12, 17, 30, 20]. Globally optimal meth-

ods [10, 33, 42, 2, 15, 3, 23, 49], which overcome limita-

tions of RANSAC, further bolster the importance of maxi-

mizing consensus. However, most methods that seek con-

sensus maximization solely depend upon the geometric

models. They do not exploit knowledge about the scene

or their measurement distributions.

Learning for consensus maximization is an alternative

approach which has the potential of providing a higher in-

lier/outlier classification accuracy, by leveraging the dis-

tribution of the given data. Additionally, the supervisory

signal for consensus maximization may help to learn other

related tasks, within the framework of multi-task learn-

ing. Owing to the success of deep learning, recent methods

have tackled the consensus maximization problem for im-

age matching using the Fundamental matrix [36], the Essen-

tial matrix [48] and for the absolute pose [7]. These meth-

ods use supervision through ground-truth labels to train a

neural network for classifying correspondences as inliers or

outliers. Other methods, [36, 48] respectively use Funda-

mental or Essential matrix models, which require supervi-

sion by their associated matrices to train the network param-

eters. Unfortunately, such networks, trained in a supervised

manner, are not on par with RANSAC in terms of their gen-

erality to unseen data distribution. Moreover, ground-truth

geometric models are sometimes difficult to obtain, or even

non-existent [16]. In this scenario, unsupervised methods

have a huge potential, as they can adapt to any unseen data

distribution, and therefore are highly desirable.

In this paper, we propose an unsupervised framework to

learn consensus maximization in the context of geometric

3D vision problems. We model the geometric transforma-

tions using polynomials, as commonly done in the litera-
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ture [12, 16, 30]. We then develop a framework of fitting

polynomials in a deep architecture while maximizing the

consensus. To develop such method, we first establish a re-

lationship between inlier measurements, represented by an

ideal of the inlier measurements, and the subspace of poly-

nomials representing the space of target transformations.

This relationship is then used to formulate a loss function

for fitting polynomials, as the singular values minimization

problem on the so-called Vandermonde matrix [4, 8].While

minimizing the proposed loss function, our training pro-

cess also seeks for the largest consensus among the mea-

surements. Thereby our formulation evaluates the consis-

tency to the geometric model without regressing the model

parameters, which is known to be sensitive for robust es-

timation tasks within supervised setups [36, 48]. Regard-

less, one may still think of using a robust regression-based

formulation, e.g. based on m-estimators. However, mini-

mizing such robust loss function may provide satisfactory

results only when outliers are relatively few [31, 2].

Our loss function on the other hand is designed to train a

correspondence classification network, and it naturally ex-

tends to many transformation models that can be expressed

by one or more polynomials. Notably, we neither require

classification labels, nor the ground-truth transformations.

To the best of our knowledge, our work is the first to learn

a deep architecture in an unsupervised manner for consen-

sus maximization in 3D vision problems. Our method is

adapted to a diverse set of 3D vision problems: 3D-3D rigid

body transformation, non-rigid shape matching with piece-

wise rigidity and uncalibrated 2D transformations (Funda-

mental matrix and homography). We experimentally show

that our method is able to outperform RANSAC in all of

the mentioned tasks, while being unsupervised. We further

empirically show how the accuracy of supervised methods

worsens when tested on different data statistics. This dete-

rioration in accuracy could be recovered to a large extend,

using the proposed unsupervised training framework.

2. Related Work

We briefly summarize the related work to put our pa-

per into context. Consensus maximization is a well stud-

ied topic [12, 17, 30, 20], and is usually solved with

RANSAC [13, 35, 44, 37]. In contrast to heuristic ap-

proaches, global methods provide optimality guaranties

[10, 33, 42, 2, 15, 3, 23, 49]. Recently, supervised ma-

chine learning has been leveraged to solve consensus max-

imization and robust estimation. With regards to two-view

geometry, [48, 36] learn from keypoint correspondences,

whereas [32, 29] regress transformation parameters directly

from the input images. [7] integrate a differentiable version

of RANSAC into their network to robustify camera local-

ization. Although they may show beneficial accuracy (w.r.t.

to classical RANSAC) and speed (compared to global meth-

ods), the generalizability of supervised methods is limited

to the domain of the training data and to the level of ab-

straction of the input data. In contrast, our method takes

inspiration from algebraic varieties [4, 9] to train a deep

network for inlier/outlier classification in an unsupervised

fashion. We build on permutation-invariant networks which

recently gained attention for learning on unordered point

sets [34, 24, 46], by adapting the PointNet [34] architecture.

