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Abstract

Generating an image from a given text description has

two goals: visual realism and semantic consistency. Al-

though significant progress has been made in generating

high-quality and visually realistic images using genera-

tive adversarial networks, guaranteeing semantic consis-

tency between the text description and visual content re-

mains very challenging. In this paper, we address this

problem by proposing a novel global-local attentive and

semantic-preserving text-to-image-to-text framework called

MirrorGAN. MirrorGAN exploits the idea of learning text-

to-image generation by redescription and consists of three

modules: a semantic text embedding module (STEM), a

global-local collaborative attentive module for cascaded

image generation (GLAM), and a semantic text regener-

ation and alignment module (STREAM). STEM generates

word- and sentence-level embeddings. GLAM has a cas-

caded architecture for generating target images from coarse

to fine scales, leveraging both local word attention and

global sentence attention to progressively enhance the di-

versity and semantic consistency of the generated images.

STREAM seeks to regenerate the text description from the

generated image, which semantically aligns with the given

text description. Thorough experiments on two public

benchmark datasets demonstrate the superiority of Mirror-

GAN over other representative state-of-the-art methods.

1. Introduction

Text-to-image (T2I) generation refers to generating a vi-

sually realistic image that matches a given text descrip-
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Figure 1: (a) Illustration of the mirror structure that em-

bodies the idea of learning text-to-image generation by re-

description. (b)-(c) Semantically inconsistent and consis-

tent images/redescriptions generated by [35] and the pro-

posed MirrorGAN, respectively.

tion. Due to its significant potential in a number of applica-

tions but its challenging nature, T2I generation has become

an active research area in both natural language process-

ing and computer vision communities. Although significant

progress has been made in generating visually realistic im-

ages using generative adversarial networks (GANs) such as

in [39, 42, 35, 13], guaranteeing semantic alignment of the

generated image with the input text remains challenging.

In contrast to fundamental image generation problems,

T2I generation is conditioned on text descriptions rather

than starting with noise alone. Leveraging the power of

GANs [10], different T2I methods have been proposed to

generate visually realistic and text-relevant images. For in-

stance, Reed et al. proposed to tackle text to image synthe-

sis problem by finding a visually discriminative representa-

tion for the text descriptions and using this representation to

generate realistic images [24]. Zhang et al. proposed Stack-

GAN to generate images in two separate stages [39]. Hong

et al. proposed extracting a semantic layout from the input

text and then converting it into the image generator to guide
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the generative process [13]. Zhang et al. proposed training

a T2I generator with hierarchically nested adversarial ob-

jectives [42]. These methods all utilize a discriminator to

distinguish between the generated image and correspond-

ing text pair and the ground truth image and corresponding

text pair. However, due to the domain gap between text and

images, it is difficult and inefficient to model the underly-

ing semantic consistency within each pair when relying on

such a discriminator alone. Recently, the attention mecha-

nism [35] has been exploited to address this problem, which

guides the generator to focus on different words when gen-

erating different image regions. However, using word-level

attention alone does not ensure global semantic consistency

due to the diversity between text and image modalities. Fig-

ure 1 (b) shows an example generated by [35].

T2I generation can be regarded as the inverse prob-

lem of image captioning (or image-to-text generation, I2T)

[34, 29, 16], which generates a text description given an im-

age. Considering that tackling each task requires modeling

and aligning the underlying semantics in both domains, it

is natural and reasonable to model both tasks in a unified

framework to leverage the underlying dual regulations. As

shown in Figure 1 (a) and (c), if an image generated by T2I

is semantically consistent with the given text description, its

redescription by I2T should have exactly the same seman-

tics with the given text description. In other words, the gen-

erated image should act like a mirror that precisely reflects

the underlying text semantics. Motivated by this observa-

tion, we propose a novel text-to-image-to-text framework

called MirrorGAN to improve T2I generation, which ex-

ploits the idea of learning T2I generation by redescription.

MirrorGAN has three modules: STEM, GLAM and

STREAM. STEM generates word- and sentence-level em-

beddings, which are then used by the GLAM. GLAM is

a cascaded architecture that generates target images from

coarse to fine scales, leveraging both local word attention

and global sentence attention to progressively enhance the

diversity and semantic consistency of the generated images.

STREAM tries to regenerate the text description from the

generated image, which semantically aligns with the given

text description.

