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Abstract

Reflection removal is the challenging problem of remov-

ing unwanted reflections that occur when imaging a scene

that is behind a pane of glass. In this paper, we show

that most cameras have an overlooked mechanism that can

greatly simplify this task. Specifically, modern DLSR and

smartphone cameras use dual pixel (DP) sensors that have

two photodiodes per pixel to provide two sub-aperture views

of the scene from a single captured image. “Defocus-

disparity” cues, which are natural by-products of the DP

sensor encoded within these two sub-aperture views, can be

used to distinguish between image gradients belonging to

the in-focus background and those caused by reflection in-

terference. This gradient information can then be incorpo-

rated into an optimization framework to recover the back-

ground layer with higher accuracy than currently possible

from the single captured image. As part of this work, we

provide the first image dataset for reflection removal con-

sisting of the sub-aperture views from the DP sensor.

1. Introduction

This paper addresses the problem of removing reflec-

tion interference that occurs when imaging a scene behind

a pane of glass. The novelty of our work lies in our use of

the information available from dual pixel (DP) sensors that

are found on most smartphone and DSLR cameras. Tra-

ditional image sensors have a single photodiode per pixel

site. DP sensors have two photodiodes that effectively split

the pixel in half. The DP sensor design furnishes, from a

single captured image, two views of the scene where rays

passing through the left side of the lens are captured by the

right half-pixels (right sub-aperture view) and those pass-

ing through the right side of the lens are captured by the left

half-pixels (left sub-aperture view).

The DP sensor is effectively a rudimentary two-sample

light-field camera. Within this context, scene points that are

in-focus will have no difference between their positions in

the left and right sub-aperture views. However, out-of-focus

scene points will be blurred in opposite directions in the two

Left (L) sub‐aperture viewCaptured input image  Right (R) sub‐aperture view
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Figure 1. An example sketching our basic idea. The captured im-

age and its two sub-aperture views are shown. In the zoomed-in

boxes, the upper half corresponds to the left view, and the lower

half to the right. In the box on the right showing an out-of-focus

reflection region, a horizontal shift can be observed between the

two white dots (best viewed electronically and zoomed), while no

disparity exists in the left box of an in-focus background region.

This disparity (illustrated in the plots) allows us to compute a mask

for image gradients belonging to the background region that can

be used to extract the background layer.

sub-aperture views, resulting in very small but detectable

shifts. These shifts, which we refer to as defocus-disparity

cues, are related to the amount of out-of-focus blur incurred

by the scene point with respect to the camera lens’s depth of

field. These defocus-disparity cues, which are natural by-

products of the DP sensor, allow us to robustly determine

which gradients in the captured composite image belong to

the in-focus background layer. Fig. 1 shows an example.
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Contribution We introduce a new reflection removal

method that exploits the two sub-aperture views available

on a DP sensor. We explain the relationship between the

defocus-disparity cues in the two sub-aperture views with

respect to the background layer and the objects reflected

by the glass. Working from this backdrop, we propose a

method that uses these defocus-disparity cues to detect gra-

dients corresponding to the in-focus background and incor-

porate them into an optimization framework to recover the

background layer. Our experimental results demonstrate

the advantages of this additional information over current

methods. More importantly, our results are obtained with-

out hardware modifications or training – we simply use the

data that was already available, yet ignored. As part of this

work, we introduce a new dataset for reflection removal that

provides access to the two sub-aperture views.

1.1. Related work

We first provide a brief overview of the original function-

ality of DP sensors, and their extended capabilities. We also

discuss single- and multi-image reflection removal methods

as well as methods using light-field cameras as the DP sen-

sor can be considered a two-sample per pixel light-field.

DP sensor Dual pixel sensors were developed to provide a

fast method for autofocus [13, 28], the idea here being that

by examining the image disparity between the two views,

a change in lens position can be calculated to minimize the

amount of out-of-focus blur, thus focusing the image. How-

ever, the DP data can be used for tasks beyond autofocus.

