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Abstract

In this paper, we study the problem of improving compu-
tational resource utilization of neural networks. Deep neu-
ral networks are usually over-parameterized for their tasks
in order to achieve good performances, thus are likely to
have underutilized computational resources. This observa-
tion motivates a lot of research topics, e.g. network pruning,
architecture search, etc. As models with higher computa-
tional costs (e.g. more parameters or more computations)
usually have better performances, we study the problem of
improving the resource utilization of neural networks so that
their potentials can be further realized. To this end, we
propose a novel optimization method named Neural Reju-
venation. As its name suggests, our method detects dead
neurons and computes resource utilization in real time, re-
Jjuvenates dead neurons by resource reallocation and reini-
tialization, and trains them with new training schemes. By
simply replacing standard optimizers with Neural Rejuve-
nation, we are able to improve the performances of neural
networks by a very large margin while using similar train-
ing efforts and maintaining their original resource usages.
The code is available here: https://github.com/joe-siyuan-
giao/NeuralRejuvenation-CVPRI9

1. Introduction

Deep networks achieve state-of-the-art performances in
many visual tasks [9, 23, 42, 47]. On large-scale tasks such
as ImageNet [53] classification, a common observation is
that the models with more parameters, or more FLOPs, tend
to achieve better results. For example, DenseNet [28] plots
the validation error rates as functions of the number of pa-
rameters and FLOPs, and shows consistent accuracy im-
provements as the model size increases. This is consistent
with our intuition that large-scale tasks require models with
sufficient capacity to fit the data well. As a result, it is usu-
ally beneficial to train a larger model if the additional com-
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putational resources are properly utilized. However, previ-
ous work on network pruning [40, 64] already shows that
many neural networks trained by SGD have unsatisfactory
resource utilization. For instance, the number of parameters
of a VGG [54] network trained on CIFAR [33] can be com-
pressed by a factor of 10 without affecting its accuracy [40].
Such low utilization results in a waste of training and test-
ing time, and restricts the models from achieving their full
potentials. To address this problem, we investigate novel
neural network training and optimization techniques to en-
hance resource utilization and improve accuracy.

Formally, this paper studies the following optimization
problem. We are given a loss function £(f(x;.A,64),y)
defined on data (x, y) from a dataset D, and a computational
resource constraint C. Here, f(x;.A, 0 4) is a neural network
with architecture 4 and parameterized by 6 4. Let ¢(.A)
denote the cost of using architecture A in f, e.g., ¢(.A) can
be the number of parameters in A or its FLOPs. Our task
is to find A and its parameter 6 4 that minimize the average
loss £ on dataset D under the resource constraint C, i.e.,

N
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s.it. ¢(A) <C

The architecture A is usually designed by researchers
and fixed during minimizing Eq. 1, and thus the solution
A, 0.4 will always meet the resource constraint. When 4
is fixed, 64 found by standard gradient-based optimizers
may have neurons (i.e. channels) that have little effects on
the average loss, removing which will save resources while
maintaining good performance. In other words, 6 4 may
not fully utilize all the resources available in A. Let U (6 4)
denote the computational cost based on 6 4’s actual utiliza-
tion of the computational resource of .4, which can be mea-
sured by removing dead neurons which have little effect on
the output. Clearly, U(64) < ¢(A). As previous work
suggests [40], the utilization ratio 7(04) = U(0.4)/c(A)
trained by standard SGD can be as low as 11.5%.

The low utilization motivates the research on network
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pruning [40, 64], i.e., extracting the effective subnet A’
from A such that ¢(6 1) = U(64). Although the utilization
ratio (0 4/) is high, this is opposite to our problem because
it tries to narrow the difference between c¢(.A) and U/(.A) by
moving ¢(A) towards U/ (.A). By contrast, our objective is
to design an optimization procedure P which enables us to
find parameters 04 = P(A, L, D) with a high (64). In
other words, we are trying to move U(A) towards ¢(A),
which maximizes the real utilization of the constraint C.

There are many reasons for low utilization ratio (6 4).
One is bad initialization [14], which can be alleviated by
parameter reinitialization for the spare resource. Another
one is inefficient resource allocation [16], e.g., the numbers
of channels or the depths of blocks may not be configured
properly to meet their real needs. Unlike the previous meth-
ods [16, 39] which search architectures by training a lot of
networks, we aim to design an optimizer that trains one net-
work only once and includes both resource reinitialization
and reallocation for maximizing resource utilization.

In this paper, we propose an optimization method named
Neural Rejuvenation (NR) for enhancing resource utiliza-
tion during training. Our method is intuitive and simple.
During training, as some neurons may be found to be use-
less (i.e. have little effect on the output), we revive them
with new initialization and allocate them to the places they
are needed the most. From a neuroscience perspective, this
is to rejuvenate dead neurons by bringing them back to
functional use [12] — hence the name. The challenges of
Neural Rejuvenation are also clear. Firstly, we need a real-
time resource utilization monitor. Secondly, when we reju-
venate dead neurons, we need to know how to reinitialize
them and where to place them. Lastly, after dead neuron re-
juvenation, survived neurons (S neurons) and rejuvenated
neurons (R neurons) are mixed up, and how to train net-
works with both of them present is unclear.

Our solution is a plug-and-play optimizer, the codes of
which will be made public. Under the hood, it is built
on standard gradient-based optimizers, but with additional
functions including real-time resource utilization monitor-
ing, dead neuron rejuvenation, and new training schemes
designed for networks with mixed types of neurons. We
introduce these components as below.

Resource utilization monitoring Similar to [40, 64], we
use the activation scales of neurons to identify utilized and
spare computational resource, and calculate a real-time uti-
lization ratio 7(f 4) during training. An event will be trig-
gered if (0 4) is below a threshold 7., and the procedure
of dead neuron rejuvenation will take the control before the
next step of training, after which r(6 4) will go back to 1.

