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Abstract

We propose a novel grayness index for finding gray pix-

els and demonstrate its effectiveness and efficiency in il-

lumination estimation. The grayness index, GI in short,

is derived using the Dichromatic Reflection Model and is

learning-free. GI allows to estimate one or multiple illumi-

nation sources in color-biased images. On standard single-

illumination and multiple-illumination estimation bench-

marks, GI outperforms state-of-the-art statistical methods

and many recent deep methods. GI is simple and fast, writ-

ten in a few dozen lines of code, processing a 1080p image

in ∼ 0.4 seconds with a non-optimized Matlab code.

1. Introduction

The human eye has the ability to adapt to changes in

imaging conditions and illumination of scenes. The well-

established computer vision problem of color constancy,

CC in short, is trying to endow consumer digital cameras

with the same ability. With “perfect” color constancy, find-

ing a gray pixel is not a problem at all – just checking

whether the RGB values are equal. However, given a color-

biased image, detecting gray pixels, i.e. pixels observing

an achromatic surface, is a hard and ill-posed problem –

imagine a white piece of paper illuminated with a cyan light

source; or is it a cyan paper under white light? On the

other hand, “perfect” gray pixels in an image indicate that

color constancy is satisfied. Thus, from this point onward,

we treat finding gray pixels and color constancy as equiva-

lent problems (see also Fig. 1). Color constancy problem

arises in many computer vision and image processing appli-

cations, such as computational photography, intrinsic im-

age decomposition, semantic segmentation, scene render-

ing, object tracking, etc. [18].

For decades, learning-free methods, the classical ap-

proach to color constancy, have relied on the assump-

tion that the illumination color is constant over the whole

scene and can therefore be estimated by global process-

ing [6, 2, 38, 17, 19, 41, 12]. This approach has the advan-

tage of being independent to the acquisition device, since

Figure 1: Gray and non-gray image pixels (left). The Gray-

ness Index (GI) map (middle, blue denotes high grayness

value). The global (top right) and spatially-variant illumi-

nation color (right) estimated from the GI map.

the illumination properties are estimated on a per-image ba-

sis. Recently, state-of-the-art learning-based methods, in-

cluding convolutional neural networks (CNNs), have con-

sistently outperformed statistical methods when validated

on specific datasets [9, 25, 22, 24, 29]. We argue that

learning-based methods depend on the assumption that the

statistical distribution of the illumination and/or scene con-

tent is similar in training and test images. In other words,

learning-based methods assume that imaging and illumina-

tion conditions of a given image can be inferred from pre-

vious training examples, thus becoming heavily dependent

on the training data [21].

In this paper, we focus on the learning-free approach.

For a practical example, consider the case when a user re-

trieves a linear-RGB (gamma corrected) image from the

web and wants to correct its colors. In this scenario, in

which the used CC method has never seen images from that

camera, illumination estimation and color correction must

be performed without strong assumptions on the imaging

device or the captured scene. We experimentally show that

in this setting, learning-free methods show more promis-

ing and robust results as compared to learning-based meth-

ods. As a result, there is a great need for learning-free ap-

proaches that are insensitive to parameters such as the cam-

era and imaging process of captured images.

In most camera sensors, gray pixels are rendered gray

in linear-RGB image under standard neutral illumination,

making grayness a potential measure to estimate the color
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of incident illumination. We adopt Shafer’s Dichromatic

Reflection Model (DRM) [33] to develop a novel grayness

index (GI), which allow ranking all image pixels accord-

ing to their grayness. The appealing points are: (i) GI

is simple and fast to compute; (ii) it has a clear physical

meaning; (iii) it can handle specular highlights to some

extend (from qualitative comparison); (iv) it allows pixel-

level illumination estimation; (v) it provides consistent pre-

diction across different cameras. Comprehensive results

on single-illumination and multi-illumination color con-

stancy datasets show that GI outperforms the state-of-the-

art learning-free methods and achieves state-of-the-art in

the cross-dataset setting.

2. Related Work

Consider image I captured using a linear digital camera

sensor, with black level corrected and no saturation. In the

dichromatic reflection model, the pixel value at (x, y) under

one global illumination source can be modeled as [33]:

I
(x,y)
i = γ

(x,y)
b

∫

Fi(λ)L(λ)R
(x,y)
b (λ)dλ

+γ(x,y)
s

∫

Fi(λ)L(λ)R
(x,y)
s (λ)dλ, (1)

where I
(x,y)
i is the pixel value at (x, y), L(λ) the global

light spectral distribution, Fi(λ) the sensor sensitivity, i =
{R,G,B} for trichromatic cameras, and λ the wavelength.

