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Abstract

In two-view geometry, camera models and motion types

are used as key knowledge along with the image point cor-

respondences in order to solve several key problems of 3D

vision. Problems such as Structure-from-Motion (SfM) and

camera self-calibration are tackled under the assumptions

of a specific camera projection model and motion type.

However, these key assumptions may not be always justi-

fied, i.e., we may often know neither the camera model nor

the motion type beforehand. In that context, one can ex-

tract only the point correspondences between images. From

such correspondences, recovering two-view relationship –

expressed by the unknown camera model and motion type–

remains to be an unsolved problem. In this paper, we tackle

this problem in two steps. First, we propose a method that

computes the correct two-view relationship in the presence

of noise and outliers. Later, we study different possibili-

ties to disambiguate the obtained relationships into camera

model and motion type. By extensive experiments on both

synthetic and real data, we verify our theory and assump-

tions in practical settings.

1. Introduction

Structure-from-Motion (SfM) [14, 17, 21] and a vast ma-

jority of 3D vision applications rely on feature point corre-

spondences between images, while assuming a known cam-

era model. A key component of SfM and other 3D vision

methods is consensus maximization [10, 7, 28, 2, 13, 3, 15,

31] where the correct set of inliers is computed by searching

for specific relationships between image correspondences.

Such approaches have made possible the use of millions of

images for reconstructing 3D, as unreliable point correspon-

dences are weeded out through maximizing the consensus.

However, this is only true when one is certain about the

most suitable two-view relationship. In fact, methods devel-

oped to tackle many 3D vision problems can be used only

for certain camera and motion types. For example, current

state-of-the-art SfM methods assume that the camera obeys

a perspective projection model and that the camera motion

involves at least some translation [24, 21, 14]. Similarly, ex-

isting camera calibration methods (self-calibration or with

known patterns) assume a known camera model [30, 6], and

sometimes also a known motion type [12]. In such cases,

experiments using images from an affine camera when the

method assumes a perspective model are doomed to fail. It

is therefore essential to know the camera model and the mo-

tion type beforehand, apart from the two-view relationship.

In fact, one requires to know the motion (if not its type) to

reason about the camera model, and vice versa. Therefore,

jointly recovering the camera model and motion becomes

very difficult, leading to the causality dilemma.

In that context, the problem can be broken down into two

important sub-problems. The first is that of choosing the

correct two-view relationship without knowing the camera

type and motion beforehand. Fitting an unknown model to

point correspondences is a challenging problem and is in

general NP hard. On the one hand, one can only hope to

know the correct two-view relationship after trying out all

possible models. This is exactly what is done in the context

of SfM for the Fundamental matrix and the 2D projective

homography as geometric verification [27, 25, 16]. How-

ever, it is not always clear how one should select among

the several models for a given problem even after trying

out all of them. For example, we can always fit a rela-

tionship less constrained than the actual model in order to

obtain a higher inlier count. Therefore, simply choosing

the model with the largest inlier set may lead to an unde-

sired outcome. Additionally, there exists a natural conflict

between the desired camera motion baseline and the match-

ing performance in real images [18, 1]. In such cases, one

can benefit by constraining the motion to be sparse [23, 11].

However, it may not be known which motions are absent

beforehand. The second problem is that of obtaining the

camera model and the motion type from the correctly re-

covered two-view relation. Although many key results are
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already known [9, 17, 14, 26], we seek to answer and sum-

marize a different question, i.e., what is the correct camera

model and motion type given a two-view relationship?

In this paper, we provide contributions to the two prob-

lems discussed above: i) computing the two-view polyno-

mial relationship with point correspondences when the ex-

act type of relationship is not known and ii) disambiguating

the camera model and motion type from the two-view rela-

tionship. In order to tackle the first problem, we present a

unified approach to fitting polynomials to image point cor-

respondences despite the unknown model type and outliers.

To that end, we define the model search as that of finding

the sparsest set of polynomials which agree with more than

half the point correspondences up to some small fixed error.