Dead neuron rejuvenation This component rejuvenates
the dead neurons by collecting the unused resources and
putting them back in 4. Similar to MorphNet [16], more
spare resources are allocated to the layers with more S

neurons. However, unlike MorphNet [16] which trains the
whole network again from scratch after the rearrangement,
we only reinitialize the dead neurons and then continue
training. By taking the advantages of dead neuron reinitial-
ization [14] and our training schemes, our optimizer is able
to train one model only once and outperform the optimal
network found by MorphNet [16] from lots of architectures.

Training with mixed neural types After dead neuron re-
juvenation, each layer will have two types of neurons: S
and R neurons. We propose two novel training schemes for
different cases when training networks with mixed types of
neurons. The first one is to remove the cross-connections
between S and R neurons, and the second one is to use
cross-attention between them to increase the network ca-
pacity. Sec. 3.3 presents the detailed discussions.

We evaluate Neural Rejuvenation on two common im-
age recognition benchmarks, i.e. CIFAR-10/100 [33] and
ImageNet [53] and show that it outperforms the baseline
optimizer by a very large margin. For example, we lower
the top-1 error of ResNet-50 [23] on ImageNet by 1.51%,
and by 1.82% for MobileNet-0.25 [27] while maintaining
their FLOPs. On CIFAR where we rejuvenate the resources
to the half of the constraint and compare with the previous
state-of-the-art compression method [40], we outperform it
by up to 0.87% on CIFAR-10 and 3.39% on CIFAR-100.

2. Related Work

Efficiency of neural networks It is widely recognized
that deep neural networks are over-parameterized [2, 11]
to win the filter lottery tickets [14]. This efficiency issue
is addressed by many methods, including weight quanti-
zation [10, 51], low-rank approximation [11, 34], knowl-
edge distillation [26, 63] and network pruning [20, 22, 36,
38, 40, 45, 64, 65]. The most related method is network
pruning, which finds the subnet that affects the outputs the
most. Network pruning has several research directions,
such as weight pruning, structural pruning, efc. Weight
pruning focuses on individual weights [18, 20, 22, 36], but
requires dedicated hardware and software implementations
to achieve compression and acceleration [17]. Structural
pruning identifies channels and layers to remove from the
architecture, thus is able to directly achieve speedup with-
out the need of specialized implementations [1, 25, 35, 41,
45,59, 68]. Following [40, 64], we encourage channel spar-
sity by imposing penalty term to the scaling factors.

Different from these previous methods, Neural Rejuve-
nation studies the efficiency issue from a new angle: we aim
to directly maximize the utilization by reusing spare com-
putational resources. As an analogy in the context of lottery
hypothesis [14], Neural Rejuvenation is like getting refund
for the useless tickets and then buying new ones.
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Cross attention In this work, we propose to use cross
attention to increase the capacity of the networks without
introducing additional costs. This is motivated by adding
second-order transform [15, 32, 57] on multi-branch net-
works [23, 28, 50, 55, 56, 58]. Instead of using a geometric
mean as in [57], we propose to use cross attention [21, 37]
as the second-order term to increase the capacity. Attention
models have been widely used in deep neural networks for
a variety of vision and language tasks, such as object detec-
tion [3, 44, 48, 66], machine translation [4], visual question
answering [8, 60], image captioning [61], efc. Unlike the
previous attention models, our method uses one group of
channels to generate attentions for the other channels, and
our attention model is mainly used to increase capacity.

Architecture search Our objective formulated by Eq. 1
is similar to neural architecture search which approaches
the problem by searching architecture A in a pre-defined
space, and thus they need to train a lot of networks to find
the optimal architecture. For example, NAS [69] uses rein-
forcement learning to find the architecture, [70] extends it
by using a more structured search space, and [39] improves
the search efficiency by progressively finding architectures.
But their computational costs are very high, e.g., [70] uses
2000 GPU days. There are more methods focusing on the
search problem [5, 6, 13, 43, 46, 52, 67]. Different from
architecture search, Neural Rejuvenation does not search .4
which requires hundreds of thousands of models to train,
although it does change the architecture a little bit. Instead,
our method is an optimization technique which trains mod-
els in just one training pass. The closest method is Mor-
phNet [16] in that we both use linearly expanding technique
to find resource arrangement. Yet, it still needs multiple
training passes and does not rejuvenate dead neurons nor
reuse partially-trained filters. We show direct comparisons
with it and outperform it by a large margin.

Parameter reinitialization Parameter reinitialization is a
common strategy in optimization to avoid useless computa-
tions and improve performances. For example, during the
k-means optimization, empty clusters are automatically re-
assigned, and big clusters are encouraged to split into small
clusters [7, 30, 31, 62]. Our method is reminiscent to this in
that it also detects unsatisfactory components and reinitial-
izes them so that they can better fit the tasks.

3. Neural Rejuvenation

Algorithm 1 presents a basic framework of Neural Reju-
venation which adds two new modules: resource utilization
monitoring (Step 6) and dead neuron rejuvenation (Step 7
and 8) to a standard SGD optimizer. The training schemes
are not shown here, which will be discussed in Sec. 3.3. We
periodically set the Neural Rejuvenation flag on with a pre-
defined time interval to check the utilization and rejuvenate

Algorithm 1: SGD with Neural Rejuvenation
Input : Learning rate e, utilization threshold 7., initial
architecture A and 6 4, and resource constraint C
while stopping criterion not met:
Sample a minibatch {(z1,v1), ..., (Tm, ym)};
Compute gradient g < %V Do L(f(xs; A 04),15)s
Apply update 04 =04 —€- g;
if neural rejuvenation flag is on:
Compute utilization ratio 7(6.4);
if 7“(9,4) < Ty:
Rejuvenate dead neurons and obtain new .4 and
6.4 under resource constraint C;
9 return Architecture A and its parameter 6 4;

® N A UM R W N =

dead neurons when needed. In the following subsections,
we will present how each component is implemented.