The chromatic terms Rb(λ) and Rs(λ) account for body

and surface reflection, respectively, while the achromatic

terms γb and γs are the intensities of the above two types

of reflection.

In addition, under the the assumption of narrow spectral

response Fi(λ), Eq. 1 is further simplified to [3]:

I(x,y) = W (x,y) ◦ L+ V (x,y) ◦ L, (2)

where ◦ denotes Hadamard Product and,

W (x,y) = [γ
(x,y)
b R

(x,y)
b,R , γ

(x,y)
b R

(x,y)
b,G , γ

(x,y)
b R

(x,y)
b,B ]T ,

V (x,y) = [γ(x,y)
s R

(x,y)
s,R , γ(x,y)

s R
(x,y)
s,G , γ(x,y)

s R
(x,y)
s,B ]T ,

L = [FRLR, FGLG, FBLB ]
T , (3)

where the {R,G,B} subscripts represent the correspond-

ing parts of the spectrum that intersect with Fi. Eq. 2 shows

the formation of a pixel value in image I corresponding to a

location in the scene exhibiting body W and surface reflec-

tion V , under a camera-captured global light L.

The goal of CC is to estimate L in order to recover

W , given I . Based on the strategy used for solving this

problem, we divide color constancy methods into two cate-

gories: learning-based, learning-free methods.

Learning-based Methods [9, 25, 22, 24, 29, 31, 32] aim

at building a model that relates the captured image I and the

sought illumination L from extensive training data. Among

the best-performing state-of-the-art approaches, the CCC

method [3] discriminatively learns convolutional filters in

a 2D log-chroma space. This framework was subsequently

accelerated using the Fast Fourier Transform on a chroma

torus [4]. Chakrabarti et al. [8] leverage the normalized

luminance for illumination prediction by learning a condi-

tional chroma distribution. DS-Net [35] and FC4 Net [28]

are two deep learning methods, where the former chooses

an estimate from multiple illumination guesses using a two-

branch CNN architecture and the later addresses local es-

timation ambiguities of patches using a segmentation-like

framework. Learning-based methods achieve great suc-

cess in predicting pre-recorded “ground-truth” illumination

color fairly accurately, but heavily depending on the same

cameras and/or scenes being in both training and test images

(see Sec. 3 and Sec. 4.2). The Corrected-Moment method

[14] can also be considered as a learning-based method as

it needs to train a corrected matrix for each dataset.

Learning-free Methods estimate the illumination by

making prior assumptions about the local or global regu-

larity of the illumination and reflectance. The simplest such

method is Gray World [7] that assumes that the global av-

erage of reflectance is achromatic. The generalization of

this assumption by restricting it to local patches and higher-

order gradients has led to more powerful statistics-based

methods, such as White Patch [6], General Gray World

[2], Gray Edge [38], Shades-of-Gray [17] and LSRS [19],

among others [12].

Physics-based Methods [37, 15, 16], estimate illumina-

tion from the understanding of the physical process of im-

age formation (e.g. the Dichromatic Model), thus being able

to model highlights and inter-reflections. Most physics-

based methods estimate illumination based on intersection

of multiple dichromatic lines, making them work well on

toy images and images with only a few surfaces but often

failing on natural images [16]. The latest physics-based

method relies on the longest dichromatic line segment as-

suming that the Phong reflection model holds and an ambi-

ent light exists [39]. Although our method is based on the

Dichromatic Model, we classify our approach as statistical

since the core of the method is finding gray pixels based on

some observed image statistics. We refer readers to [26] for

more details about physics-based methods.

The Closest Methods to GI are Xiong et al. [40] and

Gray Pixel by Yang et al. [41]. Xiong et al. [40] method

searches for gray surfaces based on a special LIS space, but

it is camera-dependent. Gray Pixel [41] is closest to our

work and is therefore outlined in details in Sec. 3.
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3. Grayness Index

We first review the previous Gray Pixel [41] (derived

from the Lambertian model) in the context of dichromatic

reflection model (DRM).

3.1. Gray Pixel in [41]

Yang et al. [41] claims that gray pixels can be sought

by a set of constraints. However, their formulation often

identifies gray pixels that clearly are color pixels. This

phenomenon has been noticed, but not properly analyzed.

Herein we analyze GP using DRM and point out the poten-

tial failure cases of the original formulation.