To train the model end-to-end, we use two adversar-

ial losses: visual realism adversarial loss and text-image

paired semantic consistency adversarial loss. In addition,

to leverage the dual regulation of T2I and I2T, we further

employ a text-semantics reconstruction loss based on cross-

entropy (CE). Thorough experiments on two public bench-

mark datasets demonstrate the superiority of MirrorGAN

over other representative state-of-the-art methods with re-

spect to both visual realism and semantic consistency.

The contributions of this work can be summarized as fol-

lows:

• We propose a novel unified framework called Mirror-

GAN for modeling T2I and I2T together, specifically target-

ing T2I generation by embodying the idea of learning T2I

generation by redescription.

• We propose a global-local collaborative attention

model that is seamlessly embedded in the cascaded gener-

ators to preserve cross-domain semantic consistency and to

smoothen the generative process.

• Except commonly used GAN losses, we addition-

ally propose a CE-based text-semantics reconstruction loss

to supervise the generator to generate visually realistic

and semantically consistent images. Consequently, we

achieve new state-of-the-art performance on two bench-

mark datasets.

2. Related work

Similar ideas to our own have recently been used in

CycleGAN and DualGAN, which handle the bi-directional

translations within two domains together [43, 37, 1, 32], sig-

nificantly advance image-to-image translation [14, 28, 15,

38, 23]. Our MirrorGAN is partly inspired by CycleGAN

but has two main differences: 1) we specifically tackle the

T2I problem rather than image-to-image translation. The

cross-media domain gap between text and images is prob-

ably much larger than the one between images with differ-

ent attributes, e.g., styles. Moreover, the diverse seman-

tics present in each domain make it much more challeng-

ing to maintain cross-domain semantic consistency. 2) Mir-

rorGAN embodies a mirror structure rather than the cycle

structure used in CycleGAN. MirrorGAN conducts super-

vised learning by using paired text-image data rather than

training from unpaired image-image data. Moreover, to em-

body the idea of learning T2I generation by redescription,

we use a CE-based reconstruction loss to regularize the se-

mantic consistency of the redescribed text, which is differ-

ent from the L1 cycle consistency loss in CycleGAN, which

addresses visual similarities.

Attention models have been extensively exploited in

computer vision and natural language processing, for in-

stance in object detection [21, 6, 18, 41], image/video cap-

tioning [34, 9, 31], visual question answering [2, 33, 36,

22], and neural machine translation [19, 8]. Attention can

be modeled spatially in images or temporally in language,

or even both in video- or image-text-related tasks. Differ-

ent attention models have been proposed for image cap-

tioning to enhance the embedded text feature representa-

tions during both encoding and decoding. Recently, Xu

et al. proposed an attention model to guide the generator

to focus on different words when generating different im-

age subregions [35]. However, using only word-level at-

tention does not ensure global semantic consistency due to

the diverse nature of both the text and image modalities,

e.g., each image has 10 captions in CUB and 5 captions in

COCO,however, they express the same underlying semantic
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Figure 2: Schematic of the proposed MirrorGAN for text-to-image generation.

information. In particular, for multi-stage generators, it is

crucial to make “semantically smooth” generations. There-

fore, global sentence-level attention should also be consid-

ered in each stage such that it progressively and smoothly

drives the generators towards semantically well-aligned tar-

gets. To this end, we propose a global-local collaborative

attentive module to leverage both local word attention and

global sentence attention and to enhance the diversity and

semantic consistency of the generated images.

3. MirrorGAN for text-to-image generation

As shown in Figure 2, MirrorGAN embodies a mirror

structure by integrating both T2I and I2T. It exploits the idea

of learning T2I generation by redescription. After an image

is generated, MirrorGAN regenerates its description, which

aligns its underlying semantics with the given text descrip-

tion. Technically, MirrorGAN consists of three modules:

STEM, GLAM and STREAM. Details of the model will be

introduced below.

3.1. STEM: Semantic Text Embedding Module

First, we introduce the semantic text embedding module

to embed the given text description into local word-level

features and global sentence-level features. As shown in the

leftmost part of Figure 2, a recurrent neural network (RNN)

[4] is used to extract semantic embeddings from the given

text description T , which include a word embedding w and

a sentence embedding s.

w, s = RNN (T ) , (1)

where T = {Tl |l = 0, . . . , L− 1}, L represents the sen-

tence length, w =
{

wl |l = 0, . . . , L− 1
}

∈ R
D×L is the

concatenation of hidden state wl of each word, s ∈ R
D is

the last hidden state, and D is the dimension of wl and s.

