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Abstract

In this paper, we propose an alignment network with it-

erative optimization for weakly supervised continuous sign

language recognition. Our framework consists of two mod-

ules: a 3D convolutional residual network (3D-ResNet) for

feature learning and an encoder-decoder network with con-

nectionist temporal classification (CTC) for sequence mod-

elling. The above two modules are optimized in an alter-

nate way. In the encoder-decoder sequence learning net-

work, two decoders are included, i.e., LSTM decoder and

CTC decoder. Both decoders are jointly trained by maxi-

mum likelihood criterion with a soft Dynamic Time Warping

(soft-DTW) alignment constraint. The warping path, which

indicates the possible alignment between input video clips

and sign words, is used to fine-tune the 3D-ResNet as train-

ing labels with classification loss. After fine-tuning, the im-

proved features are extracted for optimization of encoder-

decoder sequence learning network in next iteration. The

proposed algorithm is evaluated on two large scale contin-

uous sign language recognition benchmarks, i.e., RWTH-

PHOENIX-Weather and CSL. Experimental results demon-

strate the effectiveness of our proposed method.

1. Introduction

As one of the most important ways to communicate with

the deaf-mute, sign language (SL) is used by millions of

people with hearing or spoken damage in their daily life.

However, due to the lack of systematic study for sign lan-

guage, it becomes very difficult for many people to com-

municate with the deaf-mute. In order to make such com-

munication more convenient, it’s necessary to develop an

effective algorithm for sign language recognition (SLR).

Recently, more and more researchers turn their attention to

sign language recognition, not only for the social impacts,

but also with academic explorations.

Comparing to isolated SLR [16, 22, 42, 43], i.e., recog-

nition of words or gestures [31], which is similar to action

recognition [19, 24], continuous SLR [9, 26, 29] is much

more complicated since there is no rigid annotation of text

word to video clip for a complete sign video. As a kind

of weakly supervised sequence learning task, the key idea

for continuous SLR is to learn the mapping between a sign

video and its corresponding annotation of text sentence.

Continuous SLR task is well defined with a very standard

formulation, since the sign translation result is strictly con-

strained in grammar.

So far, the existing methods on continuous SLR can be

grouped into two categories based on the involved feature

representation, i.e., hand-crafted feature based and deep

learning based methods. Early works [35] mainly use hand-

crafted features together with statistical sequence modelling

methods such as Hidden Markov Model (HMM) or Hid-

den Conditional Random Fields (HCRF). Starner et al. [35]

present two real-time HMM-based systems for recognizing

sentence-level continuous American Sign Language (ASL).

Later on, Wang et al. [40] derive a discriminative sequence

model with Hidden Conditional Random Field (HCRF) for

gesture recognition, in order to solve the issue of long-range

dependencies among observations in HMM.

Recently, benefitting from the development of deep

learning, in sign language recognition, there have witnessed

some breakthroughs. With the appearance of large scale

continuous sign language datasets [9, 23, 25], deep learn-

ing based continuous SLR methods gradually become the

mainstream. With the powerful video representations by

residual network (ResNet) [18] and 3D convolutional neu-

ral network (3D-CNN) [33, 37], deep learning methods for

continuous SLR achieve state-of-the-art performance. Cui

et al. [10] propose to use recurrent convolutional neural

networks with staged optimization to recognize continuous

sign language. Another work [23] with hierarchical atten-

tion in latent space also shows the superiority of deep learn-

ing to hand-crafted feature based methods.

In this paper, we propose a new deep learning archi-

tecture for continuous SLR. Our framework includes a 3D

residual network (3D-ResNet) for feature extraction and an

encoder-decoder network for sequence modelling. Consid-

ering the particularity of continuous SLR crossing com-

puter vision and natural language processing, we explore

the technics in video representation and understanding, as

well as the sequence modelling with grammar. We unify

the visual representation learning and sequence modeling in
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our framework and make joint optimization over these two

modules. The main contributions of this paper are summa-

rized as follows:

a) A unified deep learning architecture integrating encoder-

decoder network and connectionist temporal classifica-

tion (CTC) for continuous sign language recognition.

b) A soft dynamic time warping (soft-DTW) alignment

constraint between the LSTM and CTC decoders, which

indicates the temporal segmentation in sign videos.

c) Iterative optimization strategy to train feature extractor

and encoder-decoder network alternately with alignment

proposals by warping path.