3.1. Resource Utilization Monitoring

3.1.1 Liveliness of Neurons

We consider a convolutional neural network where every
convolutional layer is followed by a batch normalization
layer [29]. An affine transform layer with learnable pa-
rameters are also valid if batch normalization is not prac-
tical. For each batch-normalized convolutional layer, let
B = {uj,...,u;, } be a mini-batch of values after the con-
volution. Then, its normalized output {vy, ..., vy, } is

U; — UB .
V=7 ——t= 4+ B3, Vie {l,...m
! 0% +e t }
1 1 @
h = —Y wandog=— Y (u; — )’
where pp = — 2 uiand o = — i:1(u ug)

Each neuron (i.e. channel) in the convolutional layer has its
own learnable scaling parameter v, which we use as an esti-
mate of the liveliness of the corresponding neuron [40, 64].
As our experiments suggest, if a channel’s scaling parame-
ter v is less than 0.01 X Y ax Where Ypax 1S the maximum y
in the same batch-normalized convolution layer, removing
it will have little effect on the output of f and the loss L.
Therefore, in all experiments shown in this paper, a neuron
is considered dead if its scaling parameter v < 0.01 X Yy ax-
Let 7 be the set of all the scaling parameters within the ar-
chitecture A. Similar to [40], we add a L1 penalty term on
T in order to encourage neuron sparsity, i.e., instead of the
given loss function £, we minimize the following loss

Ly=L(f(xi5A04),5:) + 2D |l 3)

yET

where ) is a hyper-parameter.
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3.1.2 Computing (6 4) by Feed-Forwarding

Here, we show how to compute the utilization ratio r(6 4)
based on the liveliness of the neurons in real time. We com-
pute (6 4) by a separate feed-forwarding similar to that of
function f. The computational cost of the feed-forwarding
for (0 4) is negligible compared with that of f. We first
rewrite the function f:

fx)=(fio ficio...ofi)(x) “4)

where f; is the i-th layer of the architecture .4. When com-
puting (6 4), instead of passing the output of a layer com-
puted from z to the next layer as input, each layer f; will
send a binary mask indicating the liveliness of its neurons.
Let M" denote the binary mask for the input neurons for
layer f;, and M denote the binary mask for its own neu-
rons. Then, the effective number of parameters of f; is
[[M]|y - [|M2M]|y - Ky - Ky, if f; is a convolutional layer
with 1 group and no bias, and its computational cost is com-
puted by [|[M]|y - [|[MPM|1 - Ky - K - Oy - Oy, follow-
ing [23]. Here, K,, and K, are the kernel size, and O,,
and Oy, are the output size. Note that the cost of f is the
sum of the costs of all layers f;; therefore, we also pass the
effective computational cost and the original cost in feed-
forwarding. After that, we are able to compute U (6 4) and
¢(64), and consequently 7 (6 4). During the computation of
(6 4), each layer will also keep a copy of the liveliness of
the neurons of its previous layer. This information is used
in the step of dead neural rejuvenation after r(6.4) < T, is
met. It also records the values of the scaling parameter y of
the input neurons. This is used for neural rescaling which is
discussed in Sec. 3.2.

3.1.3 Adaptive Penalty Coefficient \

The utilization ratio (6 4) will depend on the value of the
sparsity coefficient A as a larger A tends to result in a sparser
network. When A = 0, all neurons will probably stay alive
as we have a tough threshold 0.01 X ~vpax. As a result,
Step 7 and 8 of Algorithm 1 will never get executed and our
optimizer is behaving as the standard one. When A goes
larger, the real loss function £, we optimize will become
far from the original loss £. Consequently, the performance
will be less unsatisfactory. Therefore, choosing a proper
A is critical for our problem, and we would like it to be
automatic and optimized to the task and the architecture.

In Neural Rejuvenation, the value of )\ is dynamically de-
termined by the trend of the utilization ratio (6 4). Specif-
ically, when the neural rejuvenation flag is on, we keep
a record of the utilization ratio 7(64)* after training for
t iterations. After At iterations , we compare the cur-
rent ratio r(04)" with the previous one r(64)t~ 4t If
r(04) < 7(64)1"A" — Ar, we keep the current \; oth-
erwise, we increase A by AX. Here, At, Ar and A\ are

hyper-parameters. A is initialized with 0. After Step 8§ gets
executed, A is set back to 0.

It is beneficial to set A in the above way rather than hav-
ing a fixed value throughout the training. Firstly, different
tasks and architectures may require different values of \.
The above strategy frees us from manually selecting one
based on trial and error. Secondly, the number of iterations
needed to enter Step 8 is bounded. This is because after A
gets large enough, each At will decrease the utilization ra-
tio by at least Ar. Hence, the number of iterations to reach
T, is bounded by (1 —7T,.)/Ar+O(1). In a word, this strat-
egy automatically finds the value of A\, and guarantees that
the condition (6 4) < T, will be met in a bounded number
of training iterations.

3.2. Dead Neuron Rejuvenation

After detecting the liveliness of the neurons and the con-
dition r(04) < T, is met, we proceed to Step 8 of Algo-
rithm 1. Here, our objective is to rejuvenate the dead neu-
rons and reallocate those rejuvenated neurons to the places
they are needed the most under the resource constraint C.
There are three major steps in dead neuron rejuvenation.
We present them in order as follows.

Resource reallocation The first step is to reallocate the
computational resource saved by removing all the dead neu-
rons. The removal reduces the computational cost from
c(A) to U(64); therefore, there is ¢c(A) — U(f 4) available
resource to reallocate. The main question is where to add
this free resource back in A. Let w; denote the number of
output channels of layer f; in f, and w; is reduced to w;
by dead neuron removal. Let A’ denote the architecture af-
ter dead neuron removal with w] output channels at layer
fi- Then, ¢(A’) = U(A). To increase the computational
cost of A’ to the level of A, our resource reallocation will
linearly expand w) = « - w by a shared expansion rate «
across all the layers f;, to build a new architecture A" with
numbers of channels w'. The assumption here is that if a
layer has a higher ratio of living neurons, this layer needs
more resources, i.e. more output channels; by contrast, if
a layer has a lower ratio, this means that more than needed
resources were allocated to it in A. This assumption is mod-
eled by having a shared linear expansion rate o.