Recent work by Wadhwa et al. [30] showed how the two

DP views can be used to extract dense depth maps for the

purpose of synthesizing shallow depth-of-field images.

Reflection removal

Single image Most single-image methods exploit the statis-

tics of natural images to make the reflection removal prob-

lem less ill-posed. Long-tail distribution of gradients [18],

sparsity of corners and edges [20], the ghosting effect [27],

difference in smoothness between the background and re-

flection layers [22], and depth of field confidence maps [33]

are some of the priors that have been employed.

More recently, deep learning techniques have also been

applied to this task [9, 40, 32, 39]. Fan et al. [9] first learn

an intermediate edge map to guide background recovery,

whereas Wan et al. [32] combine the two stages of gradient

and image inference into a unified framework. While Zhang

et al. [40] seek to use both low- and high-level image infor-

mation, Yang et al. [39] estimate both the background and

the reflection layers in cascade. Although much progress

has been made in single-image reflection removal, there is

still a large margin for improvement due to the highly ill-

posed nature of the problem.

Multiple images Capturing multiple images of the scene in

a pre-defined manner can make the reflection removal prob-

lem more tractable. The vast majority of multi-image meth-

ods are based on motion cues [12, 5, 10, 11, 21, 29, 37].

These methods take advantage of the difference in motion

between the two layers given images of the same scene

taken from different viewpoints. Prior works have mod-

eled the motion of the two layers as pure translation [5],

affine [10], or a full homography [11]. Recent approaches

[12, 21, 29, 37] have replaced these parametric models with

dense per-pixel motion vectors. Methods that require spe-

cialized hardware or non-conventional capture settings have

also been proposed – using a polarizer [26, 24, 15, 8], vary-

ing focus [25], capturing a flash no-flash pair [2, 3] and so

forth. Although these multi-image approaches produce bet-

ter results due to the availability of additional information,

they place the burden on the photographer to acquire special

hardware or skills, and thereby vastly limit their applicabil-

ity to lay users.

Light-field cameras While layer separation is ill-posed

with conventional imaging, the task becomes tractable with

light field imaging as demonstrated by recent works [34,

14, 6, 23]. Wang et al. [34] built their own portable cam-

era array to obtain an image stack for reflection removal.

Johannsen et al. [14] propose a variational approach for

layer separation assuming user assistance in gradient label-

ing. Chandramouli et al. [6] advocate a deep learning ap-

proach to recover the scene depth, as well as the two layers.

Ni et al. [23] use focus manipulation to remove the reflec-

tions. The drawback of these methods is the need for spe-

cialized light field cameras. Our method, in contrast, works

by using information available on DP sensors of most cur-

rent commodity cameras.

2. Image formation model with DP sensor

A DP sensor splits a single pixel in half using an arrange-

ment of a microlens sitting atop two photodiodes. See Fig.

2(a). The two halves of the dual pixel – the two photodiodes

– can detect light and record signals independently. When

the two signals are summed together, the pixel intensity that

is produced will match the value from a normal single diode

sensor. The split-pixel arrangement has the effect that light

rays from the left half of the camera lens’s aperture will be

recorded by the right half of the dual pixel, and vice versa.

A scene point that is out of focus will experience a dis-

parity or shift between the left and right views due to the

circle of confusion that is induced. It is precisely this shift

that is exploited by DP auto-focus systems. By examin-

ing the signed average disparity value within a region of

interest, the auto-focus algorithm can determine not only in

which direction to move the lens in order to bring that re-

gion into focus (and thereby minimize disparity) but also by

how much.

