
Neural Rejuvenation: Improving Deep Network Training by

Enhancing Computational Resource Utilization

Siyuan Qiao1∗ Zhe Lin2 Jianming Zhang2 Alan Yuille1

1Johns Hopkins University 2Adobe Research

{siyuan.qiao, alan.yuille}@jhu.edu {zlin,jianmzha}@adobe.com

Abstract

In this paper, we study the problem of improving compu-

tational resource utilization of neural networks. Deep neu-

ral networks are usually over-parameterized for their tasks

in order to achieve good performances, thus are likely to

have underutilized computational resources. This observa-

tion motivates a lot of research topics, e.g. network pruning,

architecture search, etc. As models with higher computa-

tional costs (e.g. more parameters or more computations)

usually have better performances, we study the problem of

improving the resource utilization of neural networks so that

their potentials can be further realized. To this end, we

propose a novel optimization method named Neural Reju-

venation. As its name suggests, our method detects dead

neurons and computes resource utilization in real time, re-

juvenates dead neurons by resource reallocation and reini-

tialization, and trains them with new training schemes. By

simply replacing standard optimizers with Neural Rejuve-

nation, we are able to improve the performances of neural

networks by a very large margin while using similar train-

ing efforts and maintaining their original resource usages.

The code is available here: https://github.com/joe-siyuan-

qiao/NeuralRejuvenation-CVPR19

1. Introduction

Deep networks achieve state-of-the-art performances in

many visual tasks [9, 23, 42, 47]. On large-scale tasks such

as ImageNet [53] classification, a common observation is

that the models with more parameters, or more FLOPs, tend

to achieve better results. For example, DenseNet [28] plots

the validation error rates as functions of the number of pa-

rameters and FLOPs, and shows consistent accuracy im-

provements as the model size increases. This is consistent

with our intuition that large-scale tasks require models with

sufficient capacity to fit the data well. As a result, it is usu-

ally beneficial to train a larger model if the additional com-

∗Work done while an intern at Adobe.

putational resources are properly utilized. However, previ-

ous work on network pruning [40, 64] already shows that

many neural networks trained by SGD have unsatisfactory

resource utilization. For instance, the number of parameters

of a VGG [54] network trained on CIFAR [33] can be com-

pressed by a factor of 10 without affecting its accuracy [40].

Such low utilization results in a waste of training and test-

ing time, and restricts the models from achieving their full

potentials. To address this problem, we investigate novel

neural network training and optimization techniques to en-

hance resource utilization and improve accuracy.

Formally, this paper studies the following optimization

problem. We are given a loss function L(f(x;A, θA), y)
defined on data (x, y) from a dataset D, and a computational

resource constraint C. Here, f(x;A, θA) is a neural network

with architecture A and parameterized by θA. Let c(A)
denote the cost of using architecture A in f , e.g., c(A) can

be the number of parameters in A or its FLOPs. Our task

is to find A and its parameter θA that minimize the average

loss L on dataset D under the resource constraint C, i.e.,

A, θA =arg min
A,θA

1

N

N
∑

i=1

L
(

f(xi;A, θA), yi
)

s.t. c(A) ≤ C

(1)

The architecture A is usually designed by researchers

and fixed during minimizing Eq. 1, and thus the solution

A, θA will always meet the resource constraint. When A
is fixed, θA found by standard gradient-based optimizers

may have neurons (i.e. channels) that have little effects on

the average loss, removing which will save resources while

maintaining good performance. In other words, θA may

not fully utilize all the resources available in A. Let U(θA)
denote the computational cost based on θA’s actual utiliza-

tion of the computational resource of A, which can be mea-

sured by removing dead neurons which have little effect on

the output. Clearly, U(θA) ≤ c(A). As previous work

suggests [40], the utilization ratio r(θA) = U(θA)/c(A)
trained by standard SGD can be as low as 11.5%.

The low utilization motivates the research on network

61

pruning [40, 64], i.e., extracting the effective subnet A′

from A such that c(θA′) = U(θA). Although the utilization

ratio r(θA′) is high, this is opposite to our problem because

it tries to narrow the difference between c(A) and U(A) by

moving c(A) towards U(A). By contrast, our objective is

to design an optimization procedure P which enables us to

find parameters θA = P(A,L,D) with a high r(θA). In

other words, we are trying to move U(A) towards c(A),
which maximizes the real utilization of the constraint C.

There are many reasons for low utilization ratio r(θA).
One is bad initialization [14], which can be alleviated by

parameter reinitialization for the spare resource. Another

one is inefficient resource allocation [16], e.g., the numbers

of channels or the depths of blocks may not be configured

properly to meet their real needs. Unlike the previous meth-

ods [16, 39] which search architectures by training a lot of

networks, we aim to design an optimizer that trains one net-

work only once and includes both resource reinitialization

and reallocation for maximizing resource utilization.

In this paper, we propose an optimization method named

Neural Rejuvenation (NR) for enhancing resource utiliza-

tion during training. Our method is intuitive and simple.

During training, as some neurons may be found to be use-

less (i.e. have little effect on the output), we revive them

with new initialization and allocate them to the places they

are needed the most. From a neuroscience perspective, this

is to rejuvenate dead neurons by bringing them back to

functional use [12] – hence the name. The challenges of

Neural Rejuvenation are also clear. Firstly, we need a real-

time resource utilization monitor. Secondly, when we reju-

venate dead neurons, we need to know how to reinitialize

them and where to place them. Lastly, after dead neuron re-

juvenation, survived neurons (S neurons) and rejuvenated

neurons (R neurons) are mixed up, and how to train net-

works with both of them present is unclear.

Our solution is a plug-and-play optimizer, the codes of

which will be made public. Under the hood, it is built

on standard gradient-based optimizers, but with additional

functions including real-time resource utilization monitor-

ing, dead neuron rejuvenation, and new training schemes

designed for networks with mixed types of neurons. We

introduce these components as below.