Due to the diversity of the text domain, text with few permu-

tations may share similar semantics. Therefore, we follow

the common practice of using the conditioning augmenta-

tion method [39] to augment the text descriptions. This

produces more image-text pairs and thus encourages robust-

ness to small perturbations along the conditioning text man-

ifold. Specifically, we use Fca to represent the conditioning

augmentation function and obtain the augmented sentence

vector:

sca = Fca (s) , (2)

where sca ∈ R
D′

, D′ is the dimension after augmentation.

3.2. GLAM: Global­Local collaborative Attentive
Module in Cascaded Image Generators

We next construct a multi-stage cascaded generator by

stacking three image generation networks sequentially. We

adopt the basic structure described in [35] due to its good

performance in generating realistic images. Mathemati-

cally, we use {F0, F1, ..., Fm−1} to denote the m visual

feature transformers and {G0, G1, ..., Gm−1} to denote the

m image generators. The visual feature fi and generated

image Ii in each stage can be expressed as:

f0 = F0 (z, sca) ,

fi = Fi (fi−1, Fatti (fi−1, w, sca)) , i ∈ {1, 2, . . . ,m− 1} ,

Ii = Gi (fi) , i ∈ {0, 1, 2, . . . ,m− 1} , (3)

where fi ∈ R
Mi×Ni and Ii ∈ R

qi×qi , z ∼ N(0, 1) de-

notes random noises. Fatti is the proposed global-local

collaborative attention model which includes two com-

ponents Attwi−1 and Attsi−1, i.e., Fatti (fi−1, w, sca) =
concat

(

Attwi−1, Attsi−1

)

.

First, we use the word-level attention model proposed in

[35] to generate an attentive word-context feature. It takes

the word embedding w and the visual feature f as the input

in each stage. The word embedding w is first converted into

an underlying common semantic space of visual features

by a perception layer Ui−1 as Ui−1w. Then, it is multiplied
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with the visual feature fi−1 to obtain the attention score. Fi-

nally, the attentive word-context feature is obtained by cal-

culating the inner product between the attention score and

Ui−1w:

Attwi−1 =
L−1
∑

l=0

(

Ui−1w
l
) (

softmax
(

fT
i−1

(

Ui−1w
l
)))T

,

(4)

where Ui−1 ∈ R
Mi−1×D and Attwi−1 ∈ R

Mi−1×Ni−1 . The

attentive word-context feature Attwi−1 has the exact same

dimension as fi−1, which is further used for generating the

ith visual features fi by concatenation with fi−1.

Then, we propose a sentence-level attention model to

enforce a global constraint on the generators during gen-

eration. By analogy to the word-level attention model, the

augmented sentence vector sca is first converted into an un-

derlying common semantic space of visual features by a

perception layer Vi−1 as Vi−1sca. Then, it is element-wise

multiplied with the visual feature fi−1 to obtain the atten-

tion score. Finally, the attentive sentence-context feature is

obtained by calculating the element-wise multiplication of

the attention score and Vi−1sca:

Attsi−1 = (Vi−1sca) ◦ (softmax (fi−1 ◦ (Vi−1sca))) ,
(5)

where ◦ denotes the element-wise multiplication, Vi ∈
R

Mi×D′

and Attsi−1 ∈ R
Mi−1×Ni−1 . The attentive

sentence-context feature Attsi−1 is further concatenated

with fi−1 and Attwi−1 for generating the ith visual features

fi as depicted in the second equality in Eq. (3).

3.3. STREAM: Semantic Text REgeneration and
Alignment Module

As described above, MirrorGAN includes a semantic

text regeneration and alignment module (STREAM) to re-

generate the text description from the generated image,

which semantically aligns with the given text descrip-

tion. Specifically, we employ a widely used encoder-

decoder-based image caption framework [16, 29] as the ba-

sic STREAM architecture. Note that a more advanced im-

age captioning model can also be used, which is likely to

produce better results. However, in a first attempt to val-

idate the proposed idea, we simply exploit the baseline in

the current work.