Within this backdrop, we examine the image formation

model for a DP sensor imaging a scene through a trans-
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Figure 2. Image formation model for a dual-pixel camera capturing a scene behind glass. (a) An in-focus background scene point is

recorded at pixel site 1, while an out-of-focus reflection scene point creates a defocus blur spread across pixels sites 2 to 6. Light from

opposite halves of the lens is collected by the left and right half-pixels. There is no disparity for the background scene point (b), whereas

a disparity proportional to the blur size is induced by the reflection (d). The sum of the left and right half-pixels represents the observed

image intensity at that pixel site (c), (e). The DP view and the observed image are a superposition of the background object and the reflected

object (f-h). The shift in the reflection between the two views is evident from the position of the tip of the triangle (f+,g+).

parent glass. A dense DP sensor array effectively yields

views through the left and right halves of the lens from a

single capture. Depending on the sensor’s orientation, this

can also be the upper and lower halves of the lens; without

loss of generality, we consider them to be the left and right

views in the rest of the paper.

We make the following two assumptions. First, we as-

sume the background layer has predominately stronger im-

age intensity than the reflection layer. This assumption is

made by all reflection removal algorithms. Second, we as-

sume the background scene content lies within the depth of

field (DOF) of the camera, while the objects in the scene be-

ing reflected on the glass are at a different depth and there-

fore outside the DOF. The second assumption is also com-

mon [22, 33, 38, 7, 9, 39], and as noted by Wan et al. [31], it

is quite reasonable to presume that the background and the

objects in front of the glass have different distances from

the camera. In such a scenario, the observed image is a

superposition of the in-focus background and a de-focused

reflection.

Based on these assumptions, we illustrate the image for-

mation model in Fig. 2(a) for a DP camera imaging a scene

through glass. A point on the in-focus background object

emits light that travels through the camera’s lens and is fo-

cused on the sensor at a single pixel (labeled as 1). Observe

from the figure that rays that pass through the right half of

the main lens aperture hit the microlens at an angle such that

they are directed into the left half-pixels. The same applies

to the left half of the aperture and the right half-pixels. For

an in-focus scene point, there is no disparity (Fig. 2(b)).

The sum of the left and right values is stored as the image

intensity at that pixel (Fig. 2(c)).

Next, consider the triangular object in front of the glass

that constitutes the reflection layer. Light from a point on

this object focuses in front of the sensor, and produces a

five-pixel wide (labeled 2 to 6) defocus-blurred image on

the sensor. The left and right views created by the split-

pixels have a disparity that is proportional to the blur size

(Fig. 2(d)). The blurred reflection image is obtained by

summing up the left and right signals (Fig. 2(e)). The com-

posite DP data that is the sum of the in-focus background

(with no disparity) and the out-of-focus reflection (with a

non-zero disparity) as observed from the left and right views

over the entire imaging sensor is shown in Figs. 2(f,g). No-

tice the shift between views as highlighted by the zoomed-in

regions (f+,g+). The final image output by the camera that

is the sum of left and right DP views is also shown in Fig.

2(h), and its zoomed-in region in (h+).

If b represents the background layer and f denotes the la-

tent sharp reflection layer, both in lexicographically ordered

vector form, the composite left gLV and right gRV DP views

can be expressed mathematically as

gLV =
b

2
+WLVf , gRV =

b

2
+WRVf , (1)

where WLV and WRV are the matrices that multiply the un-

derlying sharp reflection layer f to produce its defocused

and shifted versions of half intensity in the left and right

views, respectively. The observed image g can be expressed

as g = gLV + gRV = b + r, where r equals the blurred re-

flection layer and is given by r = (WLV +WRV)f .
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Figure 3. Input images and our estimated weighted gradient maps

of the background.

3. Proposed method

Working from our previous section, we describe our re-

flection removal method that leverages the a priori knowl-

edge that (i) the background layer is sharp and has zero dis-

parity, and (ii) the reflection layer is defocus-blurred and has

a non-zero disparity between the left and right DP views.