We constrain the polynomials by using a basis of mono-

mials where the solution is known to exist. This is done

using the so-called Vandermonde matrix [4, 5]. In doing

so we solve for both the model parameters as well as the

inlier correspondences similar to that of Random Sampling

and Consensus (RANSAC) [10]. Unlike in RANSAC, we

can recover multiple polynomials that describe a given set

of measurements (correspondences) by iteratively searching

for the orthogonal set of sparse bases of the monomial co-

efficients. Additionally, we also encourage the motion to be

sparse, constraining the model search better for small base-

lines. Our approach only requires one to know beforehand

the maximum degree of the polynomial and not the actual

number of the polynomials. We express the problem as a

Mixed Integer Program (MIP) and solve it using the Branch

and Bound (BnB) approach. Our second contribution is the

analysis of the camera model and the motion type using the

computed two-view relationship. We consider each camera

and motion type and analyze the resulting two-view rela-

tionship. We provide conditions when such camera model

and motion recovery are ambiguous and why.

In order to quantify the model fitting accuracy, we eval-

uate the proposed method on both synthetic and real data.

In the synthetic case, we simulate image point correspon-

dences with outliers for various camera models and mo-

tion types. On average our method performs better than

RANSAC for unknown model fitting as well as inlier-outlier

classification. We also show that our method performs simi-

larly to RANSAC with known camera and motion model on

the same tasks. We use the real data in order to show motion

disambiguation on driving sequences demonstrating the im-

portance of such disambiguation in a practical scenario.

2. Preliminaries

Notations. We denote matrices with upper case letters

and their elements with double-indexed lower case letters:

A = (aij). Similarly, we write vectors and index them as:

a = (ai). We use special uppercase Latin or uppercase

Greek letters for sets such as P . We use lowercase Latin

letters for scalars as in a. Finally, we use σi(.) for a func-

tion which gives the i-th largest singular value. We write

the ring of polynomials parameterized by variables x ∈ Rn

as R[x]. A polynomial p(x) ∈ R[x] is represented using

the basis of coefficients B. We use ∥v∥p to denote the ℓ−p
norm of any vector v.

2.1. Problem Formulation

We consider two cameras related by a motion. Let there

be m point correspondences {ui, vi}
m
i=1 between the images

of the two cameras. Then we are interested to solve the

following problem.

Problem 2.1 What are the camera model M and mo-

tion parameters θ for the image point correspondences

{ui, vi}
m
i=1?

This problem is NP-hard and difficult to solve in its cur-

rent form. Therefore, we make the following assumption to

search the camera model and motion parameters.

Assumption 2.2 The optimal answer to Problem 2.1, i.e.,

(M, θ) respects the point correspondences {ui, vi}
m
i=1 and

minimizes the joint degrees of freedom ofM and θ.

We represent both M and θ using polynomials, as com-

monly done in the literature [9, 14, 22]. In this regard, we

express Problem 2.1 under the Assumption 2.2 as an alge-

braic problem of finding a low dimensional variety, whose

samples are the point correspondences.

Consider the ring R[x] ∶= R[x1, ..., xn] of multivari-

ate polynomials and an algebraic variety V ⊆ R
n defined

such that V ∶= {x ∈ Rn ∶ pj(x) = 0, for j = 1, . . . , r}. Let

ωi = (u⊺i , v
⊺
i )
⊺ be a measurement sample representing a

pair of corresponding points. For a given set of samples

Ω = {ωi}
m
i=1, we wish to find the variety V of the low-

est dimension. There is an extensive literature on comput-

ing an intrinsic dimension of the samples Ω from a variety

V [4, 5]. However, the existing methods do not explicitly

consider the noisy and outlier samples present in Ω. There-

fore, they are not suitable for our task. In this work, we

develop a tractable method for estimating the variety given

the sample measurements which may contain noise and out-

liers. Primarily, we are interested in recovering polynomials

pj(x) representing V , from a corrupted sample set Ω. The

topological space defined by V can be thought of as a semi-

algebraic set, a differential manifold, a metric space, a Lie

group, a category, a hypergraph, and many more.

Let I(V)∶ = {∑j gj(x)pj(x) ∶ gj(x) ∈ R[x]} be the ideal

of V . Every polynomial in the ideal I(V) of the unknown

variety V vanishes on samples Ω. Unfortunately, the con-

verse is not true, i.e., not all polynomials in the ideal I(Ω)
vanish on the variety V . Therefore, recovering pj(x) to de-

fine V exactly is not only NP-hard, but also a non-decidable
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problem. In this work, we limit the degree of the polynomi-

als in I(Ω) and assume that V can be recovered from I(Ω)
of low degree polynomials. Note that the ideal I(Ω) of the

finite set Ω can be computed using linear algebra, with the

help of the so-called Vandermonde Matrix [4, 5].