Assuming narrow band sensor, Eq. 1 simplifies to:

I
(x,y)
i =γ

(x,y)
b FiLiR

(x,y)
b,i +γ(x,y)

s FiLiR
(x,y)
s,i ,

i∈{R,G,B}. (4)

Then, following Yang et al. [41], we apply log(·) and a local

constrast operator C{·} (Laplacian of Gaussian, see Sec. 4

for more details) on the both sides, and obtain

C{log(I
(x,y)
i )} = C{log(FiLiR

(x,y)
b,i )}

+C

{

log

(

γ
(x,y)
b + γ(x,y)

s

R
(x,y)
s,i

R
(x,y)
b,i

)}

. (5)

If γs = 0 (means no surface reflection), we obtain:

C{log(I
(x,y)
i )} = C{log(γ

(x,y)
b R

(x,y)
b,i )} . (6)

If γs 6= 0, due to the interaction between γb and γs
Rs,i

Rb,i

in Eq. 5, those colored pixels can be wrongly identified as

gray pixels. Central to GP is that, when γs = 0, a non-

uniform intensity casting on a homogeneous gray surface

can induce the same amount of “contrast” in each channel.

Varying intensity of light may result from the geometry be-

tween surface and illumination (shading) and that among

different surfaces (occlusion). In order to resolve this prob-

lem we adopt the Dichromatic Reflection Model, exploring

another path to identify gray pixels in a more complex en-

vironment.

3.2. Grayness Index using Dichromatic Reflection
Model

For simplicity, in the sequel we will drop the superscripts

(x, y), as all operations are applied in a local neighborhood

centered at (x, y). We first calculate the residual of the red

channel and luminance in log space and then apply local

contrast operator C{·} to Eq. 5 as:

C{log(IR)−log(|I|)}=C{log(FRLR)+log(γbRb,R+γsRs,R)}

−C{log(FRLR(γbRb,R+γsRs,R)+FGLG(γbRb,G+γsRs,G)

+FBLB(γbRb,B+γsRs,B))}, (7)

(a) (b) (c) (d)(e) (f)

Figure 2: Finding gray pixels. (a) input image. (b) com-

puted grayness index GI . darker blue indicates higher de-

gree of grayness. (c) the N% most gray pixels rendered

using the corresponding pixel color (greenish) in (a). (d)

estimated illumination color. (e) ground truth color. (f) cor-

rected image using (d).

where |I| denotes the luminance magnitude (IR+IG+IB).
In this case, the neutral interface reflection (NIR) as-

sumption establishes that, for gray pixels, we have that

Rj,R = Rj,G = Rj,B = R̄j with j ∈ {s, b} [30]. In

this case, Eq. 7 simplifies to:

C{log(IR)−log(|I|)}=C{log(FRLR)+log(γbR̄b+γsR̄s)}

−C{log((FRLR+FGLG+FBLB)(γbR̄b+γcR̄s))}. (8)

In a small local neighborhood, the casting illumination

and sensor response can be assumed constant [41], such

that C{log(FRLR)} = 0 and C{log((FRLR + FGLG +
FBLB)}=0, leading to:

C{log(IR)−log(|I|)}=C

{

log
γbR̄b+γcR̄s

γbR̄b+γcR̄s

}

gray
= 0. (9)

Eq. (9) is a necessary yet not a sufficient condition for

gray pixels. A more restrictive requirement for the detec-

tion of gray pixels is given by extending Eq. 9 to one more

color channel (using all channels in redundant, the spectral

response of R and B rarely overlap in sensors) as:

C{log(IR)−log(|I|)}=C{log(IB)−log(|I|)}= 0. (10)

From Eq. (7), we define the grayness index w.r.t. I(x, y)
as:

GI(x, y) = ‖[C{log(IR)− log(|I|)},

C{log(IB)− log(|I|)}]‖, (11)

where ‖ · ‖ refers to the ℓ2 norm. The smaller the GI is,

the more likely the corresponding pixel is gray.

In addition, we impose a restriction on the local contrast

to ensure that a “small” GI value comes from grey pixels

in varying intensity of light, not a flatten color patch (no

spatial cues), written as:

C{Ii} > ǫ, ∀i ∈ {R,G,B}, (12)

where ǫ is a small contrast threshold.

The process of computing GI is in two steps:
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1. Compute a preliminary GI map using Eq. 11.

2. Discard pixels in GI with no spatial cues using Eq. 12.

To weaken the effect of isolated gray pixels mainly due

to camera noise, GI map is averaged in 7× 7 window.

For illustration, Fig. 2 shows a flowchart of computing GI

and its predicted illumination.

The proposed GI differs from GP in two important as-

pects. At first, it utilizes a novel mechanism to detect gray

pixels based on a more complete image formation model

that leads to different formulation. Secondly, the proposed

GI works without selectively enhancing bright and dark pix-

els according to their luminance. In other words, the pro-

posed GI does not weaken the influence of dark pixels.