We organize the rest of this paper as follows: after re-

viewing the related works in Section 2, we elaborate our

proposed architecture and iterative optimization algorithm

in Section 3 and Section 4, respectively. In Section 5, we

conduct a series of experiments with discussions and anal-

ysis. At last, we conclude our work in Section 6.

2. Related Works

Video-based continuous SLR systems basically consist

of a feature extractor and a sequence modelling module,

where the latter is usually achieved via encoder-decoder

network or connectionist temporal classification. In this

section, we briefly review the works related continuous SLR

from the following two aspects.

2.1. Video Representation

Video representation plays a significant role for many

computer vision tasks, e.g., action recognition [24, 33, 37]

and video captioning [5]. Since Ji et al. [24] apply 3D con-

volutional neural network (3D-CNN) to action recognition

task [4, 17], 3D-CNN has become one of the most famous

architectures for video representation. Variants of different

improved 3D-CNN architectures appear for different vision

task. Meanwhile, deep residual network (ResNet) [18] has

shown powerful capacity for image representation. Inspired

by the recent successes of ResNet in numerous challenging

image recognition tasks, Qiu et al. develop a new family of

building modules named Pseudo-3D (P3D) blocks [33] to

replace 2D residual units in ResNet. The potential capacity

of combining the residual networks and 3D convolutional

networks for video representation is demonstrated in [17].

2.2. Sequence Modelling

The end-to-end sequence learning methods are typically

grouped in two types: attention-based encoder-decoder

[7, 8, 38] network and connectionist temporal classification

(CTC)-based network [12, 21]. Encoder-decoder network is

first proposed for machine translation in [7]. The encoder-

decoder architecture consists of two recurrent neural net-

works (RNN) that act as a pair of encoder and decoder pair.

The encoder maps a variable-length source sequence to a

fixed-length vector, while the decoder maps the vector rep-

resentation back to a variable-length target sequence. Al-

though the encoder-decoder network has been widely used

for speech recognition [8] and video captioning [2], there

still remains some limitation when modelling long-term de-

pendency. To overcome this issue, Bahdanau et al. [1] in-

troduce attention mechanism into encoder-decoder network

to learn the correspondence between source sequence and

target sequence. Following that, more and more different

attention methods [2, 30, 41, 36] are proposed to improve

the encoder-decoder networks for specific tasks.

Connectionist temporal classification (CTC) [12] is an-

other end-to-end sequence learning model for speech and

hand writing recognition [13, 21]. CTC is able to deal with

unsegmented input data, and learn the correspondence be-

tween the input sequence and output sequence. It is appro-

priate for continuous SLR, since continuous SLR is some-

how a kind of weakly supervised sequence learning prob-

lem. With the superiority of CTC, Cui et al. [10] achieve

the state-of-the-art performance for continuous SLR.

3. Alignment Network Architecture

In this section, we present a novel deep learning frame-

work for continuous SLR. Our method integrates the

encoder-decoder network and connectionist temporal clas-

sification into a unified deep architecture. To explore

the correspondence between the input sequence and target

translation, we use soft dynamic time warping (soft-DTW)

to align the CTC-decoder and LSTM-decoder.

3.1. Framework and Formulation

Continuous SLR deals with a sequence mapping from a

video with T frames V = {xt ∈ R
h×w×c} = {xt}

T
t=1 to

a L-word sequence s = {si ∈ V|i = 1, · · · , L} , where

h × w is the size of image xt, c is 3 for an RGB video.

The mathematic formulation of continuous SLR is based

on Bayes decision theory, and the translated sentence ŝ is

estimated with the most probable word sequence among all

possible sequences s∗ as follows,

ŝ = argmax
s∈s∗

p(s|V ). (1)

Figure 1 illustrates the framework of our continuous SLR

system. The input to the framework is sign video with

paired sentence-level annotation. Our continuous SLR sys-

tem consists of the following four tiers of neural network.

1) Feature Extractor With the input of video clip se-

quence, 3D-ResNet coverts it into a fixed-length feature,

which summarizes the spatial and temporal information.