Resource utilization monitoring Similar to [40, 64], we

use the activation scales of neurons to identify utilized and

spare computational resource, and calculate a real-time uti-

lization ratio r(θA) during training. An event will be trig-

gered if r(θA) is below a threshold Tr, and the procedure

of dead neuron rejuvenation will take the control before the

next step of training, after which r(θA) will go back to 1.

Dead neuron rejuvenation This component rejuvenates

the dead neurons by collecting the unused resources and

putting them back in A. Similar to MorphNet [16], more

spare resources are allocated to the layers with more S

neurons. However, unlike MorphNet [16] which trains the

whole network again from scratch after the rearrangement,

we only reinitialize the dead neurons and then continue

training. By taking the advantages of dead neuron reinitial-

ization [14] and our training schemes, our optimizer is able

to train one model only once and outperform the optimal

network found by MorphNet [16] from lots of architectures.

Training with mixed neural types After dead neuron re-

juvenation, each layer will have two types of neurons: S
and R neurons. We propose two novel training schemes for

different cases when training networks with mixed types of

neurons. The first one is to remove the cross-connections

between S and R neurons, and the second one is to use

cross-attention between them to increase the network ca-

pacity. Sec. 3.3 presents the detailed discussions.

We evaluate Neural Rejuvenation on two common im-

age recognition benchmarks, i.e. CIFAR-10/100 [33] and

ImageNet [53] and show that it outperforms the baseline

optimizer by a very large margin. For example, we lower

the top-1 error of ResNet-50 [23] on ImageNet by 1.51%,

and by 1.82% for MobileNet-0.25 [27] while maintaining

their FLOPs. On CIFAR where we rejuvenate the resources

to the half of the constraint and compare with the previous

state-of-the-art compression method [40], we outperform it

by up to 0.87% on CIFAR-10 and 3.39% on CIFAR-100.

2. Related Work

Efficiency of neural networks It is widely recognized

that deep neural networks are over-parameterized [2, 11]

to win the filter lottery tickets [14]. This efficiency issue

is addressed by many methods, including weight quanti-

zation [10, 51], low-rank approximation [11, 34], knowl-

edge distillation [26, 63] and network pruning [20, 22, 36,

38, 40, 45, 64, 65]. The most related method is network

pruning, which finds the subnet that affects the outputs the

most. Network pruning has several research directions,

such as weight pruning, structural pruning, etc. Weight

pruning focuses on individual weights [18, 20, 22, 36], but

requires dedicated hardware and software implementations

to achieve compression and acceleration [17]. Structural

pruning identifies channels and layers to remove from the

architecture, thus is able to directly achieve speedup with-

out the need of specialized implementations [1, 25, 35, 41,

45, 59, 68]. Following [40, 64], we encourage channel spar-

sity by imposing penalty term to the scaling factors.

Different from these previous methods, Neural Rejuve-

nation studies the efficiency issue from a new angle: we aim

to directly maximize the utilization by reusing spare com-

putational resources. As an analogy in the context of lottery

hypothesis [14], Neural Rejuvenation is like getting refund

for the useless tickets and then buying new ones.

62

Cross attention In this work, we propose to use cross

attention to increase the capacity of the networks without

introducing additional costs. This is motivated by adding

second-order transform [15, 32, 57] on multi-branch net-

works [23, 28, 50, 55, 56, 58]. Instead of using a geometric

mean as in [57], we propose to use cross attention [21, 37]

as the second-order term to increase the capacity. Attention

models have been widely used in deep neural networks for

a variety of vision and language tasks, such as object detec-

tion [3, 44, 48, 66], machine translation [4], visual question

answering [8, 60], image captioning [61], etc. Unlike the

previous attention models, our method uses one group of

channels to generate attentions for the other channels, and

our attention model is mainly used to increase capacity.

Architecture search Our objective formulated by Eq. 1

is similar to neural architecture search which approaches

the problem by searching architecture A in a pre-defined

space, and thus they need to train a lot of networks to find

the optimal architecture. For example, NAS [69] uses rein-

forcement learning to find the architecture, [70] extends it

by using a more structured search space, and [39] improves

the search efficiency by progressively finding architectures.

But their computational costs are very high, e.g., [70] uses

2000 GPU days. There are more methods focusing on the

search problem [5, 6, 13, 43, 46, 52, 67]. Different from

architecture search, Neural Rejuvenation does not search A
which requires hundreds of thousands of models to train,

although it does change the architecture a little bit. Instead,

our method is an optimization technique which trains mod-

els in just one training pass. The closest method is Mor-

phNet [16] in that we both use linearly expanding technique

to find resource arrangement. Yet, it still needs multiple

training passes and does not rejuvenate dead neurons nor

reuse partially-trained filters. We show direct comparisons

with it and outperform it by a large margin.

Parameter reinitialization Parameter reinitialization is a

common strategy in optimization to avoid useless computa-

tions and improve performances. For example, during the

k-means optimization, empty clusters are automatically re-

assigned, and big clusters are encouraged to split into small

clusters [7, 30, 31, 62]. Our method is reminiscent to this in

that it also detects unsatisfactory components and reinitial-

izes them so that they can better fit the tasks.

3. Neural Rejuvenation

Algorithm 1 presents a basic framework of Neural Reju-

venation which adds two new modules: resource utilization

monitoring (Step 6) and dead neuron rejuvenation (Step 7

and 8) to a standard SGD optimizer. The training schemes

are not shown here, which will be discussed in Sec. 3.3. We

periodically set the Neural Rejuvenation flag on with a pre-

defined time interval to check the utilization and rejuvenate

Algorithm 1: SGD with Neural Rejuvenation

Input : Learning rate ǫ, utilization threshold Tr , initial

architecture A and θA, and resource constraint C
1 while stopping criterion not met:

2 Sample a minibatch {(x1, y1), ..., (xm, ym)};
3 Compute gradient g ← 1

m
∇

∑
i
L(f(xi;A, θA), yi);

4 Apply update θA = θA − ǫ · g;

5 if neural rejuvenation flag is on:

6 Compute utilization ratio r(θA);
7 if r(θA) < Tr:

8 Rejuvenate dead neurons and obtain newA and

θA under resource constraint C;

9 return Architecture A and its parameter θA;

dead neurons when needed. In the following subsections,

we will present how each component is implemented.