3.3. GI Application in Color Constancy

Color Constancy is a direct application of gray pix-

els. Here we describe two pipelines to compute illumina-

tion color from gray pixels: single illumination and multi-

illumination pipelines.

When a scene contains only one global illumination, the

pipeline is straightforward. As shown in Fig. 2, after rank-

ing all image pixels according to their GI, the global illumi-

nation is computed as the average of top N% pixels.

Given a scene cast by more than one light source, the

desired output is a pixel-wise illumination map. Similar

to [41], the GI map is first computed and then followed by a

K-means clustering of the top N% pixels into preset num-

ber of M clusters. Now, the averaging is applied on cluster

basis, giving a illumination vector Lm for the cluster m.

The final spatial illumination map is computed using:

Li(x, y) =

M
∑

m=1

ωmLi
m, i ∈ {R,G,B} (13)

where ωm controls the connection between the pixel I(x, y)
to the cluster m, written as:

ωm = e−
Dm

2σ2 /

M
∑

n=1

e−
Dn

2σ2 , (14)

where Dm is the Euclidean distance from the pixel to the

centroid of cluster m. Eq. 14 encourages nearby pixels to

share a similar illumination.

4. Evaluation

We evaluated GI in two color constancy settings: (1)

single-illumination estimation, where the illumination of

the whole captured scene is described by a single chroma

vector for the red, green and blue channels; and (2) multi-

illumination estimation, where in each scene there are two

or more effective illuminants. Moreover, we conducted ex-

periments in the cross-dataset setting which is very chal-

lenging for the learning-based methods.

Datasets

• The Gehler-Shi Dataset [34, 22]: single illumination,

568 high dynamic linear images, 2 cameras 1.

• The NUS 8-Camera Dataset [12]: single illumination,

1, 736 high dynamic linear images, 8 cameras (see Ta-

ble 2 for the camera list).

• MIMO Dataset [5]: multi-illumination, 78 linear im-

ages, 58 laboratory images and 20 harder wild images.

Single-illumination Experiment Settings

• The local contrast operator in Eq. 11 is the Laplacian

of Gaussian filter of the size 5 pixels.

• The proportion of the best gray pixels used for color

estimation is set to N = 0.1%.

• The contrast threshold is set to ǫ = 1e−4
These parameters were selected based on preliminary grid

search (see Section 4.3) and remained fixed for all experi-

ments with the both datasets.

Multi-illumination Experiment Settings

• The local contrast operator and the contrast threshold

are the same as in the single-illuminant experiment.

• The proportion of chosen pixels is set to N = 10.0%
as more illuminants are involved.

• The tested number of clusters M were 2,4 and 6.

Dataset Bias of Learning-based Methods When trained

with images from a single data that is divided to training

and testing sets, the state-of-the-art learning-based methods

(e.g. [4]) outperform the best learning-free methods by a

clear margin. However, it is important to know how these

values are biased since images in the training and test sets

often share the same camera(s) and same scenes. It can hap-

pen that a learning-based method overfits to the camera and

scene features that are not available in the real case. To

investigate the dataset bias, we evaluated several top per-

forming learning-based methods in the cross-dataset set-

ting, where the methods were trained on one dataset (e.g.,

the Gehler-Shi) and tested with another. This allows evalu-

ating the performance of learning-based algorithms for un-

seen cameras and scenes.

Performance Metric As the standard tool in color con-

stancy papers we adopted the angular error arccos( LT L̂

‖L‖‖L̂‖
)

between the estimated illumination L̂ and ground-truth L as

the performance metric. Obtained results are summarized in

Table 1 and discussed in Sections 4.1 and 4.2.

4.1. Singledataset Setting

Single-dataset setting is the most common setting in re-

lated works, allowing extensive pre-training using k-fold

1cameras: Canon 1D, Canon 5D
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Table 1: Quantitative Evaluation of CC methods. All values correspond to angular error in degrees. We report the results of

the related work in the following order: 1) the cited paper, 2) Table [1] and Table [2] from Barron et al. [4, 3] considered to

be up-to-date and comprehensive, 3) the color constancy benchmarking website [23]. We left dash on unreported results. In

(a) results of learning-based methods worse than ours are marked in gray. The training time and testing time are reported in

seconds, averagely per image, if reported in the original paper.