3. Background and Theory

3.1. Consensus Maximization

Given a set X = {(ui, vi), i = 1, . . . ,m}, of correspond-

ing measurements, the consensus maximization problem in-

volves finding the largest subset Ω ⊆ X that can be ex-

plained by a single parametric transformation Φ. For every

pair (u, v) ∈ Ω, the distance between v and the transformed

measurement Φ(u) is smaller than a threshold ǫ. Mathe-

matically, the problem of consensus maximization is,

max
Φ,Ω⊆X

∣Ω∣

s.t. d(Φ(ui), vi) ≤ ǫ, ∀(ui, vi) ∈ Ω.
(1)

We represent Φ using polynomials as commonly done in

the literature. In this regard, (1) is an algebraic problem of

finding a variety V of known dimension – representing Φ –

such that the distance from every inlier member ofX to V is

bounded by a given threshold ǫ. After a general formulation

of our task, we first discuss the problem of consensus max-

imization in the absence of noise. The case of noisy data is

considered later.

3.2. Problem Formulation

Consider the ring R[x] ∶= R[x1, ..., xn]d of multivari-

ate polynomials of degree ≤ d and an algebraic variety

V ⊆ R
n defined such that V ∶= {x ∈ Rn ∶ pj(x) = 0}. Let

xi = (u⊺i , v
⊺
i )
⊺ ∈ Rn be a measurement vector representing a

pair of correspondences in X . Primarily, we are interested

in finding Ω ⊆ X which vanishes on some variety V con-

strained by Φ, whereX is corrupted by outliers. Recovering

V exactly is an NP-hard problem because every polynomial

in the ideal I(V)∶ = {∑j gj(x)pj(x) ∶ gj(x) ∈ R[x]} van-

ishes on V as well. Nevertheless, the existence of the ideal

I(V) implies the existence of V . In this context, an exam-

ple problem of fitting a 3D line, represented by Φ, involves

an ideal I(V) of some one-dimensional variety V , which is

parameterized by two intersecting planes p1(x) and p2(x).
As shown in Fig. 1, the ideal I(V) is represented by a pen-

cil of planes passing through the line. The desired inlier

set is the largest Ω ⊆ X for which there exists a line – rep-

resented by V of dimension one – passing through all 3D

points x ∈ Ω. While seeking for Ω, we ensure the existence

of V(Ω) ∶= {V ∶ Ω ⊆ V} by ensuring the existence of I(Ω).
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Figure 1. 3D Line Fitting. Finding a one-dimensional variety V
from a sample set X . V is the intersection of planes p1(x) and

p2(x). The ideal I(V) is a pencil of planes.

Definition 3.1 The ideal I(Ω) is a set of polynomials that

vanishes on the samples of Ω. i.e. I(Ω) ∶= I(V(Ω)).

One can argue that there always exists some I(Ω), even

when Ω = X . However, we are interested in only those

I(Ω)which lie in the space of valid transformations Φ, rep-

resented by the polynomial basis B ⊆R[x]. We assume that

Φ resides within the vector space spanned by B.

Definition 3.2 The basis B is a set of monomial bases of

R[x] and RB = R[B] is the subspace of polynomials

spanned by B. Any polynomial in RB can therefore be rep-

resented by a coefficient vector in R
s for s = ∣B∣.

The polynomial representation of Φ involves r linearly in-

dependent equations in RB that vanish for all x ∈ Ω. For

example, while fitting lines and spheres in 3D, (r,RB) are

(2,R[x1, x2, x3]1) and (1,R[x1, x2, x3]2), respectively.