2) Sequence Encoder The sequential video descriptors ex-

tracted by 3D-ResNet are modelled by a 2-layer Bidirec-

tional Long Short-Term Memory (Bi-LSTM) encoder.
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Figure 1: Overview of our SLR framework. The system consists of a 3D-ResNet and an encoder-decoder network with

connectionist temporal classification. The CTC decoder and LSTM decoder are aligned with soft dynamic time warping con-

straint. The inner-product layer projects the BLSTM and LSTM outputs into categorical probabilities for word recognition.

3) Target Decoders To predict the target sequence, two

decoders are embedded into the network, which are

connectionist temporal classification (CTC) decoder and

LSTM decoder, respectively.

4) Alignment Constraint The soft-DTW constraint is used

to align the CTC-decoder and LSTM-decoder, which

both describe the probability distribution of the target

sequence.

The following parts of this section will elaborate each

module of our framework in detail.

3.2. Video Representation: 3D­ResNet

3D-CNN has been widely applied for video representa-

tion in action recognition [24, 37] and sign language recog-

nition [23, 32], and achieves state-of-the-art performance.

Considering the successes of residual network in different

computer vision tasks, we use 3D residual network (3D-

ResNet) to represent video clips, which inherits the superi-

ority of both two models.

Given a sign video V = (x1, · · · , xT ) = {xt}
T
t=1 with

T frames, where xi is the ith frame in the video, a sliding

window is moved along the image sequence to generate a

set of ordered video clips. In this way, the sign video is

denoted as V = (v1, · · · , vN ) = {vt}
N
t=1 with N clips. We

use Fθ to represent 3D-ResNet feature extractor, where θ

is the network weight. For each video clip vt, we get the

representation ft = Fθ(vt) ∈ R
d by passing it through the

3D-ResNet, where d is the dimension of the video feature.

Thus, the sign video is represented as a sequence of 3D-

CNN features as follows,

F
N = (f1, · · · , fN ) = {FΘ(vt)}

N
t=1. (2)

Considering the GPU memory and computational cost for

low latency, we use an 18-layer 3D-ResNet, which is light

and powerful enough for sign video representation.

3.3. Temporal Encoder: Bidirectional LSTMs

Recurrent neural network has made huge success for var-

ious of sequence processing tasks, e.g., speech recognition

[14, 21], neural machine translation [6], and video caption-

ing [2]. One of the most popular RNN architectures is

Long Short-Term Memory (LSTM) [20], which preserves

the long term dependencies to avoid vanishing gradients

compared to traditional RNN. LSTM units use purpose-

built memory cells to store and pass information, which is

better to explore the long term dependencies. The current

status of the LSTM unit is described with cell state Ct and

hidden state ht. The most fancy idea of LSTM is the use of

gate structures that optionally let information through.

One shortcoming of LSTM is that it only models the cor-

relations between the current input and the previous time

steps. The inputs after current time step t make no contri-

bution when generating the LSTM output. In continuous

SLR, the sign video represents a semantic sentence with

grammatical rules, which means both forward and back-

ward frames should be taken into consideration. To this end,

we use a bidirectional LSTM (BLSTM) to encoder the in-

put sign video. The basic idea of BLSTM is to present the

training sequence forwards and backwards to two separate

LSTMs, and concatenate the two outputs before feeding to

the deeper layer. This means that for current time step, the

output of BLSTM has the complete sequential information

over all time steps before and after it. We use R to represent

BLSTM, then the output of encoder is denoted as follows,

E = {et}
N
t=1 = R({ft}

N
t=1). (3)
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The outputs are embedded into non-normalized categorical

probabilities of word-level labels in the size of vocabulary

by a fully-connected layer as follows,

yt = Wfc1 · et + bfc1. (4)

For a sign video with N clips, the probability distribution

characterized by BLSTM can be written as follows,

Y = (Yt,l) = [y1, y2, · · · , yN ]T , (5)

where Yt,l is the probability of tth clip belonging to word l.

3.4. Target Decoders: LSTM and CTC

To decode the target sentence from the sign video, we use

two kinds of decoders, i.e., LSTM decoder with attention

mechanism and CTC decoder.