(a) single-dataset setting

Gehler-Shi NUS 8-camera

Mean Median Trimean Best 25% Worst 25% Mean Median Trimean Best 25% Worst 25%

Learning-based Methods (camera-known setting)

Edge-based Gamut [25] 6.52 5.04 5.43 1.90 13.58 4.40 3.30 3.45 0.99 9.83

Pixel-based Gamut [25] 4.20 2.33 2.91 0.50 10.72 5.27 4.26 4.45 1.28 11.16

Bayesian [22] 4.82 3.46 3.88 1.26 10.49 3.50 2.36 2.57 0.78 8.02

Natural Image Statistics [24] 4.19 3.13 3.45 1.00 9.22 3.45 2.88 2.95 0.83 7.18

Spatio-spectral (GenPrior) [9] 3.59 2.96 3.10 0.95 7.61 3.06 2.58 2.74 0.87 6.17

Corrected-Moment1(19 Edge) [14] 3.12 2.38 2.59 0.90 6.46 3.03 2.11 2.25 0.68 7.08

Corrected-Moment1(19 Color) [14] 2.96 2.15 2.37 0.64 6.69 3.05 1.90 2.13 0.65 7.41

Exemplar-based [29]∗ 2.89 2.27 2.42 0.82 5.97 – – – – –

Chakrabarti et al. 2015 [8] 2.56 1.67 1.89 0.52 6.07 – – – – –

Cheng et al. 2015 [13] 2.42 1.65 1.75 0.38 5.87 2.18 1.48 1.64 0.46 5.03

DS-Net (HypNet+SelNet) [35] 1.90 1.12 1.33 0.31 4.84 2.24 1.46 1.68 0.48 6.08

CCC (dist+ext) [3] 1.95 1.22 1.38 0.35 4.76 2.38 1.48 1.69 0.45 5.85

FC4 (AlexNet) [28] 1.77 1.11 1.29 0.34 4.29 2.12 1.53 1.67 0.48 4.78

FFCC [4] 1.78 0.96 1.14 0.29 4.62 1.99 1.31 1.43 0.35 4.75

GI 3.07 1.87 2.16 0.43 7.62 2.91 1.97 2.13 0.56 6.67

1 For Correct-Moment [14] we report reproduced and more detailed results by [3], which slightly differs with the original results: mean: 3.5, median: 2.6 for 19 colors and mean:

2.8, median: 2.0 for 19 edges on Gehler-Shi Dataset.
∗ We mark Exemplar-based method with asterisk as it is trained and tested on a uncorrected-blacklevel dataset.

(b) cross-dataset setting

Training set NUS 8-Camera Gehler-Shi Average

Testing set Gehler-Shi NUS 8-Camera runtime (s)

Mean Median Trimean Best 25% Worst 25% Mean Median Trimean Best 25% Worst 25% Train Test

Learning-based Methods (agnostic-camera setting), Our rerun

Bayesian [22] 4.75 3.11 3.50 1.04 11.28 3.65 3.08 3.16 1.03 7.33 764 97

Chakrabarti et al. 2015 [8] Empirical 3.49 2.87 2.95 0.94 7.24 3.87 3.25 3.37 1.34 7.50 – 0.30

Chakrabarti et al. 2015 [8] End2End 3.52 2.71 2.80 0.86 7.72 3.89 3.10 3.26 1.17 7.95 – 0.30

Cheng et al. 2015 [10] 5.52 4.52 4.79 1.96 12.10 4.86 4.40 4.43 1.72 8.87 245 0.25

FFCC [4] 3.91 3.15 3.34 1.22 7.94 3.19 2.33 2.52 0.84 7.01 98 0.029

Physics-based Methods

IIC [36] 13.62 13.56 13.45 9.46 17.98 – – – – – – –

Woo et al. 2018 [39] 4.30 2.86 3.31 0.71 10.14 – – – – – – –

Biological Methods

Double-Opponency [20] 4.00 2.60 – – – – – – – – – –

ASM 2017 [1] 3.80 2.40 2.70 – – – – – – – – –

Learning-free Methods

White Patch [6] 7.55 5.68 6.35 1.45 16.12 9.91 7.44 8.78 1.44 21.27 – 0.16

Grey World [7] 6.36 6.28 6.28 2.33 10.58 4.59 3.46 3.81 1.16 9.85 – 0.15

General GW [2] 4.66 3.48 3.81 1.00 10.09 3.20 2.56 2.68 0.85 6.68 – 0.91

2st-order grey-Edge [38] 5.13 4.44 4.62 2.11 9.26 3.36 2.70 2.80 0.89 7.14 – 1.30

1st-order grey-Edge [38] 5.33 4.52 4.73 1.86 10.43 3.35 2.58 2.76 0.79 7.18 – 1.10