The consensus maximization problem can be reformu-

lated as the search for the largest inlier set Ω, for which

there exists some ideal I(Ω) whose intersection with RB
spans exactly r dimensions:

max
Ω⊆X
∣Ω∣ ∶ dim(I(Ω) ∩RB) = r. (2)

Intuitively, the problem of (2) demands that I(Ω)must van-

ish on all polynomials represented by r equations inRB, as

required by Φ. Recall the example of Fig. 1. The line V lives

in the space of linear polynomials RB = R[x1, x2, x3]1 of

dimension 2. In other words, one needs 2 independent lin-

ear equations to represent a line in 3D. Among all linear

polynomials (in RB) that vanish on Ω, we require exactly

two to be independent. These equations indeed represent

two intersecting planes, thus the line V .

3.3. Ideals and Sample Sets

The relationship between an ideal I(Ω) and the sample

set Ω ⊂ Rn can be established with the help of the so-called

Vandermonde matrix. This also allows us to reason about

the existence of I(Ω) ∩RB for the chosen bases B.

Definition 3.3 The Vandermonde matrix Md(Ω) ∈ Rm×s is

a matrix with the terms of a geometric progression monomi-

als in each row, such that the entries mij are the monomials

xe = xe1
1
xe2
2
. . . xen

n of degree at most d.

For example, if n = 1, d = 3, and Ω = {x1, x2, x3} then

M3(Ω) is the Vandermonde matrix of the form,

M3(Ω) =

⎡⎢⎢⎢⎢⎢⎣

x3
1 x2

1 x1 1

x3
2 x2

2 x2 1

x3
3 x2

3 x3 1

⎤⎥⎥⎥⎥⎥⎦

.

Note that Md(Ω) grows linearly in the number of samples

m as well as in the number of monomials s, and therefore

is a compact representation. One of the key properties of

the Vandermonde matrix, which allows us to analyze the

existence of I(Ω) ∩RB, is stated below.

Theorem 3.4 The kernel ker(Md(Ω)) of the Vandermonde

matrix Md(Ω) equals to the vector space I(Ω)∩RB. i.e. all

polynomials that are linear combinations of B and vanish

on Ω are represented by I(Ω) ∩RB = ker(Md(Ω)).

Using Theorem 3.4, the problem of (1) is expressed as the

following constrained cardinality maximization problem,

max
Ω⊆X
∣Ω∣, s.t. dim(ker(Md(Ω))) = r. (3)

In the presence of noise, however, the constraint on

the kernel dimension of the Vandermonde matrix Md(Ω),
given in (3), is difficult to satisfy. Therefore, we enforce

the dimensionality constraint by minimizing the singular

values of Md(Ω) [18]. For descending singular values

σ1, σ2, . . . σs of Md(Ω), the trailing r singular values must

be zero for the constraint of (3) to be true. Hence, we relax

the problem of (3), for a given scalar λ, as follows,

max
Ω⊆X
∣Ω∣ − λ

r−1

∑
k=0

σs−k(Md(Ω)). (4)

Maximizing the cardinality can be thought of a subset selec-

tion problem, expressed using a set of binary variables wi ∈
{0,1} (de-)activating the corresponding rows in Md(Ω).

max
w∈{0,1}m

m

∑
i=1

wi − λ
r−1

∑
k=0

σs−k(diag(w)Md(X)). (5)

Exact solving of (5) involves combinatorial optimization

and is not tractable in practice. Therefore, we relax the

problem by introducing a soft selection of inliers using con-

tinuous sample weights wi as follows.

max
w∈Rm

m

∑
i=1

wi − λ
r−1

∑
k=0

σs−k(diag(w)Md(X)), s.t. 0 ≤ wi ≤ 1.