Definition 2.3 (Vandermonde Matrix) The Vandermonde

matrix Md(x) is a matrix with a geometric progression of

monomials in each row, such that the entries mij are the

monomials xe = xe1
1
xe2
2
. . . xen

n of degree at most d.

For example, if n = 1, d = 3, and Ω = {u, v,w} then M3(Ω)
is the Vandermonde matrix of the form,

M3(Ω) =

⎡⎢⎢⎢⎢⎢
⎣

u3 u2 u 1

v3 v2 v 1

w3 w2 w 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

When n ≥ 2, Md(Ω) is a multivariate Vandermonde matrix

with the following property:

Property 2.4 Let B be a set representing a linearly inde-

pendent basis ofR[x] andRB be the vector space spanned

by B . Then, the nullspace of Md(Ω) is the vector space of

I(Ω) ∩RB.

We hope to learn the variety V by learning the ideal I(V).
The ideal I(V) is learned for samples Ω in the form of

I(Ω), using the Vandermonde Matrix Md(Ω). In this pro-

cess, we rely on the property of basis B. The two desirable

properties of B are:

Property 2.5 The ideal I(V) is generated by I(V) ∩RB.

Property 2.6 I(V)∩RB ⊆ I(Ω)∩RB holds with equality.

There is a fundamental tension between Properties 2.5

and 2.6. For small B, Property 2.5 may not be satisfied.

Similarly, Property 2.6 may be violated for large B. Fortu-

nately, the following theorem ensures the existence of B.

Theorem 2.7 (Hilbert’s Basis Theorem) Every ideal in

the polynomial ringR[x] is finitely generated.

The desired property 2.6 sets a lower bound on the sample

size m. In fact, by construction m is the upper bound on the

rank of Md(Ω). This implies the following lemma.

Lemma 2.8 If Property 2.6 holds true, the inequality

m ≥ dim(B) − dim(I(V) ∩RB) must also be true.

For given sample set Ω, the upper bound m on the rank is

fixed. Therefore, one of the issues is choosing a suitable set

B. It is known that a suitable choice of B can dramatically

improve the numerical accuracy. We will discuss our choice

of B, for our applications, later in this paper.

Another pending issue is the representation of I(Ω) ∩
RB. It is obvious from Property 2.4 that I(Ω) ∩RB is rep-

resented by the nullspace of Md(Ω). However, it is still

unclear how to choose and compute the basis representing

the null space. For example, we can obtain the orthonor-

mal basis of I(Ω)∩RB in the least-square sense by Singu-

lar Value Decomposition (SVD) of Md(Ω). Unfortunately,

such basis are not favored as under noise this may result in

a less sparse basis. Furthermore the samples Ω may con-

tain outliers, in which case the orthonormal basis given by

the SVD of Md(Ω) will be entirely wrong. In many appli-

cations, it is desirable to compute ideals I(V) with sparse

generators. In particular, our Assumption 2.2 implicitly de-

mands the basis to be sparse. Therefore, we wish to solve

the following problem for the sparse basis Y of I(Ω)∩RB.

Problem 2.9 Given the noise tolerance ǫ, find the or-

thonormal sparse basis Y from the nullspace of Md(Ω) by

solving,

argmin
Y

∑
yi∈Y

∥yi∥0,

subject to ∥Md(Ω)yi∥∞ ≤ ǫ,

∥yi∥ /= 0, y⊺i yj = 0, ∀i, j, i /= j.

(1)

(1) involves ℓ0 minimization, which is the holy grail of

sparse approximation. Unfortunately, ℓ0 minimization is

NP-hard. Additionally, the non-linear objective for orthog-

onality and the search for non-trivial solutions make the

problem even more difficult.

3. Sparse Basis Estimation

In this section, we develop a method to search for the

polynomial constraint y ∈ Y as a solution to the Prob-

lem 2.9. Our approach iteratively estimates the individual

sparse orthonormal basis by solving the following Problem.

Problem 3.1 For a given sparse basis w ∈ W ⊆ Y , estimate

a new sparse basis by solving,

argmin
y

∥y∥
0
,

subject to ∥Md(Ω)y∥∞ ≤ ǫ,

∥y∥∞ = 1, y
⊺w = 0, ∀w ∈ W .

(2)

A common approximation of (2) is to replace ℓ0 by a con-

vex ℓ1 objective. Here, we are rather interested to solve the

exact problem of (2) using MIP.