3.1. Resource Utilization Monitoring

3.1.1 Liveliness of Neurons

We consider a convolutional neural network where every

convolutional layer is followed by a batch normalization

layer [29]. An affine transform layer with learnable pa-

rameters are also valid if batch normalization is not prac-

tical. For each batch-normalized convolutional layer, let

B = {u1, ..., um} be a mini-batch of values after the con-

volution. Then, its normalized output {v1, ..., vm} is

vi = γ ·
ui − µB
√

σ2
B
+ ǫ

+ β, ∀i ∈ {1, ...,m}

where µB =
1

m

m
∑

i=1

ui and σ2

B =
1

m

m
∑

i=1

(ui − µB)
2

(2)

Each neuron (i.e. channel) in the convolutional layer has its

own learnable scaling parameter γ, which we use as an esti-

mate of the liveliness of the corresponding neuron [40, 64].

As our experiments suggest, if a channel’s scaling parame-

ter γ is less than 0.01×γmax where γmax is the maximum γ
in the same batch-normalized convolution layer, removing

it will have little effect on the output of f and the loss L.

Therefore, in all experiments shown in this paper, a neuron

is considered dead if its scaling parameter γ < 0.01×γmax.

Let T be the set of all the scaling parameters within the ar-

chitecture A. Similar to [40], we add a L1 penalty term on

T in order to encourage neuron sparsity, i.e., instead of the

given loss function L, we minimize the following loss

Lλ = L
(

f(xi;A, θA), yi
)

+ λ
∑

γ∈T

|γ| (3)

where λ is a hyper-parameter.

63

3.1.2 Computing r(θA) by Feed-Forwarding

Here, we show how to compute the utilization ratio r(θA)
based on the liveliness of the neurons in real time. We com-

pute r(θA) by a separate feed-forwarding similar to that of

function f . The computational cost of the feed-forwarding

for r(θA) is negligible compared with that of f . We first

rewrite the function f :

f(x) = (fl ◦ fl−1 ◦ ... ◦ f1)(x) (4)

where fi is the i-th layer of the architecture A. When com-

puting r(θA), instead of passing the output of a layer com-

puted from x to the next layer as input, each layer fi will

send a binary mask indicating the liveliness of its neurons.

Let M in
i denote the binary mask for the input neurons for

layer fi, and M out
i denote the binary mask for its own neu-

rons. Then, the effective number of parameters of fi is

||M in
i ||1 · ||M

out
i ||1 ·Kw ·Kh, if fi is a convolutional layer

with 1 group and no bias, and its computational cost is com-

puted by ||M in
i ||1 · ||M out

i ||1 · Kw · Kh · Ow · Oh follow-

ing [23]. Here, Kw and Kh are the kernel size, and Ow

and Oh are the output size. Note that the cost of f is the

sum of the costs of all layers fi; therefore, we also pass the

effective computational cost and the original cost in feed-

forwarding. After that, we are able to compute U(θA) and

c(θA), and consequently r(θA). During the computation of

r(θA), each layer will also keep a copy of the liveliness of

the neurons of its previous layer. This information is used

in the step of dead neural rejuvenation after r(θA) < Tr is

met. It also records the values of the scaling parameter γ of

the input neurons. This is used for neural rescaling which is

discussed in Sec. 3.2.

3.1.3 Adaptive Penalty Coefficient λ

The utilization ratio r(θA) will depend on the value of the

sparsity coefficient λ as a larger λ tends to result in a sparser

network. When λ = 0, all neurons will probably stay alive

as we have a tough threshold 0.01 × γmax. As a result,

Step 7 and 8 of Algorithm 1 will never get executed and our

optimizer is behaving as the standard one. When λ goes

larger, the real loss function Lλ we optimize will become

far from the original loss L. Consequently, the performance

will be less unsatisfactory. Therefore, choosing a proper

λ is critical for our problem, and we would like it to be

automatic and optimized to the task and the architecture.

In Neural Rejuvenation, the value of λ is dynamically de-

termined by the trend of the utilization ratio r(θA). Specif-

ically, when the neural rejuvenation flag is on, we keep

a record of the utilization ratio r(θA)
t after training for

t iterations. After ∆t iterations , we compare the cur-

rent ratio r(θA)
t with the previous one r(θA)

t−∆t. If

r(θA)
t < r(θA)

t−∆t − ∆r, we keep the current λ; oth-

erwise, we increase λ by ∆λ. Here, ∆t, ∆r and ∆λ are

hyper-parameters. λ is initialized with 0. After Step 8 gets

executed, λ is set back to 0.

It is beneficial to set λ in the above way rather than hav-

ing a fixed value throughout the training. Firstly, different

tasks and architectures may require different values of λ.

The above strategy frees us from manually selecting one

based on trial and error. Secondly, the number of iterations

needed to enter Step 8 is bounded. This is because after λ
gets large enough, each ∆t will decrease the utilization ra-

tio by at least ∆r. Hence, the number of iterations to reach

Tr is bounded by (1−Tr)/∆r+O(1). In a word, this strat-

egy automatically finds the value of λ, and guarantees that

the condition r(θA) < Tr will be met in a bounded number

of training iterations.

3.2. Dead Neuron Rejuvenation

After detecting the liveliness of the neurons and the con-

dition r(θA) < Tr is met, we proceed to Step 8 of Algo-

rithm 1. Here, our objective is to rejuvenate the dead neu-

rons and reallocate those rejuvenated neurons to the places

they are needed the most under the resource constraint C.

There are three major steps in dead neuron rejuvenation.

We present them in order as follows.