(6)

Equation (6) is still not convex, however, it is differentiable

and can be optimized using gradient-based methods.
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3.4. Recovering the Ideal

In some cases, we are interested in actually recovering

the ideal P = I(Ω) ∩RB, for example to compute the pa-

rameters of the transformation Φ. Consider the SVD de-

composition of M(X ) = UΣVT . Recall that the ideal of our

interest P lies on the kernel of M(X ). Therefore we can ex-

tract the corresponding polynomials from the nullspace of

M(X ), represented by the trailing r right singular vectors,

B = [ vs vs−1 . . . vs−r+1 ] ∈ Rs×r. (7)

Let p(x) be the vector of monomials in B. The recovered

ideal P is then defined by P = {BT p(x) = 0}.

3.5. Deep Learning for Consensus Maximization

Besides direct optimization of Eq. (6) for a given set of

correspondences, it can be thought of a supervisory signal

for learning consensus maximization from data. Given a

neural network wθ(X) ∶ Rm×n→ [0,1]m parametrized by

θ, we wish to learn prediction score wi for each sample

xi ∈ X , that maximizes the number of inliers (wi→1), while

rejecting outliers (wi→ 0). To this end, we define a differ-

entiable supervisory signal that requires neither point-wise

labels, nor knowledge about the ground truth transformation

between correspondences. Given sample set X , we aim to

learn the optimal parameters θ by minimizing the following

empirical loss ℓ(θ,X) based on Eq. (6).

ℓ(θ,X) = − ∥wθ(X)∥1 + λ
r−1

∑
k=0

σs−k(diag(wθ(X))Md(X)).

(8)

The input to our network is a set of correspondences X .

Consequently, we require a architecture that is invariant to

the permutation of the input, whereas most neural networks

were designed for ordered input data, e.g. 2D images. How-

ever, recent advances in deep learning on unordered point

sets [34, 24, 46] allow a suitable choice of architecture for

our problem. We employ the PointNet [34] segmentation ar-

chitecture to encourage a global reasoning about the under-

lying transformation. The key component of the architec-

ture is a max-pool operation across correspondences before

computing a global feature vector (GFV). The GFV is then

concatenated to the pointwise features to exploit the global

context for the point-wise predictions. Since our goal is bi-

nary inlier classification, we add an element-wise sigmoid

layer that outputs inlier prediction scores wi in the range

[0,1]. We define our prediction function wθ(X) as

wθ(X)i = s(Cθ(X)i), s(x) = (1 + e−x)−1, (9)

with the PointNet-seg output denoted as Cθ(X) ∈ Rm. To-

gether with the loss function (8), our architecture can the be

modeled using standard building blocks: after construction

of the Vandermonde Matrix Md(X) ∈ Rm×s, every row i

gets weighted with the corresponding inlier probability wi.

Then we compute the last r singular values of the weighted

Vandermonde matrix using the differentiable SVD opera-

tion. The architecture is illustrated in Fig. 2. We implement

the network in tensorflow [1] and use the ADAM [19] opti-

mizer to learn the parameters θ.

By design, our approach generalizes over transformation

functions that can be represented by polynomial equations.

In the following sections we explain how the Vandermonde

loss can be adapted to geometric transformation problems.

4. 3D Vision Problems

In this section, we present four examples of 3D vision

problems for consensus maximization problems and intro-

duce different problem specificRB subspace constraints.

Unfortunately, non-linear constraints on transformation

parameters can not be directly applied in this framework.

However, since we can compute the ideal P and extract the

parameters of the model, we are able to introduce a regular-

ization term on the solutions.

4.1. Rigid Body Transformation

We consider correspondences between two point clouds

that differ by a 3D rigid body transformation. Let {u, v} be

euclidean coordinates of a pair of points such that

v = Ru + t, R ∈ SO(3), t ∈ IR3. (10)

We can see that Eq. (10) involves r = 3 linear equa-

tions in the coordinates of corresponding points. There-

fore we can restrict the polynomial subspace RB to linear

terms B = {ux, uy, uz, vx, vy, vz,1}. This leads to a Van-

dermonde matrix M(X) ∈ Rm×7, with kernel dimension 3.