3.1. MixedInteger Programming (MIP)

Proposition 3.2 If z ∈ {0,1}n represents the sparsity of the

basis vector y, Problem 3.1 is then equivalent to solving the
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following MIP.

min
y∈Rn,z∈{0,1}n

∑
i

zi,

subject to ∥Md(Ω)y∥∞ ≤ ǫ,

∣yi∣ ≤ zi, y
⊺w = 0, ∀i,∀w ∈ W ,

∥y∥∞ = 1,

∑
i

zi ≥ 1.

(3)

Proof Proof is provided in the supplementary document.

Although equivalent to (2), (3) is tractable and can be solved

by BnB. Here we avoid the trivial zero solution by con-

straining the sum over the components of z to be greater

than 1. However, (3) only optimizes for the sparse poly-

nomial basis and fails if the measurements contain outliers.

We therefore propose the following to handle outliers.

3.2. Sparse Basis in the Presence of Outliers

Proposition 3.3 For M = Md(Ω), z ∈ {0,1}n, s ∈ {0,1}m,

and y ∈ Rn, the following MIP ensures that at least half of

the correspondences respect the sparse basis obtained by

solving,

min
y,z,s

n

∑
i=1

zi,

subject to m⊺j y ≤ ǫ + sjm, ∀j = 1, . . . ,m,

∣yi∣ ≤ zi, y
⊺w = 0, ∀i,∀w ∈ W ,

∥y∥∞ = 1,

∑
i

zi ≥ 1,∑
j

sj ≤m/2.

(4)

Proof Proof is provided in the supplementary document.

In (4), we introduce the binary variable s ∈ {0,1}m to clas-

sify the polynomial from a correspondence pair (uj , vj) as

an outlier if sj = 1 or inlier if sj = 0. We express the bi-

nary constraint for every measurement row mj of the Van-

dermonde matrix M using the big-M formulation [20]. In

order to make the problem tractable, we assume that at least

half of the points are inliers. However, in practice, the con-

straint may be adjusted to suit the outlier statistics. In the

following section, we discuss our basis selection method in

the context of the two-view camera geometry problem.

4. Two-view Geometry Applications

The sparse basis computation discussed in section 3 al-

lows one to compute the polynomials that relate the image

point correspondences accurately in the presence of out-

liers. The basis computation directly gives the correct two-

view relation, whether they are the Essential matrix, the

Fundamental matrix or the 2D projective homography. On

the other hand, such two-view relations may or may not say

anything about the camera and motion types, and finally the

actual camera motion knowing the camera type. We now

discuss problem 2.1 of obtaining the camera modelM and

the motion parameters θ from the point correspondences.

For that purpose, we consider various camera projection and

camera motion types and analyze each condition further.

4.1. Projection and Motion Types

Considering camera projections, we analyze five differ-

ent camera models: i) calibrated perspective, ii) uncali-

brated perspective, iii) orthographic, iv) weak-perspective

and v) affine camera. For each camera model we divide the

motion into seven types: i) full motion with rotation and

translation, ii) rotation, iii) translation, iv) rotation about x

or y, v) rotation about z, vi) translation about x or y and vii)

translation about z. Given only images, the orthographic

camera and the weak-perspective camera projections differ

only by a single scale factor. Therefore, we treat them as

equivalent cameras in this analysis and use the term ortho-

graphic camera to discuss both types. Below we first define

the transformations and the relevant two-view relationships

before presenting the analysis.

Transformations and model. We consider the camera

being transformed by a rotation R ∈ SO3 and translation

t ∈ R
3. Let the rotation in Euler angles be r ∈ R

3. We

consider the camera translation t, also represented as a

transformation matrix T ∈ T where T is the space of all

translations. The Essential matrix [17] for the calibrated

perspective camera is E ∈ P ⊂ R
3×3. Let P represent

the space of matrices that satisfy the property of having

two equal non-zero singular values σ1(E) = σ2(E) and

σ3(E) = 0. In the orthographic camera, the Essential matrix

is EO ∈ O ⊂ R3×3. It has the following properties [14].

EO =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 c

0 0 d

a b e

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, a2 + b2 − c2 −d2 = 0, a, b, c, d, e ∈ R.

