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Abstract

Recently, researchers have started decomposing deep neu-

ral network models according to their semantics or functions.

Recent work has shown the effectiveness of decomposed func-

tional blocks for defending adversarial attacks, which add

small input perturbation to the input image to fool the DNN

models. This work proposes a profiling-based method to

decompose the DNN models to different functional blocks,

which lead to the effective path as a new approach to explor-

ing DNNs’ internal organization. Specifically, the per-image

effective path can be aggregated to the class-level effective

path, through which we observe that adversarial images acti-

vate effective path different from normal images. We propose

an effective path similarity-based method to detect adversar-

ial images with an interpretable model, which achieve better

accuracy and broader applicability than the state-of-the-art

technique.

1. Introduction

Deep learning (DL) has revolutionized the key applica-

tion domains such computer vision [16], natural-language

processing [35], and automatic speech recognition [1]. DL

models have outperformed traditional machine learning ap-

proaches and even outperformed human beings. Although

most of the current research efforts have been in improving

the efficiency and accuracy of DL models, interpretability

has recently become an increasingly important topic. This is

because many DL-enabled or DL-based systems are mission-

critical systems, such as ADAS [9] and online banking sys-

tems [11]. However, to date, there is no theoretical under-

standing of how DL models work, which is a significant

roadblock in pushing DL into mission-critical systems.

Owing to the lack of interpretability, DL models usually

∗ Jingwen Leng and Minyi Guo are co-corresponding authors of this

paper.

do not have a clear decision boundary and are vulnerable to

the input perturbation. Researches have recently been pro-

posed [29, 24, 18, 6], which can all successfully find a small

perturbation on the input image to fool the DNN based clas-

sifier. There is also prior work that demonstrates the physical

attack feasibility by putting a printed image in front of a stop

sign to mislead a real DNN based traffic sign detector [10].

Last but not least, a DNN model often fails for inputs that

are dramatically different from the training samples. For

example, the classification model used in Tesla’s autopilot

system that incorrectly classified a white truck to cloud [12]

and caused the crash accident.

To address the vulnerability challenge in DL models, this

work proposes the effective path as a new approach to explore

the internal organization of neural networks. The effective

path for an image is a critical set of synapses and neurons

that together lead to the final predicted class. The concept

is similar to the execution path of a control-flow based pro-

gram [3]. We propose an activation based back-propagation

algorithm to extract the image’s effective path, which pre-

serves the critical information in the neural network and

allows us to analyze the inner structures of DNNs.

The derived per-image effective path has direct aggrega-

tion capability. For example, we get per-class effective path

by aggregating the effective path from all training images in

the same class. We can then decompose the entire DNN into

multiple components, each pertaining to an inference class.

We perform similarity analysis and find the phenomenon

called path specialization that different classes activate dis-

tinctive portions of the neural network in the inference task.

On the basis of the observation, we analyze the path simi-

larity between normal and adversarial images, we uncover

that when an adversarial image successfully alters the pre-

diction result by small perturbation, the network activates a

significantly distinctive set of effective path compared to the

training samples, which lays the foundation for defending

the DNN using the effective path.

We propose to use the simple linear combination of an im-
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Figure 1: Examples that illustrate the process of using profiling to extract effective path.

age’s per-layer effective path similarity to detect adversarial

images. Our work can use a simpler linear model to out-

perform the state-of-the-art work [37] for six representative

attack methods. Besides, we also show that our detection

approach generalizes well to those attacks, meaning it can

detect adversarial samples from methods that are not used in

its training process, while the prior work does not have this

level of generalization ability. Moreover, the overhead of

using our approach is also much smaller (up to 500 ×) than

prior work. In the end, we show that the effective path can

not only be used for adversarial image detection but also for

explaining the impact of the training process and network

structure on the DNN’s inference capability.

2. Effective Path via Profiling

Prior work [37] has proposed a method to extract critical

data routing path (CDRP) for DNN models and demonstrated

its usefulness of defending against adversarial samples. How-

ever, deploying it in practice has two major limitations. The

first is the extraction process, which requires inserting con-

trol gates for each layer’s output channel and learning those

gates through retraining. This retraining process needs hyper-

parameter tuning and takes a long time to process a single

image. The second disadvantage is the extracted path rep-

resentation is still high dimensional (1152 for AlexNet and

15104 for ResNet-50). The high dimensional representa-

tion weakens its interpretability and generalization ability to

different adversarial attacks, which we will discuss later.