Resource reallocation The first step is to reallocate the

computational resource saved by removing all the dead neu-

rons. The removal reduces the computational cost from

c(A) to U(θA); therefore, there is c(A)− U(θA) available

resource to reallocate. The main question is where to add

this free resource back in A. Let wi denote the number of

output channels of layer fi in f , and wi is reduced to w′
i

by dead neuron removal. Let A′ denote the architecture af-

ter dead neuron removal with w′
i output channels at layer

fi. Then, c(A′) = U(A). To increase the computational

cost of A′ to the level of A, our resource reallocation will

linearly expand w′′
i = α · w′

i by a shared expansion rate α
across all the layers fi, to build a new architecture A′′ with

numbers of channels w′′
i . The assumption here is that if a

layer has a higher ratio of living neurons, this layer needs

more resources, i.e. more output channels; by contrast, if

a layer has a lower ratio, this means that more than needed

resources were allocated to it in A. This assumption is mod-

eled by having a shared linear expansion rate α.

The resource reallocation used here is similar to the iter-

ative squeeze-and-expand algorithm in MorphNet [16] for

neural architecture search. The differences are also clear.

Neural Rejuvenation models both dead neuron reinitializa-

tion, reallocation and training schemes to train just one net-

work only once, while MorphNet is only interested in the

numbers of channels of each layer that are optimal when

trained from scratch and finds it by training many networks.

Parameter reinitialization The second step is to reini-

tialize the parameters of the reallocated neurons. Let Sin

64

and Rin denote the input S (survived) neurons and R (re-

juvenated) neurons, respectively, and Sout and Rout denote

the output S neurons and R neurons, respectively. Then,

the parameters W can be divided into four groups: WS→S ,

WS→R, WR→R, WR→S , which correspond to the param-

eters from Sin to Sout, from Sin to Rout, from Rin to Rout

and from Rin to Sout, respectively. During reinitialization,

the parameters WS→S are kept since they survive the dead

neuron test. The parameters WR→R are randomly initial-

ized and their scaling parameters γ’s are restored to the ini-

tial level. In order for the S neurons to keep their mapping

functions after the rejuvenation, WR→S is set to 0. We also

set WS→R to 0 as this initialization does not affect the per-

formances as the experiments suggest.

Neural rescaling Recall that in order to encourage the

sparsity of the neurons, all neurons receive the same amount

of penalty. This means that not only the dead neurons

have small scaling values, some S neurons also have scal-

ing values that are very small compared with γmax of the

corresponding layers. As experiments in Sec. 4.2 show,

this is harmful for gradient-based training. Our solution

is to rescale those neurons to the initial level, i.e., |γ′
i| =

max{|γi|, γ0} ∀i, where γ0 is the initial value for γ. We

do not change the sign of γ. Note that rescaling takes all

neurons into consideration, including S neurons with large

scaling values (|γ| ≥ |γ0|), S neurons with small scaling

values (|γ| < |γ0|) and dead neurons (|γ| ≈ 0). After neu-

ral rescaling, we adjust the parameters to restore the origi-

nal mappings. For S neurons, let si = γ′
i/γi. In order for S

neurons to keep their original mapping functions, we divide

the parameters that use them by si. Experiments show that

this leads to performance improvements.

3.3. Training with Mixed Types of Neurons

Let us now focus on each individual layer. After neural

rejuvenation, each layer will have two types of input neu-

rons, Sin and Rin, and two types of output neurons, Sout and

Rout. For simplicity, we also use them to denote the fea-

tures of the corresponding neurons. Then, by the definition

of convolution, we have

Sout = WS→S ∗ Sin +WR→S ∗ Rin

Rout = WS→R ∗ Sin +WR→R ∗ Rin

(5)

where ∗ denote the convolution operation. WR→S is set to

0 in reinitialization; therefore, Sout = WS→S ∗ Sin initially,

which keeps the original mappings between Sin and Sout. In

this subsection, we discuss how to train W .

The training of W depends on how much the network

needs the additional capacity brought by the rejuvenated

neurons to fit the data. When S neurons do not need this ad-

ditional capacity at all, adding R neurons by Eq. 5 may not

help because S neurons alone are already able to fit the data

well. As a result, changing training scheme is necessary in

this case in order to utilize the additional capacity. How-

ever, when S neurons alone have difficulties fitting the data,

the additional capacity provided by R neurons will ease the

training. They were found to be useless previously either

because of improper initialization or inefficient resource ar-

rangement, but now are reinitialized and rearranged. We

present the detailed discussions as below.

When S does not need R Here, we consider the situation

where the network capacity is bigger than necessary, and

S neurons alone are able to fit the training data well. An

example is training networks on CIFAR [33], where most

of the modern architectures can reach 99.0% training ac-

curacy. When adding R neurons into the architecture as

in Eq. 5, since S neurons have already been trained to fit

the data well, the gradient back-propagated from the loss

will not encourage any great changes on the local mapping

(Sin,Rin) → (Sout,Rout). Therefore, keep modeling the

computation as Eq. 5 may result in Rin neurons being dead

soon and Rout producing redundant features.

The cause of the above problem is the existence of cross-

connections between R neurons and S neurons, which pro-

vides short-cuts to R. If we completely remove them, i.e.,

Sout = WS→S ∗ Sin Rout = WR→R ∗ Rin (6)

then R neurons are forced to learn features that are new and

ideally different. We use NR-CR to denote Neural Rejuve-

nation with cross-connections removed.

When S needs R Here, we assume that the capacity of

S alone is not enough for fitting the training data. One ex-

ample is training small networks on ImageNet dataset [53].

In this case, it is desirable to keep the cross-connections

to increase the capacity. Experiments in Sec. 4.2 com-

pare the performances of a simplified VGG network [54] on

ImageNet, and show that Neural Rejuvenation with cross-

connections kept and removed both improve the accuracies,

but keeping cross-connections improves more.

Cross-attention between S and R We continue the dis-

cussion where we assume S needs the capacity of R and

we keep the cross-connections. Then according to Eq. 5,

the outputs from Sin and Rin are added up for Sout, i.e.