The resource reallocation used here is similar to the iter-
ative squeeze-and-expand algorithm in MorphNet [16] for
neural architecture search. The differences are also clear.
Neural Rejuvenation models both dead neuron reinitializa-
tion, reallocation and training schemes to train just one net-
work only once, while MorphNet is only interested in the
numbers of channels of each layer that are optimal when
trained from scratch and finds it by training many networks.

Parameter reinitialization The second step is to reini-
tialize the parameters of the reallocated neurons. Let Si,
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and R;, denote the input S (survived) neurons and R (re-
juvenated) neurons, respectively, and Sy, and Ry denote
the output S neurons and R neurons, respectively. Then,
the parameters W can be divided into four groups: Ws_, s,
Wsor, Wror, Wr_s, which correspond to the param-
eters from Sj, to Sou, from Sjy t0 Roue, from Ry to Roue
and from R;, to Soy, respectively. During reinitialization,
the parameters Ws_, s are kept since they survive the dead
neuron test. The parameters W _,r are randomly initial-
ized and their scaling parameters ’s are restored to the ini-
tial level. In order for the S neurons to keep their mapping
functions after the rejuvenation, W _, s is set to 0. We also
set Ws_,r to 0 as this initialization does not affect the per-
formances as the experiments suggest.

Neural rescaling Recall that in order to encourage the
sparsity of the neurons, all neurons receive the same amount
of penalty. This means that not only the dead neurons
have small scaling values, some S neurons also have scal-
ing values that are very small compared with vy, of the
corresponding layers. As experiments in Sec. 4.2 show,
this is harmful for gradient-based training. Our solution
is to rescale those neurons to the initial level, i.e., |y;| =
max{|vi|,70} Vi, where - is the initial value for 7. We
do not change the sign of . Note that rescaling takes all
neurons into consideration, including S neurons with large
scaling values (]| > |vo0|), S neurons with small scaling
values (7] < |yo|) and dead neurons (|| & 0). After neu-
ral rescaling, we adjust the parameters to restore the origi-
nal mappings. For S neurons, let s; = «y//v;. In order for S
neurons to keep their original mapping functions, we divide
the parameters that use them by s;. Experiments show that
this leads to performance improvements.

3.3. Training with Mixed Types of Neurons

Let us now focus on each individual layer. After neural
rejuvenation, each layer will have two types of input neu-
rons, S, and Ry, and two types of output neurons, Sy, and
Rouw. For simplicity, we also use them to denote the fea-
tures of the corresponding neurons. Then, by the definition
of convolution, we have

Sout = Ws5 * Sin + Wros * Rin

Rout = Wsr * Sin + WroR * Rin ©)
where * denote the convolution operation. W _, s is set to
0 in reinitialization; therefore, Sour = Ws_, s * Sy initially,
which keeps the original mappings between S;; and Spy. In
this subsection, we discuss how to train W.

The training of W depends on how much the network
needs the additional capacity brought by the rejuvenated
neurons to fit the data. When S neurons do not need this ad-
ditional capacity at all, adding ‘R neurons by Eq. 5 may not
help because S neurons alone are already able to fit the data

well. As a result, changing training scheme is necessary in
this case in order to utilize the additional capacity. How-
ever, when S neurons alone have difficulties fitting the data,
the additional capacity provided by R neurons will ease the
training. They were found to be useless previously either
because of improper initialization or inefficient resource ar-
rangement, but now are reinitialized and rearranged. We
present the detailed discussions as below.

When S does not need R Here, we consider the situation
where the network capacity is bigger than necessary, and
S neurons alone are able to fit the training data well. An
example is training networks on CIFAR [33], where most
of the modern architectures can reach 99.0% training ac-
curacy. When adding R neurons into the architecture as
in Eq. 5, since S neurons have already been trained to fit
the data well, the gradient back-propagated from the loss
will not encourage any great changes on the local mapping
(Sins Rin) — (Souts Rout). Therefore, keep modeling the
computation as Eq. 5 may result in R;, neurons being dead
soon and R, producing redundant features.

The cause of the above problem is the existence of cross-
connections between R neurons and S neurons, which pro-
vides short-cuts to R. If we completely remove them, i.e.,

Sout = Ws5 *Sin Rouwt = Wror * Rin (6)

then R neurons are forced to learn features that are new and
ideally different. We use NR-CR to denote Neural Rejuve-
nation with cross-connections removed.

When S needs R Here, we assume that the capacity of
S alone is not enough for fitting the training data. One ex-
ample is training small networks on ImageNet dataset [53].
In this case, it is desirable to keep the cross-connections
to increase the capacity. Experiments in Sec. 4.2 com-
pare the performances of a simplified VGG network [54] on
ImageNet, and show that Neural Rejuvenation with cross-
connections kept and removed both improve the accuracies,
but keeping cross-connections improves more.

Cross-attention between S and R We continue the dis-
cussion where we assume S needs the capacity of R and
we keep the cross-connections. Then according to Eq. 5,
the outputs from S;, and R, are added up for Sy, i.e.

Sout = WS—»S * Sin + W’R—>S * Rin (7)

Since the assumption here is that the model capacity is in-
sufficient for fitting the training data, it would be better if
we can increase the capacity not only by rejuvenating dead
neurons, but also by changing Eq. 7 to add more capacity
without using any more parameters nor resulting in sub-
stantial increases of computations (if any) compared with
the convolution operation itself. As Ws_ s * Sy, is fixed,
we focus on Wr_,s * Ri,. One way to increase capacity
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is to use second-order response transform [57]. The origi-
nal second-order response transform is defined on residual
learning [23] by adding a geometric mean, i.e.

y=z+F@)=y=a+F@)+ Ve Fz) @©

For our problem, although Eq. 7 does not have residual con-
nections, the outputs Ws_, sxSi, and Wr_, sx Ry, are added
up as in residual learning; therefore, we can add a similar
response transform to Eq. 7. Instead of adding a geometric
mean which causes training instability [57], we propose to
use cross attentions as shown in Eq. 9.