Note that this representation holds for any 3D affine

transformation, since it does not enforce rotation manifold

and scale constraints. We therefore introduce an additional

regularization term on the recovered ideal P . Recall that we

extract the basis B of P according to Eq. (7). The recovered

polynomials in P are some linear combination of Eq. (10).

To recover the components of R and t, we need a change of

basis to separate vx, vy and vz in each equation. The desired

basis B′ of the form in Eq. (10) can be obtained by

B′ = −[bT4 bT5 bT6 ]
−TB = [ R̂ − I3×3 t̂ ], (11)

where bi denotes the ith row of the matrix B. This form

offers direct access to the estimated rotation and translation

parameters. To avoid numerical issues, we add a small iden-

tity matrix before the matrix inversion in our implementa-

tion. Based on this observation, we define a regularizer ℓr,

ℓr(θ,X) = log (1 + ∥R̂R̂T − I3×3∥
2
) . (12)

932



Figure 2. Method Overview. A set of correspondences X is fed to a network that outputs inlier scores w. Every score weights its

corresponding row in the Vandermonde matrix Md(X) . We minimize the last singular values of Md(X), while maximizing the number

of inliers. Training uses only the knowledge about the polynomial structure of transformation Φ.

The log serves for extenuation of spike-like behaviour.

We add λrℓr(θ,X ) to the Vandermonde loss (8). Note that

(12) can be also adapted to similarity transform by encour-

aging orthogonality after normalizing by scale.

Non-rigid Extension. Theoretically, there is no reason

to assume that our network can learn the inlier statistics

of only one rigid transformation in the data. As long

as a consistent transformation pattern is present, correla-

tions between inliers can be extracted by an accordingly

trained network [45]. In this work, we investigate this

idea in the context of unsupervised learning. We assume

that the transformation can be approximated by piece-wise

rigidity, a well studied approximation for non-rigid sur-

faces [43, 28, 38, 21]. Consequently, we model the global

non-rigid deformation by rigid transformations on local

neighborhoods. A straight forward approach is to compute

our loss defined for 3D rigid transformation on local neigh-

borhoods of the input point set. Given a K-neighborhood

Na of an anchor point ua ∈ U on the first point cloud, we

assemble a local Vandermonde matrix M(Na). The loss is

then computed according to Alg. 1.

Algorithm 1 Piecewise-rigid loss ℓpr(θ,X ,K)
0. Define a reference point set U = {ui ∶ (ui, vi)∈X}.
1. Randomly sample an anchor point ua ∈ U.

2. Compute the (geodesic) neighborhood of ua
Na = {(ui, vi)∈X ∶ d(ua,ui) ≤ δ}, where ∣Na∣ =K.

3. Assemble the local Vandermonde matrix M(Na).
4. Extract Ba (7) of M(Na) to compute ℓr(θ,Na) (12).

5. Compute ℓ(θ,Na) (8).

6. Return ℓ(θ,Na) + λrℓr(θ,Na).

Random sampling of anchor points ua may result in gra-

dients of high variance and unstable training. We observed

that larger batch size and low learning rate gives stable gra-

dients and improves learning significantly.

4.2. Uncalibrated 2­View Geometry

We now consider correspondences {ui, vi}mi=1 between

2D image points of uncalibrated perspective cameras. De-

pending on the camera motion, the relationship between two

views can be described by either a Fundamental matrix or

homography, as expressed by

uTFv ∼ 0, for Fundamental matrix F ∈ R3×3. (13)

u −Hv ∼ 0, for Homography H ∈ R3×3. (14)

An interesting property is that both share the same poly-

nomial subspace RB of second degree polynomials in 2

variables: B = {ux, uy, vx, vy, uxvx, uxvy, uyvx, uy, vy1}.
However, the Fundamental matrix (13) is represented by

r=1 basis in RB, whereas homography (13) is constrained

by r = 3 bases. The similarity of the polynomials of (13)

and (14) allows us to train one network that can handle both

cases simultaneously, by simply minimizing one or three

singular values. This gives a significant practical advantage

over other approaches including RANSAC, that results in an

incorrect Fundamental matrix under degenerate motions.