3.4.1 Attention-aware LSTM Decoder

Following the BLSTM encoder, the LSTM decoder gener-

ates corresponding sentence from the encoder output. After

all input clips going through the BLSTM, the LSTM de-

coder is fed with the beginning-of-sentence (<BOS>) tag,

which prompts the network to start decoding the current

hidden states into a sequence of words. In training stage, the

model maximizes the log-likelihood of the target sentence

given the hidden states and the previous words. While in

inference, we choose the word with maximum probability

until it emits the ending-of-sentence (<EOS>) token.

We apply attention mechanism [1] for LSTM decoder.

The decoder output for the kth word is written as follows,

dk = Decoderlstm(ck, sk, h
d
k−1), (6)

where ck is context vector, sk and hd
k−1 are embedded word

and hidden state of the decoder, respectively. The LSTM is

connected to an inner-product layer to project the LSTM

output into categorical probability with M classes, where

M = |V| is the vocabulary size. The final activation of the

inner-product layer is defined as follows,

zk = Wfc2 · dk + bfc2. (7)

Similar to Section 3.3, the probability distribution of the

translated sentences is formulated as follows,

Z = (Zk,l) = [z1, z2, · · · , zL]
T , (8)

where L is the length of sentence, and Zk,l is the probability

of sk belonging to word label l given sk−1.

3.4.2 CTC Decoder

Connectionist temporal classification (CTC) [12] is a pop-

ular sequence learning algorithm, which models the map-

ping between input sequence and target sequence. The out-

put of inner-product layer following with BLSTM encoder

is corresponded to the probability distribution of word la-

bels. CTC approach decodes the target sentence from the

probability matrix Y explained in Section 3.3 by introduc-

ing a blank label (∗) as an assistant token. Define a path

π = (π1, · · · , πT ), πt ∈ V
⋃
{∗} on input sequence, where

V is the sign vocabulary. The probability for path π given

sign video V = {vt}
N
t=1 is calculated as follows,

p(π|V ) =

N∏

t=1

p(πt|vt) =

N∏

t=1

Yt,πt
. (9)

To get the final decoded sequence without blanks, CTC

defines a many-to-one mapping M, which removes the

repeated labels and blanks, e.g., M(r ∗ aa ∗ i ∗ n) =
M(r ∗ a ∗ i ∗ n) = rain. The probability of the sentence

s = (s1, · · · , sL) decoded by CTC is the summation of the

probabilities for all possible paths as follows,

pctc(s|V ) =
∑

π∈M−1(s)

p(π|V ), (10)

where M−1 is the inverse mapping of M, i.e., M−1(s) =
{π|M(π) = s}.

3.5. Sequence Alignment: Soft DTW

We apply two kinds of decoders to our network intro-

duced in Section 3.4. Essentially, there are somehow poten-

tial correlations between these two probability distributions

Y and Z for CTC decoder and LSTM decoder, since they

both describe the same target sentence. Hence, we aim to

maximize the similarity between Y and Z. However, the

length of sentences generated from different decoders may

not equal each other. To evaluate the similarity between

various length sequences, we use soft dynamic time warp-

ing (soft-DTW) [11] to get the distance between Y and Z,

as well as the warping path.

Soft-DTW is a differentiable learning distance between

time series, building upon the original dynamic time warp-

ing (DTW) [34] discrepancy. The DTW algorithm is used

to find the minimal accumulating distance of two sequences

and the temporal warping path. Given two sequences u =
(u1, · · · , um) and v = (v1, · · · , vn), the DTW distance for

subsequence u
i = (u1, · · · , ui) and v

j = (v1, · · · , vj) is

denoted as Di,j and defined as follows,

Di,j = di,j +min(Di−1,j , Di,j−1, Di−1,j−1), (11)

where

di,j = ||ui − vj ||2. (12)

In order to make the DTW discrepancy differentiable,

soft-DTW algorithm is taken by introducing the generalized

min operator, with a smoothing parameter γ ≥ 0 [11]:

minγ
i

{ai} =





min
i
{ai}, γ = 0.

− γ log
∑

i

e−ai/γ , γ > 0.
(13)
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Figure 2: Illustration of our iterative training algorithm.

After encoding the sequential features extracted by 3D-

ResNet, the CTC decoder and LSTM decoder decode them

into sign glosses. The decoders also generate the alignment

proposal with the warping path by soft-DTW to fine-tune

the 3D-ResNet in next iteration.