Sout = Ws5xSin+2-0(Ws55 *Sin) Wrs * Rin (9)

Here, o(-) denotes the Sigmoid function. Symmetrically,
we add cross attentions to the output of Ry, i.e.

Rouwt = Wror*Rin+2-0(Wrr*Rin) Ws sz *Sin (10)

We use NR-CA to denote NR with cross attentions.

4. Experiments

In this section, we will show the experimental results that
support our previous discussions, and present the improve-
ments of Neural Rejuvenation on a variety of architectures.

4.1. Resource Utilization

We show the resource utilization of training ResNet-50
and ResNet-101 on ImageNet in Figure 1 when the spar-
sity term is added to the loss. In the figure, we show the
plots of the parameter utilization and validation accuracy of
the models with respect to the number of training epochs.
Training such a model usually takes 90 epochs when the
batch size is 256 or 100 epochs when the batch size is
128 [28]. In all the experiments, the sparsity coefficient A
is initialized with 0, At is set to one epoch, Ar = 0.01 and
AN =5 x 107°. T, is set to 0.5 unless otherwise stated.

1.01 —#— Util of ResNet-101
0.91 Acc of ResNet-101
0.8 —#— Util of ResNet-50
0.7 1 -®- Acc of ResNet-50
0.6
0-51 ,J—--O——-.-..——O".""“'
0.4 4 __._—.-—.’
0.3 /’

/
021 g
0.1

o 1 2 3 4 5 6 7 8 9 10 11 12 13

Epoch
Figure 1. Parameter utilization and validation accuracy of ResNet-
50 and ResNet-101 trained on ImageNet from scratch.

Fig. 1 shows two typical examples that convey the fol-
lowing important messages. (1) Training on large-scale

dataset such as ImageNet cannot avoid the waste of the
computational resources; therefore, our work is also valid
for large-scale training. (2) It is easier to find dead neurons
in larger models than in smaller models. This is consistent
with our intuition that larger models increase the capacity
and the risk of more resource wastes. (3) It does not take
too long to reach the utilization threshold at 0.5. 10 epochs
are enough for saving half of the resources for ResNet-101.
For ImageNet training, we set the neural rejuvenation
flag on only for the first 30 epochs where the learning rate is
0.1. Since it usually takes 10-20 epochs for (0 4) to reach
T, = 0.5, there will be about 1 to 2 times that Step 8 in Al-
gorithm 1 will get executed. To simplify the experiments,
we only do one time of neural rejuvenation on ImageNet
and reset the epoch counter to O afterwards. The training
time with neural rejuvenation thus will be a little longer than
the original training, but the increase will be less than 20%
and experiments show that it is definitely worth it. For un-
limited training time, Sec. 4.4 shows the performances on
CIFAR with multiple times of Neural Rejuvenation.

4.2. Ablation Study on Neural Rejuvenation

To provide better understandings of Neural Rejuvenation
applied on training deep networks, we present an ablation
study shown in Table 1, which demonstrates the results of
Neural Rejuvenation with different variations.

Method | Top-1 ~ Top-5 | Method | Top-1  Top-5
BL 3213 1197 | BL-CA 31.58  11.46
NR-CR | 3140 1153 | NR-FS 3126 11.37
NR 30.74  10.94 | NR-BR 3031 10.67
NR-CA | 3028 10.88 | NR-CA-BR | 29.98 10.58
NR-IP | 3135 1145 | NR+DSD | 28.84  9.94

Table 1. Error rates of a simplified VGG-19 on ImageNet with
T, = 0.25 while maintaining the number of parameters. BL:
baseline. BL-CA: baseline with cross attentions. NR-CR: NR
with cross-connections removed. NR-FS: training .4 found by NR
from scratch. NR: NR with cross-connections. NR-BR: NR with
neural rescaling. NR-CA: NR with cross attentions. NR-CA-BR:
NR with cross attentions and neural rescaling. NR-IP: NR without
reallocation. NR+DSD: NR-CA-BR + DSD [19].

The network is a simplified VGG-19, which is trained on
low-resolution images from ImageNet. The image size for
training and testing is 128x128. We remove the last three
fully-connected layers, and replace them with a global av-
erage pooling layer and one fully-connected layer. The re-
sulted model has only 20.5M parameters. To further accel-
erate training, we replace the first convolutional layer with
that in ResNet [23]. By applying all the changes, we can
train one model with 4 Titan Xp GPUs in less than one day,
which is fast enough for the purpose of ablation study.

Clearly, such a simplified model does not have sufficient
capacity for fitting ImageNet. As we have discussed in
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Architecture ‘ Baseline ‘ NR Params ‘ NR FLOPs ‘ Relative
‘ Params FLOPs | Top-1 Top-5 ‘ Params FLOPs | Top-1 Top-5 ‘ Params FLOPs | Top-1 Top-5 ‘ Gain
DenseNet-121 [28] | 7.92M 2.83G | 25.32 7.88 | 8.22M 3.13G | 24.50 7.49 | 7.28M 2.73G | 24.78 7.56 | -3.24%
VGG-16 [54] 377M 153G | 2426 7.32 | 364M 235G | 23.11 6.69 | 21.5M 153G | 23.71 7.01 | -4.74%
ResNet-18 [23] 11.7M  1.81G | 30.30 10.7 | 11.9M 2.16G | 28.86 993 | 9.09M 1.73G | 29.73 10.5 | -4.75%
ResNet-34 [23] 21.8M 3.66G | 26.61 8.68 | 21.9M 3.77G | 25.77 8.10 | 204M 3.56G | 25.45 8.04 | -4.35%
ResNet-50 [23] 25.6M 4.08G | 2430 7.19 | 264M 390G | 2293 6.47 | 269M 3.99G | 22.79 6.56 | -6.21%
ResNet-101 [23] 44.5M 7.80G | 22.44 6.21 | 46.6M 6.96G | 21.22 576 | 502M 7.51G | 2098 5.69 | -6.50%

Table 2. Error rates of deep neural networks on ImageNet validation set trained with and without Neural Rejuvenation. Each neural
network has three sets of top-1 and top-5 error rates, which are baseline, Neural Rejuvenation with the number of parameters as the
resource constraint (NR Params), and Neural Rejuvenation with FLOPs as resource constraint (NR FLOPs). The last column Relative
Gain shows the best relative gain of top-1 error while maintaining either number of parameters or FLOPs.