Sout = WS→S ∗ Sin +WR→S ∗ Rin (7)

Since the assumption here is that the model capacity is in-

sufficient for fitting the training data, it would be better if

we can increase the capacity not only by rejuvenating dead

neurons, but also by changing Eq. 7 to add more capacity

without using any more parameters nor resulting in sub-

stantial increases of computations (if any) compared with

the convolution operation itself. As WS→S ∗ Sin is fixed,

we focus on WR→S ∗ Rin. One way to increase capacity

65

is to use second-order response transform [57]. The origi-

nal second-order response transform is defined on residual

learning [23] by adding a geometric mean, i.e.

y = x+ F (x) ⇒ y = x+ F (x) +
√

x · F (x) (8)

For our problem, although Eq. 7 does not have residual con-

nections, the outputs WS→S∗Sin and WR→S∗Rin are added

up as in residual learning; therefore, we can add a similar

response transform to Eq. 7. Instead of adding a geometric

mean which causes training instability [57], we propose to

use cross attentions as shown in Eq. 9.

Sout = WS→S ∗Sin +2 ·σ(WS→S ∗Sin)WR→S ∗Rin (9)

Here, σ(·) denotes the Sigmoid function. Symmetrically,

we add cross attentions to the output of Rout, i.e.

Rout = WR→R∗Rin+2·σ(WR→R∗Rin)WS→R∗Sin (10)

We use NR-CA to denote NR with cross attentions.

4. Experiments

In this section, we will show the experimental results that

support our previous discussions, and present the improve-

ments of Neural Rejuvenation on a variety of architectures.

4.1. Resource Utilization

We show the resource utilization of training ResNet-50

and ResNet-101 on ImageNet in Figure 1 when the spar-

sity term is added to the loss. In the figure, we show the

plots of the parameter utilization and validation accuracy of

the models with respect to the number of training epochs.

Training such a model usually takes 90 epochs when the

batch size is 256 or 100 epochs when the batch size is

128 [28]. In all the experiments, the sparsity coefficient λ
is initialized with 0, ∆t is set to one epoch, ∆r = 0.01 and

∆λ = 5× 10−5. Tr is set to 0.5 unless otherwise stated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Epoch

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Util of ResNet-101

Acc of ResNet-101
Util of ResNet-50
Acc of ResNet-50

Figure 1. Parameter utilization and validation accuracy of ResNet-

50 and ResNet-101 trained on ImageNet from scratch.

Fig. 1 shows two typical examples that convey the fol-

lowing important messages. (1) Training on large-scale

dataset such as ImageNet cannot avoid the waste of the

computational resources; therefore, our work is also valid

for large-scale training. (2) It is easier to find dead neurons

in larger models than in smaller models. This is consistent

with our intuition that larger models increase the capacity

and the risk of more resource wastes. (3) It does not take

too long to reach the utilization threshold at 0.5. 10 epochs

are enough for saving half of the resources for ResNet-101.

For ImageNet training, we set the neural rejuvenation

flag on only for the first 30 epochs where the learning rate is

0.1. Since it usually takes 10-20 epochs for r(θA) to reach

Tr = 0.5, there will be about 1 to 2 times that Step 8 in Al-

gorithm 1 will get executed. To simplify the experiments,

we only do one time of neural rejuvenation on ImageNet

and reset the epoch counter to 0 afterwards. The training

time with neural rejuvenation thus will be a little longer than

the original training, but the increase will be less than 20%
and experiments show that it is definitely worth it. For un-

limited training time, Sec. 4.4 shows the performances on

CIFAR with multiple times of Neural Rejuvenation.

4.2. Ablation Study on Neural Rejuvenation

To provide better understandings of Neural Rejuvenation

applied on training deep networks, we present an ablation

study shown in Table 1, which demonstrates the results of

Neural Rejuvenation with different variations.

Method Top-1 Top-5 Method Top-1 Top-5

BL 32.13 11.97 BL-CA 31.58 11.46

NR-CR 31.40 11.53 NR-FS 31.26 11.37

NR 30.74 10.94 NR-BR 30.31 10.67

NR-CA 30.28 10.88 NR-CA-BR 29.98 10.58

NR-IP 31.35 11.45 NR+DSD 28.84 9.94

Table 1. Error rates of a simplified VGG-19 on ImageNet with

Tr = 0.25 while maintaining the number of parameters. BL:

baseline. BL-CA: baseline with cross attentions. NR-CR: NR

with cross-connections removed. NR-FS: trainingA found by NR

from scratch. NR: NR with cross-connections. NR-BR: NR with

neural rescaling. NR-CA: NR with cross attentions. NR-CA-BR:

NR with cross attentions and neural rescaling. NR-IP: NR without

reallocation. NR+DSD: NR-CA-BR + DSD [19].

The network is a simplified VGG-19, which is trained on

low-resolution images from ImageNet. The image size for

training and testing is 128x128. We remove the last three

fully-connected layers, and replace them with a global av-

erage pooling layer and one fully-connected layer. The re-

sulted model has only 20.5M parameters. To further accel-

erate training, we replace the first convolutional layer with

that in ResNet [23]. By applying all the changes, we can

train one model with 4 Titan Xp GPUs in less than one day,

which is fast enough for the purpose of ablation study.

Clearly, such a simplified model does not have sufficient

capacity for fitting ImageNet. As we have discussed in

66

Architecture Baseline NR Params NR FLOPs Relative

Params FLOPs Top-1 Top-5 Params FLOPs Top-1 Top-5 Params FLOPs Top-1 Top-5 Gain

DenseNet-121 [28] 7.92M 2.83G 25.32 7.88 8.22M 3.13G 24.50 7.49 7.28M 2.73G 24.78 7.56 -3.24%

VGG-16 [54] 37.7M 15.3G 24.26 7.32 36.4M 23.5G 23.11 6.69 21.5M 15.3G 23.71 7.01 -4.74%

ResNet-18 [23] 11.7M 1.81G 30.30 10.7 11.9M 2.16G 28.86 9.93 9.09M 1.73G 29.73 10.5 -4.75%

ResNet-34 [23] 21.8M 3.66G 26.61 8.68 21.9M 3.77G 25.77 8.10 20.4M 3.56G 25.45 8.04 -4.35%

ResNet-50 [23] 25.6M 4.08G 24.30 7.19 26.4M 3.90G 22.93 6.47 26.9M 3.99G 22.79 6.56 -6.21%

ResNet-101 [23] 44.5M 7.80G 22.44 6.21 46.6M 6.96G 21.22 5.76 50.2M 7.51G 20.98 5.69 -6.50%

Table 2. Error rates of deep neural networks on ImageNet validation set trained with and without Neural Rejuvenation. Each neural

network has three sets of top-1 and top-5 error rates, which are baseline, Neural Rejuvenation with the number of parameters as the

resource constraint (NR Params), and Neural Rejuvenation with FLOPs as resource constraint (NR FLOPs). The last column Relative

Gain shows the best relative gain of top-1 error while maintaining either number of parameters or FLOPs.