With the basic formulation of soft-DTW, the distance be-

tween the probability distributions Y and Z is defined as

Dp = DN,L(Y ,Z), (14)

where N and L are the sequence length for Y and Z, re-

spectively.

We can recover the warping path by backtracking. The

warping path indicates the possible alignment between sign

clips and words, which is a fine-grained understanding for

sign videos. Denote the warping path as Π = {(p, q)|p ≤
N, q ≤ L}, the label ℓp of the pth clip is obtained by

ℓp = sq. (15)

4. Optimization and Decoding

In this section, we will introduce the objective function

and iterative training algorithm to optimize the network.

Besides, a joint decoding approach combining the CTC de-

coder and LSTM decoder is proposed for better recognition.

4.1. Objective Function

In Section 3.4, we describe two kinds of decoders.

Both LSTM decoder and CTC decoder are trained with

maximum-likelihood criterion. Given a sign video V and

its corresponding annotation s = (s1, · · · , sL), the loss

function for CTC decoder is formulated as

Lctc = − ln pctc(s|V ), (16)

where pctc(s|V ) is the posterior probability of s given V

which is defined in Equation 10.

For LSTM decoder, the probability of s given V is

plstm(s|V ) =

L∏

i=1

p(si|si−1) =

L∏

i=1

Zi,si . (17)

Similar to Lctc, the LSTM loss function is defined as

Llstm = − ln plstm(s|V ). (18)

Besides, there is an alignment term for CTC decoder and

LSTM decoder, which is constrained by soft-DTW dis-

tance. In order to make the two probability distributions

get closer to each other, we define an alignment loss as

Lalign = Dp(Y ,Z), (19)

where Dp is described in Equation 14.

We jointly train the network and the objective function

for optimization is presented as

L = λLctc + (1− λ)Llstm + Lalign + µ||ω||2, (20)

where λ is a tunable hyper-parameter which balances the

potential significance of the two decoders, and µ||ω||2 is a

regularization term to avoid overfitting.

4.2. Optimization Strategy

While recognizing continuous sign videos, 3D-ResNet

plays a significant role as feature representation learning

module. Representative features contribute to good perfor-

mance. When training the network in an end-to-end way,

the objective loss has limited contribution to the learning of

parameters for low layers of 3D-ResNet due to the chain

rules of back-propagation. To alleviate this issue, an alter-

native is to learn explicit 3D-CNN features by optimizing

feature extractor directly with clip level labels. However, in

our continuous SLR task, such labels are unavailable.

To address the above problem, we propose to use soft-

DTW alignment proposals as pseudo-labels to learn repre-

sentative 3D-CNN features, and optimize feature extractor

and sequence learning module in an EM-like iterations, as

shown in Figure 2. In our method, we firstly use 3D-ResNet

to extract features from a sign video. After that, we train the

encoder-decoder network by minimizing the total loss L.

After convergence, the network provides the warping path

between the input clips and words by soft-DTW. For a better

feature representation of 3D-ResNet, we use the alignment

proposal described in Equation 15 as the supervision for

video clips to fine-tune the feature extractor (3D-ResNet)

with cross entropy classification loss. With the optimized

3D-ResNet, we extract features with stronger representa-

tive capacity to train the encoder-decoder network in next

iteration. These two parts of the network are alternately op-

timized until both of them converge to optimum.

4.3. Decoding

This section introduces the decoding method, which

potentially utilizes both benefits of CTC decoder and

attention-aware LSTM decoder. Our network allows CTC
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decoder and LSTM decoders to decode the sign video in-

dependently. To combine the superiority of both decoders,

we use a two-pass re-ranking approach to fuse the results.

In inference stage, CTC decoder obtains a set of complete

hypotheses sentence as candidates using beam search. We

re-rank the candidates using both CTC and LSTM decoders.

Suppose we have K candidates C = {si|i = 1, · · · ,K},

the score for hypotheses sentence s
i is represented as

r(si) = α ln pctc(s
i|V )+(1−α) ln plstm(si|V )+β lnLi,

(21)

where α is a tunable parameter, Li is the length of si, and

β lnLi is an additional length term to balance the score for

long sequence. Given K-best hypotheses produced by CTC

decoder via beam search, we determine the final result ŝ by

ŝ = argmax
s

r(s). (22)

5. Experiments

We provide extensive experiments to evaluate the effec-

tiveness of our method. The datasets and evaluation metric

are introduced firstly. After that, we give the details about

experimental setup and analyze the experimental results.