Shades-of-grey [17] 4.93 4.01 4.23 1.14 10.20 3.67 2.94 3.03 0.99 7.75 – 0.47

Grey Pixel (edge) [41] 4.60 3.10 – – – 3.15 2.20 – – – – 0.88

LSRS [19] 3.31 2.80 2.87 1.14 6.39 3.45 2.51 2.70 0.98 7.32 – 2.60

Cheng et al. 2014 [12] 3.52 2.14 2.47 0.50 8.74 2.93 2.33 2.42 0.78 6.13 – 0.24

GI 3.07 1.87 2.16 0.43 7.62 2.91 1.97 2.13 0.56 6.67 – 0.40

cross-validation for learning-based methods. The results

for this setting are summarized in Table 1a. Among all

the compared methods, up to the date of submission of

this paper, FFCC [4] achieves the best overall performance
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Table 2: Each-camera evaluation on the NUS 8-Camera Dataset. Std in the last column refers to the standard deviation of

statistics (e.g. mean angular error) on 8 cameras.

NUS 8-camera Dataset

Canon Canon Fujifilm Nikon Olympus Panasonic Samsung Sony Std

1DS Mark3 600D X-M1 D5200 E-PL6 DMC-GX1 NX2000 SLT-A57

Cheng et al. 2014 [12]

Mean 2.93 2.81 3.15 2.90 2.76 2.96 2.91 2.93 0.1152

Median 2.01 1.89 2.15 2.08 1.87 2.02 2.03 2.33 0.1465

Tri 2.22 2.12 2.41 2.19 2.05 2.31 2.22 2.42 0.1309

Best-25% 0.59 0.55 0.65 0.56 0.55 0.67 0.66 0.78 0.0798

Worst-25% 6.82 6.50 7.30 6.73 6.31 6.66 6.48 6.13 0.3558

Chakrabarti et al. [8] (best), trained on Gehler-Shi, tested here

Mean 3.00 3.26 3.12 3.26 3.31 3.30 3.30 3.32 0.1056

Median 2.17 2.48 2.45 2.48 2.50 2.49 2.48 2.56 0.1171

Tri 2.31 2.64 2.60 2.64 2.72 2.69 2.68 2.75 0.1365

Best-25% 0.74 0.83 0.83 0.83 0.85 0.84 0.83 0.86 0.0390

Worst-25% 6.77 7.04 6.89 7.04 7.11 7.12 7.16 7.12 0.1312

GI

Mean 3.02 2.85 2.89 2.85 2.84 2.86 2.86 2.75 0.0753

Median 1.87 1.96 1.98 1.96 1.97 1.97 1.97 1.89 0.0420

Tri 2.16 2.12 2.15 2.12 2.15 2.17 2.13 2.07 0.0321

Best-25% 0.54 0.55 0.55 0.55 0.56 0.56 0.55 0.53 0.0114

Worst-25% 7.29 6.79 6.86 6.79 6.70 6.75 6.81 6.51 0.2198

Table 3: Quantitative Evaluation on the MIMO dataset.

Laboratory(58) Real-world(20)

Method Median Mean Median Mean

Doing Nothing 10.5 10.6 8.8 8.9

Gijsenij et al. [27] 4.2 4.8 3.8 4.2

CRF [5] 2.6 2.6 3.3 4.1

GP (best) [41] 2.20 2.88 3.51 5.68

GI (M=2) 2.09 2.66 3.32 3.79

GI (M=4) 2.09 2.65 3.47 3.96

GI (M=6) 2.07 2.60 3.49 3.94

with the both datasets. It is important to remark that

cross-validation makes no difference to the performance

of statistical methods. Therefore, in order to avoid repe-

tition, the performance of competing non-learning methods

are shown only once in Table 1b. For visualization pur-

poses, results of learning-based methods that are outper-

formed by the proposed GI are highlighted in gray. Remark-

ably, it is clear that, even in the setting which is friendly

to learning-based method, GI outperforms several popular

learning-based methods (from Gamut [25] to the industry-

standard Corrected-Moment [14]) without the need of ex-

tensive training and parameter tuning. Visual examples of

GI are shown in Fig. 3.

Comparing to the best learning-based methods (e.g. [8]),

0
.7

7
0
.8

1
2
.7

8
2
.5

0

Figure 3: Qualitative results on the single-illumination

Gehler-Shi. From left to right: angular error, input image,

GI, top 1% pixels chosen as gray pixel, estimated illumina-

tion color, the ground truth color and corrected image using

the predicted illumination. Macbeth Color Checker is al-

ways masked as GI finds perfect gray patch as gray pixels.