3.1. Defocus­disparity cues

Levin et al. [18] demonstrated that labeling the gradients

of the input image can serve as a powerful mechanism for

reflection removal. However, the labeling was done manu-

ally by the user. Inspired by the success of [18], we propose

to use the defocus-disparity cues between the left and right

DP views to automatically identify which gradients belong

to the background layer.

Let the gradients of the left and right DP views obtained

by applying the first-order horizontal and vertical derivative

filters be represented as hLV and hRV. To compute disparity,

we select a patch of size N×N pixels in hLV and perform

a horizontal search over a range of −t to t pixels in hRV.

A 1D search suffices because the split-pixels produce an al-

most pure horizontally rectified disparity in the sensor’s ref-

erence frame. The search interval 2t+1 can be restricted to

a few pixels because the baseline between DP views is very

narrow (approximately equal to aperture diameter [30]). We

compute the sum of squared differences (SSD) for each in-

teger shift. Following [30], we find the minimum of these

2t+1 points and fit a quadratic 1
2a1x

2+a2x+a3 to the SSD

value using the minimum and its two surrounding points.

At a given pixel i, the location of the quadratic’s minimum

si =
−a2

a1

serves as our sub-pixel minimum. We also com-

pute a confidence value at each pixel i as [4]:

βi = exp

(

log|a1i |
σa1

− a3i
σ2
a3

)

. (2)

We construct our weighted gradient map of the background

using the confidence values βi as

ci =

{

ρβi if |si| < ǫ and βi > 1,

0 otherwise.
(3)

Two examples of our estimated background gradient maps

are shown in Fig. 3. We fix ρ = 5, N = 11, t = 5, σa1
= 5,

and σa3
= 256 for all examples presented in this paper.

Note that blurred reflection gradients are weak [22, 38, 7],

and very few can be reliably labeled. In our experiments, we

did not observe any improvement in the results by adding

labeled reflection gradients to our cost function, and there-

fore, we do not include them in our gradient map.

Although our disparity estimation technique is similar

in spirit to [30], our use of gradients instead of image in-

tensities is a notable departure from their approach. Fur-

thermore, they employ several heuristics (e.g., repeated tex-

ture, lack of texture, outlier motion) to compute confidence,

whereas our confidence estimates are based directly on the

quadratic fit.

3.2. In­focus and defocus image distributions

The difference in sharpness between the background and

reflection layers provides yet another valuable cue for layer

separation. This idea was explored in [22]. The defocused

reflection layer has fewer large gradients than the in-focus

background. Following [22], we model the blurred reflec-

tion layer’s gradient distribution using a Gaussian function

with a narrow spread as

PR(l) =
1√
2πσ2

e−
l2

2σ2 , (4)

where l represents the gradient value, and σ denotes the

standard deviation of the Gaussian.

It is well known that the gradients of natural images have

a heavy-tailed distribution, and that this distribution can be

modeled using a hyper-Laplacian function [16, 17]. There-

fore, we express the probability distribution of the gradients

of the in-focus background layer as

PB(l) = e−α|l|p , (5)

where α is a positive scalar, and we set p = 2
3 [16].

The work by [22] also applies different distributions on

the gradients of the two layers. However, they model even

the background’s gradient distribution using a Gaussian.

They then force the distribution to have a tail by applying

the max operator and preventing the gradients from getting

close to zero. In comparison, our use of the hyper-Laplacian

distribution more naturally encourages large gradients in

the background. Furthermore, [22] relies purely on rela-

tive smoothness, and so their method fails in cases where

there is not a clear difference in sharpness between the two

layers (see example 1 of Fig. 4). Our proposed method as-

similates additional information about the gradients using

disparity as a cue, and yields stable performance even when

the reflection layer is only slightly out-of-focus.

3.3. Cost function

Our cost function uses a probabilistic model to seek the

most likely explanation of the superimposed image using
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Algorithm 1 Reflection removal using a dual-pixel sensor

Input: : Input image g, the left gLV and right gRV DP

views, relative weight λ, maximum iterations Q.