5.1. Dataset and Evaluation

We conduct our experiments on two public datasets,

which are RWTH-PHOENIX-Weather multi-signer [25] for

German SLR and CSL [23] for Chinese SLR, respec-

tively. RWTH-PHOENIX-Weather dataset contains around

7K sign videos within a total of 77K words. RGB videos

and their corresponding annotations are provided. The an-

notations are about weather forecast in German Sign Lan-

guage. All videos are of 25 frames per second (FPS) with

the resolution of 210×260. The dataset is divided into three

parts: 5, 672 instances for training, 540 for validation, and

629 for testing. The CSL dataset has 178 Chinese words

which are mostly used in daily communication. The corpus

contains 100 sentences. Each sentence is performed by 50

signers. Therefore, there are 5,000 videos in this dataset. In

average, 5 words (phases) are included in each sentence.

In continuous SLR, word error rate (WER) is the most

widely-used metric to evaluate the performance. WER is

essentially an edit distance. In other words, WER indicates

the least operations of substitution, insertion, and deletion to

transform the predict sentence into the reference sequence:

WER =
#substitution + #insertion + #deletion

length of reference
.

(23)

Besides, following this work [15], we use some other eval-

uation metrics on CSL dataset, including precision and

Acc-w, which are the ratio of strictly correct sentences and

the ratio of correct words in reference sentence, respec-

tively. We also adopt semantic evaluation metrics which

λ
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Figure 3: The effect of weight parameter λ in Equation 20

at iteration-0.

widely used in image caption and neural machine transla-

tion (NMT), i.e., CIDEr, BLEU, ROUGE-L, and METEOR.

5.2. Experimental Setting

Our model consists of two modules: 3D-ResNet for fea-

ture learning and encoder-decoder network with soft-DTW

alignment for sequence learning. We use iterative optimiza-

tion strategy described in 4.2 to train these two parts alter-

nately. In this section, the experiments for parameter selec-

tion are conducted on RWTH-PHOENIX-Weather dataset.

The input of 3D-ResNet is required to be fixed-length

video clips. Hence, we conduct a sliding window on raw

videos to generate clips. The window size is set to be 8

with a stride of 4, which means there is 50% overlap be-

tween adjacent clips. The activations of 512-dimensional

pool5 layer from 3D-ResNet are extracted as the represen-

tation of video clips. While training the feature extractor,

we use stochastic gradient descent (SGD) optimizer to train

our network. The initial learning rate and weight decay are

set to be 1 × 10−3 and 5 × 10−5, respectively. At the ini-

tial step, to extract features for encoder-decoder network,

the 3D-ResNet is pre-trained on an isolated sign language

recognition dataset released in [43]. The hidden states of

the 2-layer BLSTM encoder is set to be 1024.

In order to set an optimal weight λ in Equation 20, we

conduct experiments with different λ using the features ex-

tracted in initial step, as shown in Figure 3. For 0 < λ < 1,

we use jointly re-ranking decoding algorithm introduced in

Section 4.3. The hyper-parameters α and β in Equation 21

are set to 0.85 and 0.7, respectively. Note that when λ = 0
or 1, it means we only use one of the decoders for training

and inference without soft-DTW alignment. From the re-

sults, we find that λ = 0.9 is the best option. Hence, all

following experiments use the setup of λ = 0.9.

5.3. Results on RWTH­PHOENIX­Weather

In this section, we show the performance comparisons on

RWTH-PHOENIX-Weather. We analyze the performance

for different optimization iterations and give an example il-

lustrating the alignment between video clips and annotation.
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Figure 4: Performance comparison for alignment mecha-

nism.

Iterations
Dev (%) Test (%)

del / ins WER del / ins WER

Iter-0 19.46 / 2.74 57.72 20.26 / 2.49 57.90

Iter-1 15.01 / 2.69 41.48 14.12 / 2.22 40.38

Iter-2 13.16 / 2.83 39.11 13.40 / 2.74 39.17

Iter-3 12.68 / 2.93 37.39 12.94 / 2.58 37.56

Iter-4 12.86 / 2.64 37.07 12.97 / 2.47 36.71

Table 1: Word error rate (WER) for different iterations on

RWTH-PHOENIX-Weather-2014 (the lower the better).