Sec. 3.3, it is better to keep the cross connections for in-

creasing the model capacity. As also demonstrated here,

NR-CR improves the top-1 accuracy by 0.7% than the base-

line, but is 0.7% behind NR where cross-connections are

kept. We further show that cross attentions lower the top-

1 error rates by roughly 0.5%, and neural rescaling further

improves the accuracies. In the following experiments on

ImageNet, we use NR-CA-BR for all the methods.

4.3. Results on ImageNet

Table 2 shows the performance improvements on Ima-

geNet dataset [53]. ImageNet dataset is a large-scale im-

age classification dataset, which contains about 1.28 mil-

lion color images for training and 50,000 for validation. Ta-

ble 2 lists some modern architectures which achieve very

strong accuracies on such a challenging task. Previously, a

lot of attention is paid to designing novel architectures that

are more suitable for vision tasks. Our results show that

in addition to architecture design and search, the current

optimization technique still has a lot of room to improve.

Our work focuses only on the utilization issues, but already

achieves strong performance improvements.

Here, we briefly introduce the setting of the experiments

for easy reproduction. All the models are trained with batch

size 256 if the model can fit in the memory; otherwise, we

set the batch size to 128. In total, we train the models for

90 epochs when the batch size is 256, and for 100 epochs if

the batch size is 128. The learning rate is initialized as 0.1,

and then divided by 10 at the 31st, 61st, and 91st epoch.

For our task, we make the following changes to those

state-of-the-art architectures. For VGG-16 [54], we add

batch normalization layers after each convolutional layer

and remove the last three fully-connected layers. After

that, we add two convolutional layers that both output 4096

channels, in order to follow the original VGG-16 that has

two fully-connected layers outputting the same amount of

channels. After these two convolutional layers, we add a

global average pooling layer, and a fully-connected layer

that transforms the 4096 channels to 1000 channels for im-

age classification. The resulted model has fewer number of

parameters (138M to 37.7M), but with a much lower top-1

error rate (27 to 24.26). All the VGG-16 layers receive the

sparsity penalty. For ResNet [23], all the convolutional lay-

ers except the ones that are added back to the main stream

are taken into the consideration for neural rejuvenation. For

DenseNet [28], due to the GPU memory and speed issue, we

are only able to run DenseNet with 121 layers. We change

it from pre-activation [24] to post-activation [23] to follow

our assumption that each convolutional layer is directly fol-

lowed by a batch normalization layer. This change yields a

similar accuracy to the original one.

A quick observation of our results is that the models with

stronger capacities actually have better improvements from

Neural Rejuvenation. This is consistent with our discussion

in Sec. 3.3 and the observation in Sec. 4.1. For large-scale

tasks, the model capacity is important and larger models

are more likely to waste more resources. Therefore, reju-

venating dead neurons in large models will improve more

than doing that in small models where the resources are bet-

ter utilized. In all models, DenseNet-121 is the hardest to

find dead neurons, and thus has the smallest improvements.

This may explain the model compactness discussed in their

paper [28]. Moreover, VGG-16 with NR achieves 23.71%

top-1 error with just 21.5M parameters, far better than [40]

which achieves 36.66% top-1 error with 23.2M.

Architecture BL [16] MN [16] BL∗ NR

MobileNet-0.50 42.9 41.9 41.77 40.12

MobileNet-0.25 55.2 54.1 53.76 51.94

Table 3. Top-1 error rates of MobileNet [27] on ImageNet. The

image size is 128x128 for both training and testing. The FLOPs

are maintained in all the methods. BL: the baseline performances

reported in [16], MN: MorphNet [16], BL∗: our implementation

of the baseline, and NR: Neural Rejuvenation.

Next, we show experiments on MobileNet-0.5 and 0.25

in Table 3. They are not included in Table 2 because their

image size is 128x128 and the learning rate follows the

67

Architecture Baseline Network Slimming [40] Neural Rejuvenation

C10 (Params) C100 (Params) C10 (Params) C100 (Params) C10 (Params) C100 (Params)

VGG-19 [54] 5.44 (20.04M) 23.11 (20.08M) 5.06 (10.07M) 24.92 (10.32M) 4.19 (9.99M) 21.53 (10.04M)

ResNet-164 [23] 6.11 (1.70M) 28.86 (1.73M) 5.65 (0.94M) 25.61 (0.96M) 5.13 (0.88M) 23.84 (0.92M)

DenseNet-100-40 [28] 3.64 (8.27M) 19.85 (8.37M) 3.75 (4.36M) 19.29 (4.65M) 3.40 (4.12M) 18.59 (4.31M)

Table 4. Neural Rejuvenation for model compression on CIFAR [33]. In the experiments for ImageNet, the computational resources are

kept when rejuvenating dead neurons. But here, we set the resource target of neural rejuvenation to the half of the original usage. Then,

our Neural Rejuvenation becomes a model compressing method, and thus can be compared with the state-of-the-art pruning method [40].

cosine learning rate schedule starting from 0.1 [49]. Mo-

bileNet is designed for platforms with low computational

resources. Our NR outperforms the previous method [16]

and shows very strong improvements.

4.4. Results on CIFAR

The experiments on CIFAR have two parts. The first

part is to use Neural Rejuvenation as a model compression

method to compare with the previous state-of-the-arts when

the model sizes are halved. The results are shown in Table 4.