Output: : Background b, and blurred reflection r.

1: Compute C using gLV and gRV (see Section 3.1)

2: D∗ = CD

3: q = 0
4: b = (DTD+ λD∗

TD∗)
−1(λD∗

TD∗g)
5: do

6: ei =
(

max
(

|(Db)i|, 0.001
)

)(p−2)

7: E = diag(ei)
8: b = (DTED+ λD∗

TD∗)
−1(λD∗

TD∗g)
9: q ++

10: while q < Q

11: r = g − b

the probabilities of the background and reflection layers.

Specifically, we maximize the joint probability P (b, r). As-

suming that the background and the reflection are indepen-

dent [19], the joint probability can be expressed as the prod-

uct of the probabilities of each of the two layers – that is,

P (b, r) = P (b)P (r). Following [36], we define our distri-

bution over both background and reflection layers using the

histogram of derivative filters as

P (z) ≈
∏

i,k

P
(

(Dkz)i
)

, z = either b or r, (6)

where we assume that the horizontal and vertical derivative

filters Dk ∈ {Dx,Dy,Dxx,Dxy,Dyy} are independent

over space and orientation.

Maximizing P (b, r) is equal to minimizing its negative

log, and from equations (4)(5)(6), we obtain the following

cost function:

argmin
b,r

{

∑

i,k

(

|(Dkb)i|p + λ
(

(Dkr)i
)2
)

}

, (7)

where we integrate the relative weight between the two

terms and the multiplier 1
2ασ2 into a single parameter λ,

which controls the amount of defocus blur in the reflection

layer. This can be rewritten as

argmin
b,r

{

||Db||pp + λ||Dr||22
}

, (8)

where the matrix D consists of the five Dks vertically

stacked. Expressing in terms of a single layer b, and in-

corporating the confidence values C = diag(ci) from equa-

tion (3) to enforce agreement with the labeled gradients, we

obtain

argmin
b

{

||Db||pp + λ||CD(g − b)||22
}

. (9)

Equation (9) can be solved using iterative reweighed least

squares, and the steps are outlined in Algorithm 1. In all

our experiments, the optimization converges quickly within

a few iterations. Note that our cost function is based purely

on gradients. Therefore, we finally rescale the recovered

background and reflection images based on the input im-

age’s intensity range.

We would like to add that we chose not to include any

explicit image fidelity terms based on the image formation

model in equation (1) inside our cost function. The defo-

cus blurring operation encoded by the matrices WLV and

WRV can be space-varying depending on the depth of the

reflected object. A per-pixel-varying defocus kernel is hard

to reliably estimate from the composite image. Moreover,

the blur size is a function of aperture (see equation 3 of

[30]). Observe that our cost function based on gradients

is not aperture-specific, does not entail complex per-pixel

depth estimation, and is straightforward to optimize.

4. Experiments

There are no publicly available datasets for reflection re-

moval that provide dual pixel data. Therefore, to evaluate

the performance of our proposed algorithm, we capture our

own dataset using a dual pixel camera. Although DP tech-

nology exists on most modern cameras, the vast majority of

these devices do not provide users access to DP data. This

is primarily because DP autofocus occurs at the very early

stages of the camera pipeline and the current raw readout

hardware combines the information to mimic a single read-

out for each pixel. As far as we are aware, there is no direct

Camera2 API [1] call to read off the DP measurements even

from the Google Pixel 2 phone used in [30]. As a result, we

use the Canon EOS 5D Mark IV DSLR camera, one of the

few commercially available cameras that provides access to

sensor’s DP data, to capture our dataset.

4.1. Data capture

Our dataset is divided into two categories – controlled

indoor scenes with ground truth and scenes captured “in the

wild”. Following the data capture methodology adopted

by the recent single-image reflection removal benchmark

dataset of [31], we use different postcards as background

and reflection (see Fig. 4) for the controlled dataset. We

select postcards with texture ranging from medium to high

for both background and reflection, and combine them pair-

wise in a manner that our dataset has a wide diversity of

complex overlapping textures. In particular, we select six

postcards for background and five postcards for reflection,

for a total of 30 different scenes.