The image encoder is a convolutional neural network

(CNN) [11] pretrained on ImageNet [5], and the decoder is

a RNN [12]. The image Im−1 generated by the final stage

generator is fed into the CNN encoder and RNN decoder as

follows:

x−1 = CNN(Im−1),

xt = WeTt, t ∈ {0, ...L− 1},

pt+1 = RNN(xt), t ∈ {0, ...L− 1},

(6)

where x−1 ∈ R
Mm−1 is a visual feature used as the input

at the beginning to inform the RNN about the image con-

tent. We ∈ R
Mm−1×D represents a word embedding ma-

trix, which maps word features to the visual feature space.

pt+1 is a predicted probability distribution over the words.

We pre-trained STREAM as it helped MirrorGAN achieve

a more stable training process and converge faster, while

jointly optimizing STREAM with MirrorGAN is instable

and very expensive in terms of time and space. The encoder-

decoder structure in [29] and then their parameters keep

fixed when training the other modules of MirrorGAN.

3.4. Objective functions

Following common practice, we first employ two adver-

sarial losses: a visual realism adversarial loss and a text-

image paired semantic consistency adversarial loss, which

are defined as follows.

During each stage of training MirrorGAN, the generator

G and discriminator D are trained alternately. Specially,

the generator Gi in the ith stage is trained by minimizing

the loss as follows:

LGi
= − 1

2
EIi∼pIi

[log (Di (Ii))]

− 1

2
EIi∼pIi

[log (Di (Ii, s))] ,
(7)

where Ii is a generated image sampled from the distribu-

tion pIi in the ith stage. The first term is the visual real-

ism adversarial loss, which is used to distinguish whether

the image is visually real or fake, while the second term is

the text-image paired semantic consistency adversarial loss,

which is used to determine whether the underlying image

and sentence semantics are consistent.

We further propose a CE-based text-semantic recon-

struction loss to align the underlying semantics between the

redescription of STREAM and the given text description.

Mathematically, this loss can be expressed as:

Lstream = −
L−1
∑

t=0

log pt(Tt). (8)

It is noteworthy that Lstream is also used during STREAM

pretraining. When training Gi, gradients from Lstream are

backpropagated to Gi through STREAM, whose network

weights are kept fixed.

The final objective function of the generator is defined

as:

LG =
m−1
∑

i=0

LGi
+ λLstream, (9)

where λ is a loss weight to handle the importance of adver-

sarial loss and the text-semantic reconstruction loss.

The discriminator Di is trained alternately to avoid be-

ing fooled by the generators by distinguishing the inputs as

either real or fake. Similar to the generator, the objective
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of the discriminators consists of a visual realism adversarial

loss and a text-image paired semantic consistency adversar-

ial loss. Mathematically, it can be defined as:

LDi
= − 1

2
EIGT

i
∼p

IGT
i

[

log
(

Di

(

IGT
i

))]

− 1

2
EIi∼pIi

[log (1−Di (Ii))]

− 1

2
EIGT

i
∼p

IGT
i

[

log
(

Di

(

IGT
i , s

))]

− 1

2
EIi∼pIi

[log (1−Di (Ii, s))] ,

(10)

where IGT
i is from the real image distribution pIGT

i

in ith

stage. The final objective function of the discriminator is

defined as:

LD =
m−1
∑

i=0

LDi
. (11)

4. Experiments

In this section, we present extensive experiments that

evaluate the proposed model. We first compare MirrorGAN

with the state-of-the-art T2I methods GAN-INT-CLS [24],

GAWWN [25], StackGAN [39], StackGAN++ [40], PPGN

[20] and AttnGAN [35]. Then, we present ablation stud-

ies on the key components of MirrorGAN including GLAM

and STREAM.

4.1. Experiment setup

4.1.1 Datasets

We evaluated our model on two commonly used datasets,

CUB bird dataset [30] and MS COCO dataset [17]. The

CUB bird dataset contains 8,855 training images and 2,933

test images belonging to 200 categories, each bird im-

age has 10 text descriptions. The COCO dataset contains

82,783 training images and 40,504 validation images, each

image has 5 text descriptions. Both datasets were pre-

processed using the same pipeline as in [39, 35].

4.1.2 Evaluation metric

Following common practice [39, 35], the Inception Score

[26] was used to measure both the objectiveness and di-

versity of the generated images. Two fine-tuned inception

models provided by [39] were used to calculate the score.

Then, the R-precision introduced in [35] was used to

evaluate the visual-semantic similarity between the gener-

ated images and their corresponding text descriptions. For

each generated image, its ground truth text description and

99 randomly selected mismatched descriptions from the test

set were used to form a text description pool. We then calcu-

lated the cosine similarities between the image feature and

the text feature of each description in the pool, before count-

ing the average accuracy at three different settings: top-1,

top-2, and top-3. The ground truth entry falling into the

top-k candidates was treated as correct, otherwise, it was

wrong. A higher score represents a higher visual-semantic

similarity between the generated images and input text.