(5)

The next two-view relation model is the Fundamental

matrix [9], F ∈ U ⊂ R
3×3. We use U for the space of the

Fundamental matrices obtained from uncalibrated perspec-

tive cameras. The perspective fundamental matrix has two

non-zero singular values and the third singular value 0. Un-

like the Essential matrix from calibrated perspective cam-

eras, the two non-zero singular values of the Fundamental

matrix are in general not equal. In case of affine cameras,

the Fundamental matrix is FA ∈ A ⊂ R
3×3. FA has the

following property:

FA =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 c

0 0 d

a b e

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, a, b, c, d, e ∈ R. (6)
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Table 1. Summary of the sparse basis for various camera and

motion types. The sparse basis is summarized as follows. The

two-view relationship is G, number/dimension of basis r, actual

degrees of freedom under known camera and motion type d and

the number of non-zero two-view model parameters p.

Cal. Perspective Uncal. Perspective Orthographic Affine

G(r, d, p) G(r, d, p) G(r, d, p) G(r, d, p)

Full motion E(1,5,9) F(1,7,9) EO(1,4,5) FA(1,5,5)

Rotation H(3,3,9) H(3,8,9) EO(1,3,4) FA(1,4,4)

Translation E(1,3,6) F(1,3,6) H(1,2,5) H(1,2,5)

Rotation x H(3,1,5) H(3,6,7) EO(1,1,2) FA(1,4,4)

Rotation y H(3,1,5) H(3,6,9) EO(1,1,2) FA(1,4,4)

Rotation z H(3,1,5) H(3,5,7) H(3,1,5) H(3,5,7)

Translation x/y E(1,1,2) F(1,3,6) EO(3,1,4) H(3,2,5)

Translation z E(1,1,2) F(1,3,6) EO(3,0,3) H(3,0,3)

From the relations, we have, P ⊂ U and O ⊂ A, while none

of the sets P ,U , O and A are disjoint.

The projective 2d homography H ∈ PGL(2,R) is a full

rank transformation unlike the Essential and Fundamental

matrices. The homography is a point to point relation and

the space of homographies PGL(2,R) is disjoint to the four

spaces of the Essential and Fundamental matrices. In spe-

cial cases, the homography can be represented by an affine

transform A ∈ Aff(2,R), a rotation R ∈ SO3, a translation

T ∈ T or an identity I. All of the two-view relationships

are described by models which are homogeneous quantities

and therefore they are equivalent at different scales.

Sparsity of two-view relationship for different condi-

tions. We summarize the sparsity of various two-view re-

lationships for different camera models and motion types in

Table 1. In each case, the point correspondences {ui, vi}mi=1
are related either by the Fundamental matrix, the Essential

matrix or the 2d projective homography. The properties of

these two-view relations vary according to both the camera

types and the motion types. Despite that and the varying

number of model parameters, all these relations can be ex-

pressed as polynomials of degree 2 in the image point cor-

respondences. Therefore the corresponding Vandermonde

matrix used in (4) is M2(Ω) of degree 2.

One interesting problem exists in the combinations of

camera and motion, where the approach of using RANSAC

with 8 points results in an incorrect model. This happens

when the image point correspondences are related by a ho-

mography rather than the Fundamental matrix or the Es-

sential matrix. Solving problem (4) with the Vandermonde

matrix M2(Ω) results in the correct relationship between

the image point correspondences in either case. When the

correspondences are related by a homography, the iterative

application of problem (4) will find three independent bases

corresponding to either of the following system of equa-

tions.

[u⊺i 1]×H[v⊺i 1]⊺ = 0 or [v⊺i 1]⊺ ×H−1[u⊺i 1]⊺ = 0 (7)

We recover the homography H by using a change of basis

for the resulting system of equations so that the sparsity of

the final system corresponds to the left equation of eq. (7).

4.2. Camera and Motion Type Recovery

Recovering the camera modelM and the motion param-

eters θ from the computed two-view model is not trivial

and in fact, as we show in this paper, in most cases it is

not possible with only point correspondences. Knowing the

camera and motion type is crucial in many 3D vision prob-

lems [17, 14, 6]. We theoretically analyze the types of the

two-view models and justify when the camera type and the

motion type can be disambiguated and when the ambigui-

ties lie otherwise. We provide the summary of the proper-

ties of each two-view relationship for various camera model

and motion types in Table 2. We discuss the ambiguities for

each camera model below.