Note that in case of the Fundamental matrix we cannot

directly enforce F to be rank-deficient. Given the estimated

Fundamental matrix F̂ ∈ R3×3, recovered from the basis B ∈
R

9 by reshaping, we thus define a regularization term

ℓf(θ,X ) = σ3(F̂), (15)

that minimizes the last singular value. Again, we add

λf ℓf(θ,X ) to form the complete loss.

5. Experimental Results

We conduct a variety of experiments to validate the de-

veloped theoretical framework and to demonstrate the per-

formance of unsupervised learning for consensus maxi-

mization. When comparing with RANSAC, we assume

50% outlier rate and tune the parameters accordingly. In ex-

periments with real data, we compute the ROC curves and

select the optimal operating point for each method.

933



Figure 3. 3D-3D Rigid body transformation estimation with increasing outlier rate. We evaluate inlier detection rate, outlier detection

rate, and F1-score on the ModelNet-40 test set by varying the ratio of synthetically introduced outliers. We compare training on synthetic

data and ModelNet-40 training set, for both supervised and unsupervised training setups.

Figure 4. 3D-3D Rigid body transformation estimation with increasing noise level. From left to right: Evaluation of the impact on

F1-score, rotation error, and translation error on ModelNet-40 test set using 60% synthetic outliers.

Synthetic data supported training. Although we are able

to train our network from scratch, with competitive results

in the presence of up to 50% outliers, the process beyond

that becomes delicate. Nevertheless, when supported with

initialization using synthetic data, the training behaviour

turns out to be as expected, with very competitive results

for outliers up to 98%, on real data with very different dis-

tributions. Note that we are concerned to maximize the con-

sensus for 3D vision problems. In this context, generating

such synthetic data from noise is straightforward. However,

as expected, training on synthetic data alone is not enough

to get good overall performance on real data, given the im-

mutable difference in statistics.

Implementation details. We trained using a batch size of

64 samples, each containing 512 correspondences. Training

was performed for a fixed number of 100 epochs with learn-

ing rate decay of 0.9 every 10 epochs, starting from 10−3.

The hyperparameters were set as λ = 0.15, λr = λf = 0.01.

We generated synthetic data for pretraining by uniform sam-

pling of 3D points, and applying a random 6-DoF pose. For

the two-view data, we uniformly sampled three euler angles

from [−60,60] degrees and a random translation.

5.1. 3D­3D Rigid Body Transformation

We begin by investigating the behaviour of our method

in scenarios of varying outlier rates and noise levels in

semi-synthetic experiments on 3D-3D rigid body transfor-

mation. The following experiments were conducted on the

ModelNet-40 [47] dataset, with the default train/test split.

We sampled 512 points from each model, and added 1%

noise on the points. We then applied an unconstrained

rigid transformation and randomly mixed correspondences

to generate the desired number of outliers. In Fig. 3

we plot the inlier and outlier detection rates and the F1-

measure in order to compare to several baselines. Here,

we evaluate the performance of two methods for pretrain-

ing on the synthetic data: supervised (synth-sv) and unsu-

pervised (synth-unsv). For synth-unsv, we trained using

the Vandermonde Loss (8), starting with only 10% outlier

rate and gradually increasing to 95% outlier rate, whereas

synth-sv is directly trained using cross entropy loss. Nat-

urally, supervised pretraining performs better. More inter-

estingly, with unsupervised finetuning we observe large im-

provement over both pretrained methods. Among the fine-

tuned models, synth-sv+modelnet-unsv slightly outper-

forms synth-unsv+modelnet-unsv in the domain of high

outlier rates, while approaching the performance of the end-

to-end supervised method modelnet-sv. We can therefore

conclude that 1) supervised pretraining is more effective,

2) data specific finetuning is necessary and 3) unsuper-

vised finetuning is able to adapt to the different statistics

of ModelNet-40. Moreover, the experiments demonstrate

that RANSAC is not useful as a supervisory signal at the

outlier rates beyond 60%.