Sec. 3.3, it is better to keep the cross connections for in-
creasing the model capacity. As also demonstrated here,
NR-CR improves the top-1 accuracy by 0.7% than the base-
line, but is 0.7% behind NR where cross-connections are
kept. We further show that cross attentions lower the top-
1 error rates by roughly 0.5%, and neural rescaling further
improves the accuracies. In the following experiments on
ImageNet, we use NR-CA-BR for all the methods.

4.3. Results on ImageNet

Table 2 shows the performance improvements on Ima-
geNet dataset [53]. ImageNet dataset is a large-scale im-
age classification dataset, which contains about 1.28 mil-
lion color images for training and 50,000 for validation. Ta-
ble 2 lists some modern architectures which achieve very
strong accuracies on such a challenging task. Previously, a
lot of attention is paid to designing novel architectures that
are more suitable for vision tasks. Our results show that
in addition to architecture design and search, the current
optimization technique still has a lot of room to improve.
Our work focuses only on the utilization issues, but already
achieves strong performance improvements.

Here, we briefly introduce the setting of the experiments
for easy reproduction. All the models are trained with batch
size 256 if the model can fit in the memory; otherwise, we
set the batch size to 128. In total, we train the models for
90 epochs when the batch size is 256, and for 100 epochs if
the batch size is 128. The learning rate is initialized as 0.1,
and then divided by 10 at the 31%, 61%, and 91% epoch.

For our task, we make the following changes to those
state-of-the-art architectures. For VGG-16 [54], we add
batch normalization layers after each convolutional layer
and remove the last three fully-connected layers. After
that, we add two convolutional layers that both output 4096
channels, in order to follow the original VGG-16 that has
two fully-connected layers outputting the same amount of
channels. After these two convolutional layers, we add a
global average pooling layer, and a fully-connected layer
that transforms the 4096 channels to 1000 channels for im-

age classification. The resulted model has fewer number of
parameters (138M to 37.7M), but with a much lower top-1
error rate (27 to 24.26). All the VGG-16 layers receive the
sparsity penalty. For ResNet [23], all the convolutional lay-
ers except the ones that are added back to the main stream
are taken into the consideration for neural rejuvenation. For
DenseNet [28], due to the GPU memory and speed issue, we
are only able to run DenseNet with 121 layers. We change
it from pre-activation [24] to post-activation [23] to follow
our assumption that each convolutional layer is directly fol-
lowed by a batch normalization layer. This change yields a
similar accuracy to the original one.

A quick observation of our results is that the models with
stronger capacities actually have better improvements from
Neural Rejuvenation. This is consistent with our discussion
in Sec. 3.3 and the observation in Sec. 4.1. For large-scale
tasks, the model capacity is important and larger models
are more likely to waste more resources. Therefore, reju-
venating dead neurons in large models will improve more
than doing that in small models where the resources are bet-
ter utilized. In all models, DenseNet-121 is the hardest to
find dead neurons, and thus has the smallest improvements.
This may explain the model compactness discussed in their
paper [28]. Moreover, VGG-16 with NR achieves 23.71%
top-1 error with just 21.5M parameters, far better than [40]
which achieves 36.66% top-1 error with 23.2M.

Architecture | BL[16] MN[16] BL*  NR
MobileNet-0.50 | 42.9 419 4177 40.12
MobileNet-0.25 | 55.2 54.1 5376 51.94

Table 3. Top-1 error rates of MobileNet [27] on ImageNet. The
image size is 128x128 for both training and testing. The FLOPs
are maintained in all the methods. BL: the baseline performances
reported in [16], MN: MorphNet [16], BL*: our implementation
of the baseline, and NR: Neural Rejuvenation.

Next, we show experiments on MobileNet-0.5 and 0.25

in Table 3. They are not included in Table 2 because their
image size is 128x128 and the learning rate follows the
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Architecture Baseline Network Slimming [40] Neural Rejuvenation

C10 (Params)  C100 (Params) | C10 (Params) C100 (Params) | C10 (Params) C100 (Params)
VGG-19 [54] 5.44 (20.04M) 23.11 (20.08M) | 5.06 (10.07M) 24.92 (10.32M) | 4.19 (9.99M)  21.53 (10.04M)
ResNet-164 [23] 6.11 (1.70M) 28.86 (1.73M) 5.65 (0.94M) 25.61 (0.96M) 5.13(0.88M)  23.84 (0.92M)
DenseNet-100-40 [28] | 3.64 (8.27M) 19.85 (8.37M) 3.75 (4.36M) 19.29 (4.65M) 3.40 (4.12M)  18.59 (4.31M)

Table 4. Neural Rejuvenation for model compression on CIFAR [33]. In the experiments for ImageNet, the computational resources are
kept when rejuvenating dead neurons. But here, we set the resource target of neural rejuvenation to the half of the original usage. Then,
our Neural Rejuvenation becomes a model compressing method, and thus can be compared with the state-of-the-art pruning method [40].

cosine learning rate schedule starting from 0.1 [49]. Mo-
bileNet is designed for platforms with low computational
resources. Our NR outperforms the previous method [16]
and shows very strong improvements.