GI has a noticeable heavy tail in its angular error distribu-

tion (e.g. amont the worst 25% cases), which suggests that

GI would be more optimal if gray pixels would be i.i.d over

the whole datasets (e.g. natural images). Learning-based

methods perform well on these “rare” cases using 3-fold

cross-validation, and can further improve “rarity case” per-
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Figure 4: Qualitative results on (multi-illumination) MIMO

dataset. From left to right, color-biased input, groundtruth

spatial illumination, our spatial estimation using GI, our

corrected image.

formance by including more training data (e.g. via 10-fold

cross-validation) [8].

4.2. CrossDataset Setting

We were able to re-run the Bayesian method [22],

Chakrabarti et al.[8], FFCC [4], and the method by Cheng et

al. 2015 [13], using the codes provided by the original au-

thors. Note that this list of methods includes FFCC, which

showed the best overall performance in the camera-known

setting. From the provided code we found different ap-

proaches to correct the black level and saturated pixels. For

consistency, we used a uniform correction process (given in

supplement), which was applied to GI as well.

When we trained on one dataset and tested with another,

we made sure that the datasets share no common cameras.

For the results reported in this section, we used the best or fi-

nal setting for each method: Bayes (GT) for Bayesian; Em-

pirical and End-to-End training for Chakrabarti et al. [8];

30 regression trees for Cheng et al.; full image resolution

and 2 channels for FFCC. Obtained results are summarized

in Table 1b. From this table, it is clear that GI outperforms

all learning-based and statistical methods.

All selected learning-based methods perform worse in

this setting, as compared to some statistical methods (e.g.

LSRS [19], Cheng et al. 2014 [12]). It is not surprising

that the performance of learning-based methods degrades

in this scenario. For example, in [4] it is visualized that

FFCC models two varying camera sensitivity for Gehler-Shi

in preconditioning filter (two wrap-around line segments),

which in cross-dataset setting will be improperly used to

evaluate performance on the NUS 8-camera Dataset.

A special feature of the NUS 8-Camera Benchmark is

that it includes 8 cameras that share the same scenes. We

leveraged this feature to evaluate the robustness of the
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Figure 5: The colormaps of mean and median angular errors

corresponding to various N and ǫ (see the text) for (a,b)

Gehler-Shi; (c,d) NUS 8-camera.

well-performing learning-free and learning-based methods.

These results are summarized in Table 2, where GI achieves

much more stable results (standard variance is smaller)

across 8 cameras. Due to space limitations, we refer readers

to [12] for more results on individual cameras with other

methods, including but not limited to [2, 38, 25, 22, 9].

Among all methods in Table 2 of [12], GI is less sensitive

to camera hardware.

4.3. Grid Search on Parameters

The only two parameters in GI are: the percentage N%
of pixels chosen as gray for illumination estimation, and the

threshold ǫ of Eq. 12 used to remove regions without spatial

cues. The former restricts the domain range where illumi-

nation norm is measured, analogous to the receptive field in

deep learning, while the later one passes only noticeable ac-

tivation, like the ReLU activation. Figure 5 summarizes the

obtained median and mean angular errors corresponding to

a grid search of the parameters, with N ∈ {10−2, 10−1, 1
and ǫ ∈ {10−5, 10−4, 10−3}, on Gehler-Shi Dataset and

NUS 8-camera Dataset. The setting (N = 1e−1 and

ǫ = 1e−4) results in a good trade-off between mean and

median error on both datasets. The shown parameter grid

seems loose, but on the contrary, this shows that our method

is robust to parameter tuning across orders of magnitude.

4.4. Multiillumination Setting

As a side product of grayness index, we evaluate the pro-

posed method on a multi-illumination dataset. Table 3 in-

dicates that despite the fact that GI is not designed to deal

with spatial illumination changes, it still outperforms well-

performing methods [5, 41] with a clear margin. From the

mean value over real-world images, it is obvious that GI

can better handle multi-illumination situations. Increasing

the number of clusters M from 2 to 6 further improved our

results on indoor images, but not for wild ones. Figure 4

shows the spatial estimation predicted using GI. Due to Eu-

clidean distance used by the K-means, GI predictions are

not sharp in some scenes with complex geometry but still

obtain the best overall error rate and plausible visual color

correction.
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(a) (b) (c)

Figure 6: (a) Example images from the Gehler-Shi cor-

rected using groundtruth, where two different illuminations

(red arrow A and B) exist. (b) We test CC methods in de-

creasing box sizes (from A to E). (c) Color-biased (a).

Table 4: Testing GI, FFCC on varying-size cropped images

from Gehler-Shi, given illumination split from [11].