For the second experiment, we varied the noise level

from 0% to 5% at a fixed outlier rate of 60%. As depicted

in Fig. 4 the F1-score for all trained methods is fairly stable,

whereas RANSAC starts deteriorating beyond 2% noise.

More importantly, evaluating the rotation and translation

errors of the models estimated from the respective inliers,

we find that synth-sv performs exceptionally bad. We at-

tribute this to the fact that the domain gap results in a fairly

good accuracy (similar to RANSAC), but it is unable to re-

ject some very bad outliers, thus leading to an inadequate
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Figure 5. 2-View geometry estimation with increasing outliers. From left to right: Evaluation on ModelNet-40 test data with Funda-

mental matrix, on a 50-50 mixture of Homography and Fundamental matrices, and on pure Homography.

Figure 6. Non-rigid shape matching. From left to right: Sparse SfM source point cloud; the reference SMPL [27] model; correspondences

classified by our network (inliers in black and outliers in red); top views of inliers (on top) and outliers (at bottom) shown separately; and

front and side views of the mesh model obtained after performing articulated ICP initialized using our detected inliers. Red points in the

last two images are the SfM point cloud superimposed on the fitted mesh model.

Figure 7. Rigid body transformation. Correspondence classifica-

tion result of our approach on the T-Rex dataset [10] (85% outliers)

using PFH [39] matches. Inliers and outliers are visualized on the

left side, the aligned models in two views on the right side.

Figure 8. 2D-2D Homography estimation with increasing out-

liers. Left: Comparing F1-score with variants of RANSAC on

ModelNet-40 test set. Right: Run-time of various methods.

Figure 9. 2D-2D Fundamental matrix estimation. ROC curve on

Middlebury Temple (top). The right figure shows operating points

of four methods on three real datasets. η is the outlier rate.

fit. Our method synth-sv+modelnet-unsv performs com-

petitive to the supervised model, consistently outperforming

other methods in all metrics. We conclude that minimizing

our loss gives better classification accuracy and leads to bet-

ter models, thus validating our theoretical considerations.

In Fig. 7 we show a qualitative result on the T-Rex

dataset [10] (85% outliers) of our unsupervisedly trained

outlier removal network for PFH [39] feature matches.

5.2. 2D­2D Homography & Fundamental Matrix

We now analyze the performance on 2D-2D Fundamen-

tal matrix and homography estimation tasks. First, we

investigate the behaviour on semi-synthetically generated

data. We projected 3D points from ModelNet-40 data on

two views with varying motions and focal lengths, and

added 3px noise. The left plot in Fig. 5 compares pre-

training, our method, and supervised learning on Funda-
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mental matrix estimation. We observe slight improvement

over pretraining, with finetuning getting close to supervised

performance. This can be attributed to the similar motion

statistics used in pretraining. Here, we omitted compar-

isons with other supervised methods [36] that showed per-

formance on par with modelnet-sv. In the middle and right

plot of Fig. 5, we tested on 50% and 100% homographies,

respectively. Here, we trained our model on both homogra-

phy and Fundamental matrix (see Eq. (14) and (13)), only

knowing the type of the motion (not the parameters) at train-

ing time (not at test time). We compare to RANSAC with

Fundamental matrix and homography model, and to a state-

of-the-art supervised method for Fundamental matrix esti-

mation [36] dfme-sv. We can clearly see that our unsu-

pervised method can handle both cases, as opposed to the

single model approaches that fail to to reject outliers by fit-

ting Fundamental matrix to homography data. For up to

80% outliers, the unsupervised approach is very competi-

tive with the fully supervised modelnet-sv.