5.3.1 Iterative Optimization Results

Our network is optimized by iterative training. Table 1

shows the performance on dev set and test set in different

iterations. In this table, “del” and “ins” stand for deletion

error and insertion error, respectively. It can be observed

that the word error rate (WER) declines with the training

iterations progress, which demonstrates the effectiveness of

the iterative optimization strategy. After 4 iterations, we

stop iterative training progress, since the WER does not de-

cline anymore and the network converges to optimum.

Besides, Figure 4 gives the comparison for whether

there is alignment mechanism in the network. As the Fig-

ure shows, CTC-Only and LSTM-Only correspond to train-

ing with only CTC loss Lctc or LSTM cross entropy loss

Llstm, respectively. Align means the network is trained

with alignment constraint and jointly decodes the sentence

with both decoders. From Figure 4, we notice that the net-

work with alignment constraint outperforms another two

networks with different objective functions at every itera-

tion. The experimental results show that alignment mecha-

nism works well in our proposed network.

5.3.2 Alignment and Comparisons

In this section, we give an example qualitatively describing

the alignment between the input video and its correspond-

ing annotation. Additionally, we discuss the performance

of our method together with the state-of-the-arts on RWTH-

Methods
Dev (%) Test (%)

del / ins WER del / ins WER

1-Mio-Hands [25, 27] 16.3 / 4.6 47.1 15.2 / 4.6 45.1

CNN-Hybrid [28] 12.6 / 5.1 38.3 11.1 / 5.7 38.8

SubUNet [3] 14.6 / 4.0 40.8 14.3 / 4.0 40.7

Staged-Opt [10] 13.7 / 7.3 39.4 12.2 / 7.5 38.7

CTF [39] 12.8 / 5.2 37.9 11.9 / 5.6 37.8

Dilated-SLR [32] 8,3 / 4.8 38.0 7.6 / 4.8 37.3

LS-HAN [23] - - - 38.3

Ours (LSTM) 13.8 / 3.3 45.6 13.6 / 3.3 46.1

Ours (CTC) 11.4 / 3.8 38.2 11.9 / 3.5 37.9

Ours (Align-end2end) 12.6 / 2.2 69.1 22.0 / 2.6 69.3

Ours (Align-iOpt) 12.9 / 2.6 37.1 13.0 / 2.5 36.7

Table 2: Word error rate (WER) on RWTH-PHOENIX-

Weather-2014 (the lower the better).

PHOENIX-Weather multi-signer dataset.

Figure 5 shows an example1 of alignment results from

Dev set. All clips are from the same sign video by order.

Each clip is aligned to its corresponding word. The period

of appearance for different sign word may be different in

the sign video. Our network has the capacity of exploring

the sequential alignment.

We evaluate the performance of our approach on the

large-scale continuous SLR benchmark RWTH-PHOENIX-

Weather, and the comparison results 2 to different methods

are shown in Table 2. 1-Mio-Hands [25, 27] achieves an

WERs of 47.1% and 45.1% on dev set and test set, respec-

tively, by embedding a CNN within an iterative EM algo-

rithm. CNN-Hybrid [28] introduces an end-to-end embed-

ding of a CNN into a HMM, while interpreting the out-

puts of CNN in a truly Bayesian fashion. The basic ar-

chitectures in SubUNet [3] and Staged-Opt [10] are both

CNN+BLSTM+CTC. The main difference is that Staged-

Opt proposes a staged optimization algorithm with detec-

tion net, and it achieves a better performance than Sub-

UNet. Another two works CTF [39] and Dilated-SLR [32]

are both CTC-based approach. In addition, LS-HAN [23] is

an encoder-decoder framework with hierarchical attention

mechanism for better recognition.

Comparing to the results which use only one of the

decoders, i.e., LSTM or CTC, for training and inference,

the network using soft-DTW alignment for both decoders

with iterative optimization strategy achieves the best per-

formances. We also train our network in an end-to-end

way, denoted as Align-end2end. However, the results are

not good enough. These comparative experiments illustrate

both the alignment mechanism and iterative optimization

work well in our approach.