The Inception Score and the R-precision were calculated

accordingly as in [39, 35].

4.1.3 Implementation details

MirrorGAN has three generators in total and GLAM is em-

ployed over the last two generators, as shown in Eq. (3).

64×64, 128×128, 256×256 images are generated progres-

sively. Followed [35], a pre-trained bi-directional LSTM

[27] was used to calculate the semantic embedding from

text descriptions. The dimension of the word embedding D

was 256. The sentence length L was 18. The dimension Mi

of the visual embedding was set to 32. The dimension of

the visual feature was Ni = qi × qi, where qi was 64, 128,

and 256 for the three stages. The dimension of augmented

sentence embedding D′ was set to 100. The loss weight λ

of the text-semantic reconstruction loss was set to 20.

4.2. Main results

In this section, we present both qualitative and quantita-

tive comparisons with other methods to verify the effective-

ness of MirrorGAN. First, we compare MirrorGAN with

state-of-the-art text-to-image methods [24, 25, 39, 40, 20,

35] using the Inception Score and R-precision score on both

CUB and COCO datasets. Then, we present subjective vi-

sual comparisons between MirrorGAN and the state-of-the-

art method AttnGAN [35]. We also present the results of a

human study designed to test the authenticity and visual se-

mantic similarity between input text and images generated

by MirrorGAN and AttnGAN [35].

4.2.1 Quantitative results

The Inception Scores of MirrorGAN and other methods are

shown in Table 1. MirrorGAN achieved the highest Incep-

tion Score on both CUB and COCO datasets. Specifically,

compared with the state-of-art method AttnGAN [35], Mir-

rorGAN improved the Inception Score from 4.36 to 4.56 on

CUB and from 25.89 to 26.47 on the more difficult COCO

dataset. These results show that MirrorGAN can generate

more diverse images of better quality.

The R-precision scores of AttnGAN [35] and Mirror-

GAN on CUB and COCO datasets are listed in Table 2.

MirrorGAN consistently outperformed AttnGAN [35] at all

settings by a large margin, demonstrating the superiority

of the proposed text-to-image-to-text framework and the

global-local collaborative attentive module, since Mirror-

GAN generated high-quality images with semantics consis-

tent with the input text descriptions.
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(b)
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Baseline

(c)
MirrorGAN

(d)
Ground Truth
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this bird is blue and 
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sharp black beak
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a white underbellyInput boats at the dock with a 

city backdrop

a skier with a red 
jacket on going down 
the side of a mountain

the  pizza  is cheesy 
with pepperoni for the 

topping

brown horses are 
running on a green 

field

a small bird with a red 
belly, and a small bill 

and red wings

Figure 3: Examples of images generated by (a) AttnGAN [35], (b) MirrorGAN Baseline, and (c) MirrorGAN conditioned on

text descriptions from CUB and COCO test sets and (d) the corresponding ground truth.

Table 1: Inception Scores of state-of-the-art methods and

MirrorGAN on CUB and COCO datasets.

Model CUB COCO

GAN-INT-CLS [24] 2.88 ± 0.04 7.88 ± 0.07

GAWWN [25] 3.62 ± 0.07 -

StackGAN [39] 3.70 ± 0.04 8.45 ± 0.03

StackGAN++ [40] 3.82 ± 0.06 -

PPGN [20] - 9.58 ± 0.21

AttnGAN [35] 4.36 ± 0.03 25.89 ± 0.47

MirrorGAN 4.56 ± 0.05 26.47 ± 0.41

Table 2: R-precision [%] of the state-of-the-art AttnGAN

[35] and MirrorGAN on CUB and COCO datasets.

Dataset CUB COCO

top-k k=1 k=2 k=3 k=1 k=2 k=3

AttnGAN [35] 53.31 54.11 54.36 72.13 73.21 76.53

MirrorGAN 57.67 58.52 60.42 74.52 76.87 80.21

4.2.2 Qualitative results

Subjective visual comparisons: Subjective visual compar-

isons between AttnGAN [35], MirrorGAN Baseline, and

MirrorGAN are presented in Figure 3. MirrorGAN Base-

line refers to the model using only word-level attention for

each generator in the MirrorGAN framework.