(a) Double-illumination Setting

Gehler-Shi: 66 two-illumination Images

Mean Median Trimean Best-25% Worst-25%

GI

A 6.12 4.54 5.24 0.70 13.72

B 6.06 3.88 4.90 0.92 14.08

C 6.02 3.63 5.04 0.92 14.55

D 5.46 3.46 4.13 0.77 13.69

E 4.96 2.94 3.45 0.53 12.42

FFCC [4]

A 3.11 1.67 2.25 0.44 8.00

B 3.44 1.84 2.39 0.42 8.69

C 4.01 2.47 2.92 0.56 10.03

D 4.64 3.13 3.53 0.62 11.38

E 4.99 3.29 3.72 0.60 11.92

(b) Single-illumination Setting

Gehler-Shi: 502 single-illumination Images

Mean Median Trimean Best-25% Worst-25%

GI

A 2.78 1.79 2.03 0.41 6.75

B 2.95 1.86 2.12 0.41 7.28

C 3.32 2.30 2.49 0.50 7.96

D 3.93 2.97 3.14 0.70 8.90

E 4.81 3.79 3.94 0.82 10.74

FFCC [4]

A 1.68 0.94 1.16 0.27 4.22

B 1.72 1.01 1.20 0.27 4.30

C 1.84 1.11 1.29 0.29 4.58

D 2.13 1.29 1.43 0.36 5.45

E 2.39 1.39 1.58 0.38 6.17

5. Problems with the “Ground-truth”

We investigated those cases where GI made erratic pre-

dictions (see the supplement for erratic cases) and have ob-

served that, in some images, there exists gray pixels casted

by two illumination sources. A similar problem was noticed

by Cheng et al. [11], who claimed that in the Gehler-Shi

[34], there are 66 two-illumination images. An example of

this problem is illustrated in Fig. 6. In Fig. 6(a), where pix-

els near arrows A and B share the same surface (white wall)

but have different illuminations, the color of pixel in the

neighborhood of B is close to the Macbeth Color Checker

(MCC). In such case, our GI does a good job in identify-

ing gray pixels by following the designed rules and finding

gray pixels lying in two illuminants, but this comes at the

cost of a large angular error. As a first impression, we sup-

pose this is due to the MCC being more dominated by one

of the illuminants.

We designed a simple experiment to investigate our ob-

servation. For the list of 66 two-illumination images (given

in [11]) in the Gehler-Shi and the remaining 502 single-

illumination images, we test GI and FFCC [4] (full resolu-

tion, 2 channels, pretrained on whole Gehler-Shi) on images

cropped by boxes of decreasing sizes centered at the MCC

(from box A to box E in Fig. 6b. Specifically, the boxes are

generated by halving the width and height of the previous

box.

The results summarized in Tables 4a and 4b show a cru-

cial fact: in the single-illumination subset, GI yields larger

angular errors as the testing box gets smaller (from box A
to E). In contrast, in the double-illumination subset, this

tendency is reversed. It makes sense that the performance

of GI decreases as the testing box shrinks since less refer-

ence points are available. A reasonable explanation to the

abnormal tendency in the two-illumination subset is that the

MCC is placed mainly in one illumination, reflecting a bi-

ased “ground-truth”. This problem restricts the upper limit

of the performance of GI and possibly also other statistical

color constancy methods. Learning-based methods (espe-

cially CNN-based method) suffer less from this problem, as

they can learn to reason about some structural information,

e.g. whole-image chroma histogram, the physical geometry

of the scene, the location where MCC is placed. As ex-

pected, FFCC performs worse on smaller boxes. Bearing

these results in mind, we argue that learning-based meth-

ods and statistical methods should be compared by consid-

ering their corresponding advantages and limitations in both

single-dataset and cross-dataset scenarios.

6. Conclusions

We derived a method to compute grayness in a novel

way – Grayness Index. It relies on the Dichromatic Reflec-

tion Model and can detect gray pixels accurately. Exper-

iments performed on the tasks of single-illumination esti-

mation and multi-illumination estimation verified the effec-

tiveness and efficiency of GI. On standard benchmarks, GI

estimates illumination more accurately than state-of-the-art

learning-free methods in about 0.4 seconds. GI has a clear

physical interpretation, which we believe can be used for

other vision tasks, e.g. intrinsic image decomposition.

Other conclusions also emerged from the research:

learning-based methods generally perform worse in the

cross-dataset setting; When testing on an image with color

checker masked by zeros, learning-based methods can still

exploit the location of the color checker and overfit to scene

and camera specific features.
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