1Video ID: 03February 2010 Wednesday tagesschau default-0.
2Since WER is the summation of insertion error, deletion error, and

substitution error, we only list 3 of them without substitution error.
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Figure 5: An example for alignment results between the video clips and sentence annotation in German from Dev set.

Method
Split I Split II

Precision BLEU-1 CIDEr ROUGE-L METEOR Acc-w BLEU-1 CIDEr ROUGE-L METEOR WER

LSTM&CTC [12, 20] 0.858 0.936 8.632 0.940 0.646 0.332 0.343 0.241 0.362 0.111 0.757

S2VT [38] 0.897 0.902 8.512 0.904 0.642 0.457 0.466 0.479 0.461 0.189 0.670

S2VT (3-layer) [38] 0.903 0.911 8.592 0.911 0.648 0.461 0.475 0.477 0.465 0.186 0.652

HLSTM (SYS sampling) [15] 0.910 0.935 8.907 0.938 0.683 0.459 0.463 0.476 0.462 0.173 0.630

HLSTM [15] 0.924 0.942 9.019 0.944 0.699 0.482 0.487 0.561 0.481 0.193 0.662

HLSTM-attn [15] 0.929 0.948 9.084 0.951 0.703 0.506 0.508 0.605 0.503 0.205 0.641

Ours 0.939 0.980 9.342 0.981 0.713 0.670 0.724 3.946 0.716 0.383 0.327

Table 3: Evaluation on CSL Dataset Split I for seen sentence recognition and Split II for unseen sentence recognition (the

lower the better for WER, the higher the better for other metrics).

5.4. Results on CSL

The CSL dataset contains a smaller vocabulary com-

paring with RWTH-PHOENIX-Weather. We use the same

hyper-parameters on both datasets. Following this work

[15], the training set and testing set are generated with two

different strategies. (a) Split I - signer independent test:

We use the videos performed by 40 signers for training, and

the remaining videos of 10 signers for testing. The sen-

tences of training and testing sets are the same, while the

signers are different. (b) Split II - unseen sentence test:

We choose 94 sentences (94× 50 = 3700 videos) for train-

ing, and the remaining 6 sentences (6 × 50 = 300 videos)

for testing. The sentences in testing set are different from

which in training set, while the vocabulary in testing set is

a subset of vocabulary in training set.

We pre-train 3D-ResNet on the isolated SLR dataset

[43]. Since the vocabularies in CSL dataset are all from iso-

lated SLR dataset, we get good enough performances with-

out iterations. The performances of our method comparing

with existing methods over the CSL dataset are summarized

in Table 3. We compare our method with LSTM&CTC,

S2VT [38], and HLSTM [15] over both splits. Experimen-

tal results show that our method outperforms the state-of-

the-art methods over Split I with signer-independence test.

In continuous SLR, it’s quite difficult to recognize the sen-

tences which are not appeared in training set. To evaluate

the capability of our method for such case, we conduct ex-

periments on CSL Split II, and the performances compar-

ing with other methods are shown in Table 3 (Split II). Our

method outperforms the state-of-the-art methods by a large

margin over all evaluation metrics, including Acc-w, CIDEr,

BLEU, ROUGE-L, METEOR, and WER. Experimental re-

sults on Split II indicate that our method has a strong capa-

bility to deal with the unseen sentence recognition problem.

6. Conclusions

In this paper, we propose a new deep architecture based

on 3D-ResNet and encoder-decoder network with connec-

tionist temporal classification by iterative optimization for

continuous SLR. We jointly train encoder-decoder network

by minimizing CTC loss and cross-entropy loss, addition-

ally with a soft-DTW alignment constraint. The clip labels

generated by the warping path, which aligns each clip to its

corresponding sign word, are regarded as the supervision

to fine-tune the feature extractor. The 3D-ResNet feature

extractor and encoder-decoder sequence modelling network

are alternately optimized step by step. Our method achieves

better performance on two public continuous SLR datasets

than the existing methods. Experimental results demon-

strate the effectiveness and superiority of our approach.
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and Yoshua Bengio. On the properties of neural machine

translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014. 3

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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