Calibrated perspective. The calibrated perspective cam-

era images are either related by the Essential matrix E ∈ P ,

when there exists non-zero translation, or the homography

H ∈ PGL(2,R), when there is no translation between two

cameras. For a purely rotating camera, the induced rela-

tionship is the homography [12], which is in fact the cor-

responding relative rotation R ∈ SO(3). There are two

important cases when the camera model cannot be disam-

biguated from the model. The first is that of pure transla-

tion, in which case, the essential matrix E = R[t]× is a skew-

symmetric matrix, similar as in the case of an uncalibrated

camera. A congruent transformation K−⊺EK−1 of a skew-

symmetric matrix E results in a skew symmetric matrix with

exactly two equal non-zero singular values. Therefore, the

calibration cannot be verified from the image point corre-

spondences of purely translating cameras. The second case

when the camera model cannot be ascertained is when there

is a pure rotation around the Z-axis. It is straight-forward to

verify that an orthographic camera gives the same rotational

homography in such a case. The same is true for an affine

camera without the skew component. The disambiguation

of motion is also not possible for pure translation without

assuming a calibrated perspective camera beforehand. For

example, the essential matrix for an orthographic camera ro-

tating about X or Y axis is the same as the essential matrix

for the calibrated perspective camera with pure translation

on X or Y axis, respectively. The motion computation, as-

suming a calibrated perspective camera is always possible

even when the relationship is a homography, where we do

not have the usual 4-fold ambiguity of the planar homogra-

phy decomposition due to camera translation.
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Table 2. Properties of the two view relationship for each camera and motion type. Each two-view relationship is followed by three

boxes showing unique disambiguation of the camera type, the motion type and the metric motion given known camera type, resp. A check

mark indicates uniqueness and a cross mark indicates ambiguity.

Cal. Perspective Uncal. Perspective Orthographic Affine

Full motion σ1(E) = σ2(E) ✓ ✓ ✓ F ∈ U ✓ ✓ ✖ EO ∈ O ✓ ✓ ✖ FA ∈ A ✓ ✓ ✖

Rotation H = R ✓ ✓ ✓ HH
⊺ ≠ I, H = KRK−1 ✓ ✓ ✓ EO ∈ O, EO3,3 = 0 ✖ ✖ ✖ FA ∈ A, FA3,3 = 0 ✓ ✓ ✖

Translation E = [t]× = −E
⊺

✖ ✖ ✓ F = K[t]×K
⊺ = −F⊺ ✖ ✖ ✖ H ∈ T ✖ ✓ ✓ H ∈ T ✖ ✓ ✖

Rotation x H = Rx ✓ ✓ ✓

HH
⊺ ≠ I, H = KRxK

−1

H2,1 = H3,1 = 0
✓ ✓ ✖ EO = [rx]× = −E

⊺
O ✖ ✖ ✖ FA ∈ O,FA3,3 = 0 ✖ ✖ ✖

Rotation y H = Ry ✓ ✓ ✓ HH
⊺ ≠ I, H = KRyK

−1
✓ ✖ ✖ EO = [ry]× = −E

⊺
O ✖ ✖ ✖ FA = [ry]× = −F

⊺
A ✖ ✖ ✖

Rotation z H = Rz ✖ ✓ ✓ H ∈ Aff(2,R) ✖ ✓ ✖ H = Rz ✖ ✓ ✓ H ∈ Aff(2,R) ✖ ✓ ✖

Translation x/y E = [tx/y]× = −E
⊺

✖ ✖ ✓ F = K[tx/y]×K
⊺ = −F⊺ ✖ ✖ ✖ H ∈ Tx/y ✓ ✓ ✓ H ∈ T ✖ ✖ ✖

Translation z E = [tz]× = −E
⊺

✓ ✓ ✓ F = K[tz]×K
⊺ = −F⊺ ✖ ✖ ✖ H = I ✖ ✖ ✖ H = I ✖ ✖ ✖

Uncalibrated perspective. An uncalibrated perspective

camera in general has more ambiguities from projections.

For full motion and rotation, the camera model can be dis-

ambiguated by the singular values of F or the singular val-

ues of H. As described above, pure translational motion

results in F = K−⊺[t]×K−1 = −F⊺, with F ∈ P , meaning that

the uncalibrated camera cannot be disambiguated from the

calibrated camera. Particularly interesting is the asymmetry

of rotation about X and Y axis. The rotation about the X-

axis results in the homography H with two zeros on the first

column but nothing can be said for the case with pure ro-

tation about the Y-axis. This apparent asymmetry is simply

due to the choice of axes for the skew that results in the con-

vention of the upper triangular intrinsics. The uncalibrated

camera type can be disambiguated only for full motion, ro-

tation and rotation about the X or Y -axis. For rotation of

the uncalibrated camera we have the following proposition.