We further compare the F1-score and runtime with var-

ious variants of RANSAC [35] and a globally optimal

method [11] on homography estimation in Fig. 8. The best

baseline USAC works reliably until 70% outlier rate. Ex-

tending to 80% involves increasing the max. iterations 100-

fold to 50k, severely impacting runtime. The global optimal

method [11] is orders of magnitude slower and fails above

10% outliers, making it not practical in general. Note that

our implementation is by no means optimized for efficiency.

The next set of experiments was conducted with real

matches on three different datasets where the groundtruth

motion was known: Temple and Dino from the Middlebury-

MultiView dataset [41], and one sequence of KITTI [14].

We disjointly sampled frames for training and testing, com-

puted SIFT keypoints and matched across distance of up

to 5 neighboring frames. In the left plot of Fig. 9 we vi-

sualize the classification performance by plotting the ROC

curve over varying classification thresholds. We observe

that unsupervised training gives AuC and operating points

very competitive to supervised training. In the middle of

Fig. 9 we plot operating points for all methods on all three

datasets. Note that the pretrained model synth-sv yields

suboptimal results and is consistently improved by unsuper-

vised finetuning to a level similar to the supervised model.

5.3. Non­rigid 3D Shape Matching

To gauge the capabilities of our method to learn non-

rigid transformations, we experiment on the FAUST [6]

dataset. The dataset offers 10 subjects of different body

shape in 10 different poses. We take one subject as a ref-

erence model, and precompute the geodesic neighborhood.

For every training sample, we compute the local loss ac-

cording to Alg. 1. Training is conducted in a curriculum

learning fashion: starting with one global transformation

Inlier / Outl. Time [s] Inl. / Outlier Time [s]

DFM [25] 4211 / 772 1.0 3756 / 1227 1.0

MFCM [33] 3918 / 31 24 3437 / 93 19

synth-sv 3812 / 74 0.8 2601 / 82 0.8

synth-sv+unsv 3814 / 58 0.8 3122 / 11 0.8

KM [22] 4736 / 181 89 4051 / 860 92

MFCM [33] 4556 / 17 110 3634 / 161 115

synth-sv 3811 / 23 0.8 2371 / 171 0.8

synth-sv+unsv 3957 / 19 0.8 3303 / 40 0.8

Intra-subject Inter-subject

Table 1. Non-rigid 3D shape matching. Our results on

FAUST [6] intra- and inter-subjects vs. [22] and [33]. We report

the number of true positive (inliers) and false positive (remaining

outliers) matches, as well as run time on CPU.

(K = 512), we linearly reduce the number of neighbors in

every epoch down to K = 100. Results on two datasets

are reported in Table 1: intra-subject (mostly isometric,

pose variation) and inter-subject (non-isometric, similar

poses). Initial matches are computed using DFM [25] and

KM [22]. Again, we observe that the unsupervised method

adapts to the method-specific outlier statistics, whereas the

method pretrained on synthetic outliers fails to generalize.

Compared to the isometric consensus maximization method

MFCM [33], we loose more inliers, which can be attributed

to the fact that piecewise rigidity is not the entirely cor-

rect deformation model. In Fig. 6 we give a qualitative re-

sult on matching a sparse SfM point cloud, reconstructed

from 72 images using Colmap [40] to the SMPL [27] ref-

erence model. We train our network to filter matches from

KM [22]. The resulting set of matches enables ICP-based

refinement [5] on body pose and shape.

6. Conclusions

In this paper we introduced a method for unsupervised

learning of consensus maximization. Based on the relation-

ship between inlier measurements, represented by an ideal

of the inlier set, and the subspace of polynomials represent-

ing the space of target transformations, our formulation al-

lows to train a neural network for inlier/outlier classifica-

tion, without knowing ground truth correspondences or the

model parameters. Our experiments confirm that there is

a huge potential in adapting learning-based methods to un-

seen data domains. We demonstrate on a diverse set of 3D

vision problems that our method can successfully finetune

to new data without external supervision, thus replicating

the generic behaviour of RANSAC. For future work, we are

interested in investigating the case where the type of trans-

formation is also unknown, by jointly finding the polyno-

mial basisRB, on which suitable polynomials reside.
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