The defocus blur size and the disparity are functions of

the aperture. To evaluate our algorithm’s robustness to de-

gree of defocus blur and extent of disparity, we also vary the

aperture value. Specifically, we select five different aperture
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Figure 4. Examples from our controlled dataset.

sizes {F13, F10, F8, F5.6, F4}. In the supplementary ma-

terial, we provide animations that switch between the two

DP views to better reveal how the defocus blur and dispar-

ity change with aperture. For each of the 30 scenes, we

capture images using these five different apertures, giving

us a total of 150 images for the controlled dataset. In or-

der to make the controlled scenes even more challenging,

we place a light source close to the postcard in front of the

glass to boost the interference from the reflection [31]. The

ground truth background layer is captured with the portable

glass pane removed.

While a controlled setup allows for a quantitative eval-

uation of our proposed method as well as competing algo-

rithms, these scenes do not necessarily reflect the complex-

ities encountered in images captured in an unconstrained

manner. Therefore, we augment our dataset with images

captured in the wild (see Fig. 5 for some examples). For

the in-the-wild category, we found it difficult to capture the

ground truth (due to motion in the scene, the glass pane be-

ing fixed, etc.), and so we analyse results only qualitatively.

4.2. Comparisons

We compare our results with six contemporary reflection

removal algorithms – four single-image algorithms, LB14

[22], WS16 [33], ZN18 [40], and YG18 [39], and two

motion-based multi-image algorithms, LB13 [21], GC14

[11]. The codes for all six methods have been made publicly

available by the authors. For the single-image algorithms,

we use the default parameters mentioned in their paper or

provided in the original code, and feed the captured image

as input. We chose the conventional methods of LB14 [22]

and WS16 [33] for comparison because they operate un-
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Figure 5. Examples from our in-the-wild dataset.

der the same assumptions that we do; the background is

sharp and the reflection is defocused. YG18 [39] and ZN18

[40] are the two most recent deep learning methods for

single-image reflection removal with state-of-the-art perfor-

mance. Since the two sub-aperture views are available to us

from the DP sensor, and these are essentially two differ-

ent viewpoints of the scene, we also compare against the

multi-image methods of LB13 [21] and GC14 [11] which

exploit motion cues for layer separation. For a fair com-

parison against these methods, we restricted their search

space to pure translation instead of a full homography. We

provide the left and right DP views as input to the multi-

image methods because the change in viewpoint is highest

between these two images. In our experiments, including

the input image along with the DP views did not improve

their performance. Code for the light-field camera-based

methods discussed in Section 1.1 is not publicly available.

4.3. Error metrics

We quantitatively compare the results of our proposed al-

gorithm as well as competing techniques on the controlled

dataset. We evaluate performance using several metrics:

(i) peak signal to noise ratio (PSNR) and (ii) structural

similarity index (SSIM) [35] are the two most commonly

employed. Following [31], we also use (iii) local mean

squared error as a similarity measure (sLMSE), (iv) normal-

ized cross correlation (NCC), and (v) structure index (SI).

Please refer to [31] for more details of metrics (iii) to (v).

4.4. Results on controlled scenes

The performance of LB13 [21], GC14 [11], LB14 [22],

WS16 [33], ZN18 [40], YG18 [39], and our proposed

method on the 150 images in the controlled category of

our dataset for the five error metrics is recorded in Table

1. It can be observed that we outperform competing ap-

proaches by a sound margin on all metrics. Fig. 4 shows
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Method PSNR SSIM sLMSE NCC SI

(dB)