In the second part, we show the performances in Table 5

where we do Neural Rejuvenation for multiple times.

Model compression Table 4 shows the performance com-

parisons on CIFAR-10/100 datasets [33]. CIFAR dataset is

a small dataset, with 50,000 training images and 10,000 test

images. Unlike our experiments on ImageNet, here, we do

not rejuvenate dead neurons to utilize all the available com-

putational resource; instead, we set the resource target to

0.5×C where C is the original resource constraint. In prac-

tice, this is done by setting Tr = 0.25 and rejuvenating the

models to the level of 0.5 × C. As a result, Neural Reju-

venation ends up training a model with only a half of the

parameters, which can be compared with the previous state-

of-the-art network pruning method [40].

Multiple NR Table 5 shows the performances of VGG-19

tested on CIFAR datasets without limiting the times of Neu-

ral Rejuvenation. The improvement trends are clear when

the number of Neural Rejuvenation increases. The relative

gains are 33.5% for CIFAR-10 and 13.8% for CIFAR-100.

of NR 0 1 2 3 4 5

C10 5.44 4.19 4.03 3.79 3.69 3.62

C100 23.11 21.53 20.47 19.91 — —

Table 5. Error rates of VGG-19 on CIFAR-10 (C10) and CIFAR-

100 (C100) with different times of Neural Rejuvenation while

maintaining the number of parameters.

Here, we introduce the detailed settings of the experi-

ments. For VGG-19, we make the following changes be-

cause the original architecture is not designed for CIFAR.

First, we remove all the fully-connected layers and add a

global average pooling layer after the convolutional lay-

ers which is then followed by a fully-connected layer that

produces the final outputs. Then, we remove the original

4 max-pooling layers and add 2 max-pooling layers after

the 4th and the 10th convolutional layers for downsampling.

These changes adapt the original architecture to CIFAR,

and the baseline error rates become lower, e.g. from 6.66

to 5.44 on CIFAR-10 and from 28.05 to 23.11 on CIFAR-

100. We make the same changes to DenseNet as for Im-

ageNet. For ResNet-164 with bottleneck blocks, similar to

our settings on ImageNet, we only consider the neurons that

are not on the mainstream of the network for Neural Reju-

venation. Our method is NR-CR, which removes all the

cross-connections. Table 4 shows that our Neural Rejuve-

nation can be used for training small models as well. Ta-

ble 5 presents the potential of VGG-19 when trained with

multiple times of Neural Rejuvenation. While maintaining

the number of parameters, Neural Rejuvenation improves

the performances by a very large margin.

5. Conclusion

In this paper, we study the problem of maximizing the re-

source utilization. To this end, we propose a novel method

named Neural Rejuvenation, which rejuvenates dead neu-

rons during training by reallocating and reinitializing them.

Neural rejuvenation is composed of three components: re-

source utilization monitoring, dead neuron rejuvenation and

training schemes for networks with mixed types of neurons.

These components detect the liveliness of neurons in real

time, rejuvenate dead ones when needed and provide differ-

ent training strategies when the networks have mixed types

of neurons. We test neural rejuvenation on the challenging

datasets CIFAR and ImageNet, and show that our method

can improve a variety of state-of-the-art network architec-

tures while maintaining either their numbers of parameters

or the loads of computations. In conclusion, Neural Reju-

venation is an optimization technique with a focus on the

resource utilization, which improves the training of deep

neural networks by enhancing the utilization.

Acknowledgements We gratefully acknowledge supports

from NSF award CCF-1317376, a gift from Adobe, and a

gift from YITU. SQ also thanks Wanyu Huang for support.

68

References

[1] J. M. Alvarez and M. Salzmann. Learning the number of

neurons in deep networks. In Advances in Neural Informa-

tion Processing Systems, pages 2270–2278, 2016.

[2] J. Ba and R. Caruana. Do deep nets really need to be deep?

In Advances in neural information processing systems, pages

2654–2662, 2014.

[3] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. arXiv preprint arXiv:1412.7755,

2014.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014.

[5] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing

neural network architectures using reinforcement learning.

arXiv preprint arXiv:1611.02167, 2016.

[6] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient

architecture search by network transformation. AAAI, 2018.

[7] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep

clustering for unsupervised learning of visual features. In

arXiv preprint arXiv:1807.05520, 2018.

[8] K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Neva-

tia. Abc-cnn: An attention based convolutional neural

network for visual question answering. arXiv preprint

arXiv:1511.05960, 2015.

[9] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentation with deep convolu-

tional nets and fully connected crfs. In International Con-

ference on Learning Representations, 2015.

[10] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neu-

ral networks with weights and activations constrained to+ 1

or-1. arXiv preprint arXiv:1602.02830, 2016.

[11] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in neural infor-

mation processing systems, pages 1269–1277, 2014.

[12] Y. Dong and E. J. Nestler. The neural rejuvenation hypothe-

sis of cocaine addiction. Trends Pharmacol Sci, 35(8):374–

383, Aug 2014.

[13] T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient

architecture search for convolutional neural networks. arXiv

preprint arXiv:1711.04528, 2017.

[14] J. Frankle and M. Carbin. The lottery ticket hypoth-

esis: Training pruned neural networks. arXiv preprint

arXiv:1803.03635, 2018.

[15] S. D. Goggin, K. M. Johnson, and K. E. Gustafson. A

second-order translation, rotation and scale invariant neural

network. In Advances in neural information processing sys-

tems, pages 313–319, 1991.

[16] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J.

Yang, and E. Choi. Morphnet: Fast & simple resource-

constrained structure learning of deep networks. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[17] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally. Eie: efficient inference engine on com-

pressed deep neural network. In Computer Architecture

(ISCA), 2016, pages 243–254. IEEE, 2016.

[18] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[19] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang,

E. Elsen, P. Vajda, M. Paluri, J. Tran, et al. Dsd: Dense-

sparse-dense training for deep neural networks. arXiv

preprint arXiv:1607.04381, 2016.