4.4. Results on CIFAR

The experiments on CIFAR have two parts. The first
part is to use Neural Rejuvenation as a model compression
method to compare with the previous state-of-the-arts when
the model sizes are halved. The results are shown in Table 4.
In the second part, we show the performances in Table 5
where we do Neural Rejuvenation for multiple times.

Model compression Table 4 shows the performance com-
parisons on CIFAR-10/100 datasets [33]. CIFAR dataset is
a small dataset, with 50,000 training images and 10,000 test
images. Unlike our experiments on ImageNet, here, we do
not rejuvenate dead neurons to utilize all the available com-
putational resource; instead, we set the resource target to
0.5 x C where C is the original resource constraint. In prac-
tice, this is done by setting 7. = 0.25 and rejuvenating the
models to the level of 0.5 x C. As a result, Neural Reju-
venation ends up training a model with only a half of the
parameters, which can be compared with the previous state-
of-the-art network pruning method [40].

Multiple NR Table 5 shows the performances of VGG-19
tested on CIFAR datasets without limiting the times of Neu-
ral Rejuvenation. The improvement trends are clear when
the number of Neural Rejuvenation increases. The relative
gains are 33.5% for CIFAR-10 and 13.8% for CIFAR-100.

#0fNR | 0 1 2 3 4 5
C10 544 419 403 379 369 3.62
Cl100 | 23.11 21.53 2047 1991 — —

Table 5. Error rates of VGG-19 on CIFAR-10 (C10) and CIFAR-
100 (C100) with different times of Neural Rejuvenation while
maintaining the number of parameters.

Here, we introduce the detailed settings of the experi-
ments. For VGG-19, we make the following changes be-
cause the original architecture is not designed for CIFAR.
First, we remove all the fully-connected layers and add a

global average pooling layer after the convolutional lay-
ers which is then followed by a fully-connected layer that
produces the final outputs. Then, we remove the original
4 max-pooling layers and add 2 max-pooling layers after
the 4™ and the 10" convolutional layers for downsampling.
These changes adapt the original architecture to CIFAR,
and the baseline error rates become lower, e.g. from 6.66
to 5.44 on CIFAR-10 and from 28.05 to 23.11 on CIFAR-
100. We make the same changes to DenseNet as for Im-
ageNet. For ResNet-164 with bottleneck blocks, similar to
our settings on ImageNet, we only consider the neurons that
are not on the mainstream of the network for Neural Reju-
venation. Our method is NR-CR, which removes all the
cross-connections. Table 4 shows that our Neural Rejuve-
nation can be used for training small models as well. Ta-
ble 5 presents the potential of VGG-19 when trained with
multiple times of Neural Rejuvenation. While maintaining
the number of parameters, Neural Rejuvenation improves
the performances by a very large margin.

5. Conclusion

In this paper, we study the problem of maximizing the re-
source utilization. To this end, we propose a novel method
named Neural Rejuvenation, which rejuvenates dead neu-
rons during training by reallocating and reinitializing them.
Neural rejuvenation is composed of three components: re-
source utilization monitoring, dead neuron rejuvenation and
training schemes for networks with mixed types of neurons.
These components detect the liveliness of neurons in real
time, rejuvenate dead ones when needed and provide differ-
ent training strategies when the networks have mixed types
of neurons. We test neural rejuvenation on the challenging
datasets CIFAR and ImageNet, and show that our method
can improve a variety of state-of-the-art network architec-
tures while maintaining either their numbers of parameters
or the loads of computations. In conclusion, Neural Reju-
venation is an optimization technique with a focus on the
resource utilization, which improves the training of deep
neural networks by enhancing the utilization.

Acknowledgements We gratefully acknowledge supports

from NSF award CCF-1317376, a gift from Adobe, and a
gift from YITU. SQ also thanks Wanyu Huang for support.

68



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

J. M. Alvarez and M. Salzmann. Learning the number of
neurons in deep networks. In Advances in Neural Informa-
tion Processing Systems, pages 2270-2278, 2016.

J. Ba and R. Caruana. Do deep nets really need to be deep?
In Advances in neural information processing systems, pages

2654-2662, 2014.

J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-
nition with visual attention. arXiv preprint arXiv:1412.7755,
2014.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing
neural network architectures using reinforcement learning.
arXiv preprint arXiv:1611.02167, 2016.

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient
architecture search by network transformation. AAAI, 2018.
M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep
clustering for unsupervised learning of visual features. In
arXiv preprint arXiv:1807.05520, 2018.

K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Neva-
tia. Abc-cnn: An attention based convolutional neural
network for visual question answering. arXiv preprint
arXiv:1511.05960, 2015.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic image segmentation with deep convolu-
tional nets and fully connected crfs. In International Con-
ference on Learning Representations, 2015.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio. Binarized neural networks: Training deep neu-
ral networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-
gus. Exploiting linear structure within convolutional net-
works for efficient evaluation. In Advances in neural infor-
mation processing systems, pages 1269-1277, 2014.

Y. Dong and E. J. Nestler. The neural rejuvenation hypothe-
sis of cocaine addiction. Trends Pharmacol Sci, 35(8):374—
383, Aug 2014.

T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient
architecture search for convolutional neural networks. arXiv
preprint arXiv:1711.04528, 2017.

J. Frankle and M. Carbin. The lottery ticket hypoth-
esis: Training pruned neural networks. arXiv preprint
arXiv:1803.03635, 2018.

S. D. Goggin, K. M. Johnson, and K. E. Gustafson. A
second-order translation, rotation and scale invariant neural
network. In Advances in neural information processing sys-
tems, pages 313-319, 1991.

A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J.
Yang, and E. Choi. Morphnet: Fast & simple resource-
constrained structure learning of deep networks. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

69

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. Eie: efficient inference engine on com-
pressed deep neural network. In Computer Architecture
(ISCA), 2016, pages 243-254. IEEE, 2016.