Proposition 4.1 For the rotation-induced 2d homography

H, with intrinsics K ≠ I and translation t = 0, we have,

HH⊺ ≠ I, (8)

where, r ≠ ±[0 0 π/2]⊺.

Proof Proof is provided in the supplementary document.

Proposition 4.1 claims that the homography in an uncali-

brated perspective camera is never orthogonal unless the

rotation is the identity or a rotation of π/2 about the Z-

axis. It can be shown that when the rotation is ±π/2 and

the two focals of K are equal, H becomes orthogonal using

the spectral decomposition of HH⊺. The motion in case of

an uncalibrated perspective camera can be disambiguated

into full motion, translation, rotation and rotation around

the X-axis or Z-axis. However, even after assuming an un-

calibrated perspective camera, the metric motion is always

ambiguous without knowing the camera intrinsics [9]. One

notable exception is pure rotation discussed in [12], where

one can reason about the metric rotation.

Orthographic camera. The orthographic camera images

are related by either the Essential matrix EO ∈ O or the

affine Homography A ∈ Aff(2,R). The orthographic cam-

era can be identified from the images if the motion is full.

A pure rotation will result in the Essential matrix EO with

the last diagonal element 0, the same as in the affine cam-

era with rotation around the X axis. In the case of pure

rotation around only the X or Y axis, EO is the same as E

for the pure translation of a calibrated perspective camera.

Similarly, a pure rotation around the Z-axis results in a rota-

tional homography as for the calibrated perspective camera.

Motions with pure translation results in an affine transform

similar to that in affine camera and thus the camera model

cannot be disambiguated completely. As to the motion type

disambiguation, the full motion, rotation and translation can

be identified as such for the orthographic camera. The rest

of the motion shows ambiguity either with the affine cam-

era or the calibrated perspective camera as evident from the

relations detailed in table 2. Finally, even with a known

camera type, it is not possible to exactly decompose camera

motion from two images of an orthographic camera due to

the bas-relief ambiguity [14, 26]. This means that one of

the rotational components can never be disambiguated, but

other motions can be decomposed.

Affine camera. The affine camera images are related ei-

ther by the Fundamental matrix FA or the affine Homogra-

phy H ∈ Aff(2,R). The affine camera model can be disam-

biguated for full motion and pure rotation. In full motion,

the affine Fundamental matrix satisfies eq. (6) but in gen-

eral not the constraint of the orthographic Essential matrix

eq. (5). Since the affine camera is a generalization of the

orthographic camera, it has camera model ambiguity with

the orthographic camera in all other motion types. The only

exception is in the case of pure rotation around the Y -axis,

where the ambiguity is with both the orthographic camera

rotating around the Y -axis and the uncalibrated perspective
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Outlier Rate

Inlier Detection Rate

Figure 1. Inlier-outlier on the synthetic data. The top row shows

the inlier and outlier % detection rates when varying noise magni-

tude while the bottom row shows the same for varying % outlier

rate. Our method gives expected results in all camera type and

motion type, thus producing identical results to ransac-M.

camera translating along the Y -axis. One more ambiguity

with the uncalibrated perspective camera is for pure rotation

around the Z-axis where the two-view relation is an affine

transform for both camera types. The motion in an affine

camera can be identified as full motion, rotation and transla-

tion. Further disambiguation is also possible in case of pure

rotation around the Z-axis. Given the affine camera type,

one cannot compute the metric motion due to the affine

ambiguity and furthermore certain motion components [14]

cannot be resolved due to the bas-relief ambiguity.

5. Experimental Results

We use MATLAB to implement our method written as

sparse-basis. We use RANSAC [10] for the Fundamental

matrix as the compared method for unknown model. We

write it as ransac. We write RANSAC with known model

as ransac-M, where a specific implementation of RANSAC

is used according to the ground-truth two-view relationship

type. We verify the theoretical discussions and its applica-

tions using both the synthetic and real data. We choose the

threshold ǫ = 1.5 px for our method and equivalently for

ransac. We further test a globally optimal method of outlier

rejection [8] as global.

5.1. Synthetic Data Experiments

We use synthetic data to validate the theoretical results in

various conditions of noise and outliers for the camera and

motion types discussed in section 4.1. We use a camera res-

olution of 512 pixels and generate matches with outlier ratio

varying from 0 to 40%. We also test the compared methods

with noise, by varying uniform noise from 0 to 4 pixels.