LB13 [21] 16.12 0.689 0.870 0.966 0.758

GC14 [11] 16.02 0.798 0.888 0.945 0.496

LB14 [22] 14.20 0.842 0.797 0.981 0.840

WS16 [33] 16.62 0.836 0.884 0.975 0.837

ZN18 [40] 15.57 0.797 0.867 0.979 0.818

YG18 [39] 16.49 0.832 0.871 0.978 0.847

Ours 19.45 0.883 0.946 0.982 0.870

Table 1. Quantitative results on our controlled dataset.

three representative examples from our controlled set with

three different aperture settings. We noticed that the multi-

image methods LB13 [21] and GC14 [11] do not perform

well in general because both methods rely on large changes

in viewpoint, whereas the baseline between the DP views is

very narrow. The first row of Fig. 4 shows an example cap-

tured at F13 aperture value. Although the background does

not have a lot of texture, the reflection is sharp due to the

narrow aperture, and ZN18 [40] and YG18 [39] have traces

of reflection in the top right of the image. It can be ob-

served from the zoomed-in regions in the second row that

LB14 [22] and WS16 [33] both also have residual reflec-

tion. In comparison, our method recovers both background

and reflection (shown in the third row) more accurately.

Another example with a highly textured background as

well as reflection captured at the F8 aperture is shown next.

Competing techniques erroneously remove either too little

(red box LB14 [22]) or too much (green box YG18 [39])

detail from the background, or miscalculate the overall con-

tribution of the reflection layer. Our output more closely

matches the ground truth when compared to other algo-

rithms. The third example shot at the F4 aperture is more

challenging because although the reflection is blurred, it

covers a significant portion of the heavily textured back-

ground. All methods suffer from a loss of detail in this case.

However, our method still produces a fairly good separation

of the background and reflection layers.

4.5. Results on in­the­wild scenes

Fig. 5 shows three examples from our in-the-wild

dataset. Since there is no ground truth, we provide zoomed-

in regions corresponding to background (green) and reflec-

tion (red) for a visual comparison of various algorithms.

Our estimated background gradient map is also shown. It

can be observed that our method performs consistently well

as opposed to competing techniques. More results are pro-

vided in the supplementary material.

We fix the parameters λ = 100 and Q = 3 for all ex-

periments in this paper. On a 3.10 GHz processor with 32

GB RAM, our MATLAB algorithm takes approximately 2

(a) (b) (c) (d)

Figure 6. (a) Input image, (b) our estimated background, (c) our

estimated reflection, and (d) depth map of the reflection layer.

minutes to process an 800× 800 image.

An interesting extension of our work is the ability to re-

cover a coarse depth map of the reflected scene. An ex-

ample is demonstrated in Fig. 6. By subtracting out the

estimated background from the left and right views, we can

obtain the reflected scene as observed from the left and right

views (see equation 1). These two images can then be used

to extract a depth map of the reflected scene following the

disparity estimation technique of Wadhwa et al. [30].

5. Discussion and summary

We have proposed a method to perform reflection re-

moval by exploiting the data available on a DP sensor.

We used the defocus-disparity cues present in the two sub-

aperture views to simplify the task of determining which

image gradients belong to the background layer. This well-

labeled gradient map allows our optimization scheme to

recover the background layer more accurately than other

methods that do not use this additional information. The

best part of our approach is that it does not require hard-

ware modifications or training – instead it uses data already

available within each camera shot. The only downside is

most camera APIs currently do not provide access to this

useful data. We hope this work will inspire manufacturers

to provide access. In the meantime, we offer a new dataset

for reflection removal that provides the two DP sub-aperture

views.

We do note that our defocus-disparity cues are based

on the assumption that the reflection layer is out of focus.

Thus, one limitation of our approach is that we cannot fully

distinguish between the gradients of the two layers if the

background and the scene being reflected are at nearly equal

distances from the glass – that is, both layers are in sharp fo-

cus, and the disparity is too small to be detected. One idea

for future work is to use focus bracketing to combine mul-

tiple DP images for improved layer recovery.
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