It can be seen that the image details generated by At-

tnGAN are lost, colors are inconsistent with the text de-

scriptions (3rd and 4th column), and the shape looks strange

(2nd, 3rd, 5th and 8th column) for some hard examples.

Furthermore, the skier is missing in the 5th column. Mirror-

GAN Baseline achieved better results with more details and

consistent colors and shapes compared to AttnGAN. For

example, the wings are vivid in the 1st and 2nd columns,

demonstrating the superiority of MirrorGAN and that it

takes advantage of the dual regularization by redescription,

i.e., a semantically consistent image should be generated

if it can be redescribed correctly. By comparing Mirror-

GAN with MirrorGAN Baseline, we can see that GLAM

contributes to producing fine-grained images with more de-

tails and better semantic consistency. For example, the color

of the underbelly of the bird in the 4th column was corrected

to white, and the skier with a red jacket was recovered. The

boats and city backdrop in the 7th column and the horses

on the green field in the 8th column look real at first glance.

Generally, content in the CUB dataset is less diverse than in

COCO dataset. Therefore, it is easier to generate visually

realistic and semantically consistent results on CUB. These

results confirm the impact of GLAM, which uses global and

local attention collaboratively.

Human perceptual test: To compare the visual real-

ism and semantic consistency of the images generated by

AttnGAN and MirrorGAN, we next performed a human

perceptual test on the CUB test dataset. We recruited 100

volunteers with different professional backgrounds to con-

duct two tests: the Image Authenticity Test and the Seman-

tic Consistency Test. The Image Authenticity Test aimed

to compare the authenticity of the images generated using

different methods. Participants were presented with 100

groups of images consecutively. Each group had 2 images

arranged in random order from AttnGAN and MirrorGAN
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Figure 4: Results of Human perceptual test. A higher value

of the Authenticity Test means more convincing images.

A higher value of the Semantic Consistency Test means a

closer semantics between input text and generated images.

Table 3: Inception Score and R-precision results of Mirror-

GAN with different weight settings.

Evaluation Metric
Inception Score R-precision (top-1)

CUB COCO CUB COCO

MirrorGAN w/o GA, λ=0 3.91± .09 19.01± .42 39.09 50.69

MirrorGAN w/o GA, λ=20 4.47± .07 25.99± .41 55.67 73.28

MirrorGAN, λ=5 4.01± .06 21.85± .43 32.07 52.55

MirrorGAN, λ=10 4.30± .07 24.11± .31 43.21 63.40

MirrorGAN, λ=20 4.54 ± .17 26.47± .41 57.67 74.52

given the same text description. Participants were given

unlimited time to select the more convincing images. The

Semantic Consistency Test aimed to compare the semantic

consistency of the images generated using different meth-

ods. Each group had 3 images corresponding to the ground

truth image and two images arranged at random from At-

tnGAN and MirrorGAN. The participants were asked to se-

lect the images that were more semantically consistent with

the ground truth. Note that we used ground truth images

instead of the text descriptions since it is easier to compare

the semantics between images.

After the participants finished the experiment, we

counted the votes for each method in the two scenarios. The

results are shown in Figure 4. It can be seen that the images

from MirrorGAN were preferred over ones from AttnGAN.

MirrorGAN outperformed AttnGAN with respect to au-

thenticity, MirrorGAN was even more effective in terms of

semantic consistency. These results demonstrate the supe-

riority of MirrorGAN for generating visually realistic and

semantically consistent images.

4.3. Ablation studies

Ablation studies on MirrorGAN components: We

next conducted ablation studies on the proposed model and

its variants. To validate the effectiveness of STREAM and

GLAM, we conducted several comparative experiments by

excluding/including these components in MirrorGAN. The

results are listed in Table 3.

First, the hyper-parameter λ is important. A larger λ led

to higher Inception Scores and R-precision on both datasets.

On the CUB dataset, when λ increased from 5 to 20, the

Inception Score increased from 4.01 to 4.54 and R-precision

increased from 32.07% to 57.67%. On the COCO dataset,

the Inception Score increased from 21.85 to 26.21 and R-

precision increased from 52.55% to 74.52%. We set λ to 20

as default.