[20] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances

in neural information processing systems, pages 1135–1143,

2015.

[21] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao.

An end-to-end model for question answering over knowl-

edge base with cross-attention combining global knowledge.

In Annual Meeting of the Association for Computational Lin-

guistics, volume 1, pages 221–231, 2017.

[22] B. Hassibi and D. G. Stork. Second order derivatives for net-

work pruning: Optimal brain surgeon. In Advances in neural

information processing systems, pages 164–171, 1993.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. IEEE Conference on Computer Vision

and Pattern Recognition, CVPR, 2016.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. ECCV, 2016.

[25] Y. He, X. Zhang, and J. Sun. Channel pruning for accel-

erating very deep neural networks. In IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pages 1398–1406, 2017.

[26] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[27] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[28] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected

convolutional networks. IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR, 2017.

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In Proceedings of the 32nd International Conference on Ma-

chine Learning, ICML, 2015.

[30] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity

search with gpus. arXiv preprint arXiv:1702.08734, 2017.

[31] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.

Learning visual features from large weakly supervised data.

In ECCV, pages 67–84. Springer, 2016.

[32] A. Kazemy, S. A. Hosseini, and M. Farrokhi. Second order

diagonal recurrent neural network. In Industrial Electronics,

ISIE 2007., pages 251–256. IEEE, 2007.

[33] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009.

69

[34] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and

V. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014.

[35] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2554–2564.

IEEE, 2016.

[36] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. In Advances in neural information processing systems,

pages 598–605, 1990.

[37] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He. Stacked

cross attention for image-text matching. arXiv preprint

arXiv:1803.08024, 2018.

[38] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf. Pruning filters for efficient convnets. arXiv preprint

arXiv:1608.08710, 2016.

[39] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li,

L. Fei-Fei, A. L. Yuille, J. Huang, and K. Murphy. Pro-

gressive neural architecture search. In Computer Vision -

ECCV 2018 - 15th European Conference, Munich, Germany,

September 8-14, 2018, Proceedings, Part I, pages 19–35,

2018.

[40] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In IEEE International Conference on Computer

Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages

2755–2763, 2017.

[41] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. arXiv preprint

arXiv:1707.06342, 2017.

[42] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille. Deep

captioning with multimodal recurrent neural networks (m-

rnn). CoRR, abs/1412.6632, 2014.

[43] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink,

O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy,

et al. Evolving deep neural networks. In Artificial Intelli-

gence in the Age of Neural Networks and Brain Computing,

pages 293–312. Elsevier, 2019.

[44] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of vi-

sual attention. In Advances in neural information processing

systems, pages 2204–2212, 2014.

[45] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

inference. arXiv preprint arXiv:1611.06440, 2016.

[46] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Effi-

cient neural architecture search via parameter sharing. arXiv

preprint arXiv:1802.03268, 2018.

[47] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot im-

age recognition by predicting parameters from activations.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR, 2018.

[48] S. Qiao, W. Shen, W. Qiu, C. Liu, and A. L. Yuille. Scalenet:

Guiding object proposal generation in supermarkets and be-

yond. In 2017 IEEE International Conference on Computer

Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.

[49] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille. Deep

co-training for semi-supervised image recognition. In Euro-

pean Conference on Computer Vision, 2018.

[50] S. Qiao, Z. Zhang, W. Shen, B. Wang, and A. L. Yuille. Grad-

ually updated neural networks for large-scale image recogni-

tion. In Proceedings of the 35th International Conference on

Machine Learning, ICML, 2018.

[51] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542. Springer, 2016.

[52] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,

J. Tan, Q. Le, and A. Kurakin. Large-scale evolution of im-

age classifiers. arXiv preprint arXiv:1703.01041, 2017.

[53] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[54] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[55] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training

very deep networks. In Advances in neural information pro-

cessing systems, pages 2377–2385, 2015.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015.

[57] Y. Wang, L. Xie, C. Liu, S. Qiao, Y. Zhang, W. Zhang,

Q. Tian, and A. Yuille. SORT: Second-Order Response

Transform for Visual Recognition. IEEE International Con-

ference on Computer Vision, 2017.

[58] Y. Wang, L. Xie, S. Qiao, Y. Zhang, W. Zhang, and A. L.

Yuille. Multi-scale spatially-asymmetric recalibration for

image classification. In The European Conference on Com-

puter Vision (ECCV), September 2018.

[59] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074–2082,

2016.

[60] H. Xu and K. Saenko. Ask, attend and answer: Exploring

question-guided spatial attention for visual question answer-

ing. In European Conference on Computer Vision, pages

451–466. Springer, 2016.

[61] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In Interna-

tional conference on machine learning, pages 2048–2057,

2015.

[62] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maxi-

mum margin clustering. In Advances in neural information

processing systems, pages 1537–1544, 2005.

[63] C. Yang, L. Xie, S. Qiao, and A. Yuille. Knowledge distil-

lation in generations: More tolerant teachers educate better

students. AAAI, 2018.

70

[64] J. Ye, X. Lu, Z. L. Lin, and J. Z. Wang. Rethinking the

smaller-norm-less-informative assumption in channel prun-

ing of convolution layers. CoRR, abs/1802.00124, 2018.

[65] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning net-

works using neuron importance score propagation. Preprint

at https://arxiv. org/abs/1711.05908, 2017.

[66] Z. Zhang, S. Qiao, C. Xie, W. Shen, B. Wang, and A. L.

Yuille. Single-shot object detection with enriched semantics.

In 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-

22, 2018, pages 5813–5821, 2018.

[67] Z. Zhong, J. Yan, and C.-L. Liu. Practical network blocks

design with q-learning. arXiv preprint arXiv:1708.05552,

2017.

[68] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. In European Conference on Computer Vision,

pages 662–677. Springer, 2016.

[69] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. arXiv preprint arXiv:1611.01578, 2016.

[70] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-

ing transferable architectures for scalable image recognition.

arXiv preprint arXiv:1707.07012, 2(6), 2017.

71