S. Han, H. Mao, and W. J. Dally. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang,
E. Elsen, P. Vajda, M. Paluri, J. Tran, et al. Dsd: Dense-
sparse-dense training for deep neural networks. —arXiv
preprint arXiv:1607.04381, 2016.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances
in neural information processing systems, pages 1135-1143,
2015.

Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao.
An end-to-end model for question answering over knowl-
edge base with cross-attention combining global knowledge.
In Annual Meeting of the Association for Computational Lin-
guistics, volume 1, pages 221-231, 2017.

B. Hassibi and D. G. Stork. Second order derivatives for net-
work pruning: Optimal brain surgeon. In Advances in neural
information processing systems, pages 164—171, 1993.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. I[EEE Conference on Computer Vision
and Pattern Recognition, CVPR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. ECCV, 2016.

Y. He, X. Zhang, and J. Sun. Channel pruning for accel-
erating very deep neural networks. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 1398-1406, 2017.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531,2015.
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on Ma-
chine Learning, ICML, 2015.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity
search with gpus. arXiv preprint arXiv:1702.08734, 2017.
A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.
Learning visual features from large weakly supervised data.
In ECCV, pages 67-84. Springer, 2016.

A. Kazemy, S. A. Hosseini, and M. Farrokhi. Second order
diagonal recurrent neural network. In Industrial Electronics,
ISIE 2007., pages 251-256. IEEE, 2007.

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.



[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky.  Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

V. Lebedev and V. Lempitsky. Fast convnets using group-
wise brain damage. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2554-2564.
IEEE, 2016.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-
age. In Advances in neural information processing systems,
pages 598-605, 1990.

K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He. Stacked
cross attention for image-text matching. arXiv preprint
arXiv:1803.08024, 2018.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li,
L. Fei-Fei, A. L. Yuille, J. Huang, and K. Murphy. Pro-
gressive neural architecture search. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part I, pages 19-35,
2018.

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.
Learning efficient convolutional networks through network
slimming. In IEEE International Conference on Computer
Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages
2755-2763, 2017.

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning
method for deep neural network compression. arXiv preprint
arXiv:1707.06342, 2017.

J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille. Deep
captioning with multimodal recurrent neural networks (m-
rnn). CoRR, abs/1412.6632, 2014.

R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink,
O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Dufty,
et al. Evolving deep neural networks. In Artificial Intelli-
gence in the Age of Neural Networks and Brain Computing,
pages 293-312. Elsevier, 2019.

V. Mnih, N. Heess, A. Graves, et al. Recurrent models of vi-
sual attention. In Advances in neural information processing
systems, pages 2204-2212, 2014.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.
Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Effi-
cient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.03268, 2018.

S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot im-
age recognition by predicting parameters from activations.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR, 2018.

S. Qiao, W. Shen, W. Qiu, C. Liu, and A. L. Yuille. Scalenet:
Guiding object proposal generation in supermarkets and be-
yond. In 2017 IEEE International Conference on Computer
Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

70

S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille. Deep
co-training for semi-supervised image recognition. In Euro-
pean Conference on Computer Vision, 2018.

S. Qiao, Z. Zhang, W. Shen, B. Wang, and A. L. Yuille. Grad-
ually updated neural networks for large-scale image recogni-
tion. In Proceedings of the 35th International Conference on
Machine Learning, ICML, 2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neu-
ral networks. In European Conference on Computer Vision,
pages 525-542. Springer, 2016.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
J. Tan, Q. Le, and A. Kurakin. Large-scale evolution of im-
age classifiers. arXiv preprint arXiv:1703.01041, 2017.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211-252, 2015.
K. Simonyan and A. Zisserman.
tional networks for large-scale image recognition.
abs/1409.1556, 2014.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
very deep networks. In Advances in neural information pro-
cessing systems, pages 2377-2385, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1-9, 2015.

Y. Wang, L. Xie, C. Liu, S. Qiao, Y. Zhang, W. Zhang,
Q. Tian, and A. Yuille. SORT: Second-Order Response
Transform for Visual Recognition. /EEE International Con-
ference on Computer Vision, 2017.

Y. Wang, L. Xie, S. Qiao, Y. Zhang, W. Zhang, and A. L.
Yuille. Multi-scale spatially-asymmetric recalibration for
image classification. In The European Conference on Com-
puter Vision (ECCV), September 2018.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In Advances in
Neural Information Processing Systems, pages 2074-2082,
2016.

H. Xu and K. Saenko. Ask, attend and answer: Exploring
question-guided spatial attention for visual question answer-
ing. In European Conference on Computer Vision, pages
451-466. Springer, 2016.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Interna-
tional conference on machine learning, pages 2048-2057,
2015.

L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maxi-
mum margin clustering. In Advances in neural information
processing systems, pages 1537-1544, 2005.

C. Yang, L. Xie, S. Qiao, and A. Yuille. Knowledge distil-
lation in generations: More tolerant teachers educate better
students. AAAI, 2018.

Very deep convolu-
CoRR,



[64]

[65]

[66]

J. Ye, X. Lu, Z. L. Lin, and J. Z. Wang. Rethinking the
smaller-norm-less-informative assumption in channel prun-
ing of convolution layers. CoRR, abs/1802.00124, 2018.

R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. 1. Morariu, X. Han,
M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-
works using neuron importance score propagation. Preprint
at https://arxiv. org/abs/1711.05908, 2017.

Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L.
Yuille. Single-shot object detection with enriched semantics.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 5813-5821, 2018.

[67]

[68]

[69]

(70]

Z. Zhong, J. Yan, and C.-L. Liu. Practical network blocks
design with g-learning. arXiv preprint arXiv:1708.05552,
2017.

H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards
compact cnns. In European Conference on Computer Vision,
pages 662—677. Springer, 2016.

B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. arXiv preprint arXiv:1611.01578, 2016.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.

arXiv preprint arXiv:1707.07012, 2(6), 2017.

71