We add 0 to 0.5 pixel noise of uniform distribution and also

r r t t t

Figure 2. Two-view poses for a sequence in the Oxford Robot

Car dataset [19]. In the sequence, the car does not stop and hence

we do not get any homographies. We observe that the relative

camera poses obtained with sparse-basis is very close to the results

obtained from multi-view SfM.

t t t t t t t

Figure 3. Results zoomed to show differences from global method

for the first part of Oxford sequence [19] on translation estimation.

add 5% outliers to all the projections. For each condition of

motion type, camera type and noise/outlier, we use 20 sim-

ulations each with 50 points to generate the experimental

results. We then average out the detection results for dif-

ferent motion and camera types. Figure 1 shows the results

of the inlier/outlier classification obtained during the model

computation with our method and the compared methods.

More importantly, we consistently meet the two-view rela-

tionship property of table 2 in the experiment.

While we expect the same performance of ransac-M and

sparse-basis in all cases, small gap can be particularly noted

in the inlier detection rate with varying noise. Our method
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t t t t

Figure 4. Two-view poses for TUM. We are able to capture the

turns and the degenerate motions better despite the short baseline.

We introduce r
′
y and t

′
z to show the respective motions estimated

from the homography instead of the Essential matrix.

sparse-basis performs slightly better on average simply due

to the threshold and the way we normalize each polynomial.

Another issue is the behavior of ransac and global for the

increase in outlier detection rate with the outlier rate. When

the correct two-view relationship between image correspon-

dences is a homography, a model can still find outliers by

fitting the fundamental matrix. However, the fundamental

matrix is a weaker constraint and particularly for the first

few outliers, ransac and global can find fit them as inliers

in the fundamental matrix model. However, as the outlier

rate increases more outliers are correctly rejected. In con-

trast, sparse-basis always fits the correct model.

5.2. Real Data Experiments

We conduct experiments on real datasets to show how

our method performs in practical settings. In the first ex-

periment we evaluate motion disambiguation on the first

2400 frames of a sequence from the Oxford Robot car

dataset [19] and a sequence in the TUM RGBD [29] dataset

in figure 2 and 4 respectively, using all consecutive frames.

The Oxford Robot car dataset consists of high quality im-

ages where a good set of the feature matches can be ex-

pected. In order to compute poses, we match each video

frame with the one after the next frame. We keep the num-

ber of points m = 100 for both sparse-basis and ransac by

randomly choosing the matches. Same set of matches are

used for both the methods. The odometry ground-truth pro-

vided in the dataset contains drift and inaccuracies. There-

fore, we reconstruct the sequence of about 2400 frames us-

ing multi-view SfM COLMAP [24]. The relative ground-

truth poses are then obtained from the SfM reconstruction

of COLMAP. We refer to the ground-truth poses as multi-

view SfM. We plot the comparison between sparse-basis

and ransac in figures 2 and 4 for the two datasets. We fur-

ther provide a comparison between sparse-basis and global

on a subsequence of figure 2.

Both sequences pose challenging condition for comput-

ing motion due to the short baseline. Nonetheless, sparse-

basis is able to better condition the motion computation

as we look for sparse basis for the two-view relationship,

whether it is the Essential matrix or the homography. In par-

ticular, we capture the smooth turning of the vehicle (rota-

tion about Y -axis), the consistent forward motion of the car

(Z-translation) and no motion (middle of the sub-sequence)

which is not possible without searching for the sparse bases

as shown in figure 4 for ransac. We also note a smooth

transition between ry and r′y as seen in figure 4.

Figure 5. Inlier detected in real images. The top row shows the

inliers for images with change in resolution and bottom row for

perspective image of a printed picture. In both cases sparse-basis

correctly fits a homography as the two-view relationship.

We further show the qualitative results of matching

points using our method in two interesting examples in fig-

ure 5. We first match points using SIFT [18] descriptors in

each of the three cases. In figure 5 our method sparse-basis

is able to match identical lower and higher resolution im-

ages while rejecting outliers. At the same time, we can rea-

son that the correspondences are from identical images as

we obtain an identity homography. We provide additional

experiments in the supplementary material.

6. Conclusions

We proposed a method that computes the correct two-

view relationship in the presence of noise and outliers, even

when the camera and the motion types are unknown by

looking for sparse polynomials. In this scenario, we dis-

cussed the possibilities of disambiguating camera and mo-

tion case-by-case. The experiments verify our theory and

give practical applications of our method.
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