MirrorGAN without STREAM (λ = 0) and global atten-

tion (GA) achieved better results than StackGAN++ [40]

and PPGN [20]. Integrating STREAM into MirrorGAN

led to further significant performance gains. The Inception

Score increased from 3.91 to 4.47 and from 19.01 to 25.99

on CUB and COCO, respectively, and R-precision showed

the same trend. Note that MirrorGAN without GA already

outperformed the state-of-the-art AttnGAN (Table 1) which

also used the word-level attention. These results indicate

that STREAM is more effective in helping the generators

achieve better performance. This attributes to the intro-

duction of a more strict semantic alignment between gener-

ated images and input text, which is provided by STREAM.

Specifically, STREAM forces the generated images to be

redescribed as the input text sequentially, which potentially

prevents possible mismatched visual-text concept. More-

over, MirrorGAN integration with GLAM further improved

the Inception Score and R-precision to achieve new state-of-

the-art performance. These results show that the global and

local attention in GLAM collaboratively help the generator

to generate visually realistic and semantically consistent re-

sults by telling it where to focus on.

Visual inspection on the cascaded generators: To bet-

ter understand the cascaded generation process of Mirror-

GAN, we visualized both the intermediate images and the

attention maps in each stage (Figure 5). In the first stage,

low-resolution images were generated with primitive shape

and color but lacking details. With guidance from GLAM

in the following stages, MirrorGAN generated images by

focusing on the most relevant and important areas. Conse-

quently, the quality of the generated images progressively

improved, e.g., the colors and details of the wings and

crown. The top-5 global and local attention maps in each

stage are shown below the images. It can be seen that: 1) the

global attention concentrated more on the global context in

the earlier stage and then the context around specific regions

in later stages, 2) the local attention helped the generator

synthesize images with fine-grained details by guiding it to

focus on the most relevant words, and 3) the global attention

is complementary to the local attention, they collaboratively

contributed to the progressively improved generation.

In addition, we also present the images generated by

MirrorGAN by modifying the text descriptions by a single
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a little bird with white belly, 
gray cheek patch and yellow 
crown and wing bars

5:gray         1:bird         0:little           9:yellow       4:belly

3:white         9:yellow         0:little         5:gray         4:belly

Stage 1

Stage 2

Stage 1

Stage 2

table set for five laden with 
breakfast food

     1:set             7:food           2:for          6:breakfast       5:with

6:breakfast       7:food           4:laden           5:with           3:five

Figure 5: Attention visualization on the CUB and the COCO test sets. The first row shows the output 64 × 64 images

generated by G0, 128× 128 images generated by G1 and 256× 256 images generated by G2. And the following rows show

the Global-Local attention generated in stage 1 and 2. Please refer to the supplementary material for more examples.

this bird has a yellow
crown and a white belly

this bird has a black
crown and a white belly

this bird has a black
crown and a red belly

this bird has blue wings 
and a red belly

Figure 6: Images generated by MirrorGAN by modifying

the text descriptions by a single word and the corresponding

top-2 attention maps in the last stage.

word (Figure 6). MirrorGAN captured subtle semantic dif-

ferences in the text descriptions.

4.4. Limitation and discussion

Although our proposed MirrorGAN shows superiority

in generating visually realistic and semantically consistent

images, some limitations must be taken into consideration

in future studies. First, STREAM and other MirrorGAN

modules are not jointly optimized with complete end-to-

end training due to limited computational resources. Sec-

ond, we only utilize a basic method for text embedding in

STEM and image captioning in STREAM, which could be

further improved, for example, by using the recently pro-

posed BERT model [7] and state-of-the-art image caption-

ing models [2, 3]. Third, although MirrorGAN is initially

designed for the T2I generation by aligning cross-media se-

mantics, we believe that its complementarity to the state-

of-the-art CycleGAN can be further exploited to enhance

model capacity for jointly modeling cross-media content.

5. Conclusions

In this paper, we address the challenging T2I gener-

ation problem by proposing a novel global-local atten-

tive and semantic-preserving text-to-image-to-text frame-

work called MirrorGAN. MirrorGAN successfully exploits

the idea of learning text-to-image generation by redescrip-

tion. STEM generates word- and sentence-level embed-

dings. GLAM has a cascaded architecture for generating

target images from coarse to fine scales, leveraging both lo-

cal word attention and global sentence attention to progres-

sively enhance the diversity and semantic consistency of the

generated images. STREAM further supervises the gener-

ators by regenerating the text description from the gener-

ated image, which semantically aligns with the given text

description. We show that MirrorGAN achieves new state-

of-the-art performance on two benchmark datasets.
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