To overcome those limitations, we propose a novel

method to extract the DNN’s path information for an im-

age. The method is inspired from path profiling in program

analysis [3]: a program is represented in the form of con-

trol flow graph, where a node is a basic block and an edge

is the control flow between basic blocks. Compilers use

path profiling to identify the sequences of frequently exe-

cuted basic blocks, i.e., execution paths in the program. A

program’s path profiling provides useful insights on its exe-

cution and facilitates the understanding of the program. In

this work, we treat a neural network as a dataflow graph

where a node is a neuron and an edge is a synapse (weight)

between two neurons, and apply the profiling technique to

extract its execution path, which we call as effective path to

distinguish from the prior work. In the high level, both them

represent the critical dataflow inside a DNN but our method

doesn’t rely on retraining and the derived representation is

low-dimensional and generic.

2.1. Single Image Extraction

We first explain how to extract the effective path for a

single image, denoted as P = (N ,S,W), which represents

the collection of critical neurons N , synapses S and weights

W . It can be further broken down to the per-layer form N =
(N 1, . . . , NL), S = (S1, . . . ,SL),W = (W1, . . . ,WL),
where N l represents the important output neurons of layer l,
while Sl and W l represent important synapses and weights.

The extraction process starts at the last layer L and moves

backward to the first layer. In the last layer L, only the neu-

ron corresponding to the predicted class nL
p is active and

thus is included in the effective path, i.e., NL = {nL
p }. The

important weights form the minimum set of weights that

can contribute more than θ ratio of the output neuron nL
p .

Equation 1 formalizes the process, where K̃L
p is a selected

set of weight indices with pre-nonlinearity neuron nL
p as

the output, wL
k,p is the weight value, and nL−1

k is the corre-

sponding input neuron value (also the output neuron of layer

l−1). To find the minimum K̃L
p , we can rank the weight and

input neuron pairs by the value of their product and choose

the minimum number of pairs that contribute to more than

threshold θ × nL
p .

min
K̃L

p

|K̃L
p |, s.t.

∑

k∈K̃L
p

nL−1

k × wL
k,p ≥ θ × nL

p (1)

WL = {wL
k,p|k ∈ K̃L

p } (2)

NL−1 = {nL−1

k |k ∈ K̃L
p } (3)

After deriving the weight indices set K̃L
p , we can get the

WL set using Equation 2. Since the last layer is the fully

connected layer and there is a one-to-one mapping between

weight and synapses, SL can also be derived. Meanwhile,

since the output neurons of layer L− 1 are the input neurons

of layer L, it is straightforward to derive NL−1 in Equation 3.

We then can repeat the process in Equation 1 for every active

neuron in NL−1: each active neuron will result in a set of

weights and their union form the WL−1. The process repeats

backward until the first layer, and yields the whole neuron

set N , synapse set S , and weight set W for the input image.
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Figure 2: Class-wise path

similarity in LeNet.
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when merging per-class path.

Note that the above process addresses the fully connected

layer. To process the convolutional layer, we need to convert

it to FC layer according to each output neuron’s receptive

field as Fig. 1b shows. There are two caveats on handling

the convolutional layer. First, solving of Equation 1 does not

require the ranking of all input neurons but only the neurons

in the receptive field of the output neuron. Second, there is

no one-to-one mapping between synapse and weight because

of weight sharing. As a result, multiple synapses can have

the same active weights in the effective path.

2.2. Multi­Image Aggregation

The derived effective path is a binary mask that indicates

whether a neuron or synapse contributes to the image in-

ference. As such, we can simply aggregate effective paths

from an image group, e.g. images of the same class, to

obtain a larger effective path that provides a higher level

perspective of the whole group. Aggregating the effective

path of two images P(i) and P(j) is essentially taking the

union of N , S and W on each layer, represented by P(i) ∪
P(j) = (N (i)∪N (j),S(i)∪S(j),W(i)∪W(j)) , where

N (i)∪N (j) = (N 1(i)∪N 1(j), . . . ,NL(i)∪NL(j)) (N
and W are similar). This approach can create a meaningful

representation for an image group without increasing its di-

mension. In contrast, the feature dimension of CDRPs [37]

increase linearly with the number of images in the class

because each element in CDRP is a continuous number be-

tween 0 and 10 instead of a binary mask.

In this work, we use two types of aggregated effective

path for the neural network interpretation and defense. For

the class-level perspective, we aggregate all correctly pre-

dicted training images from the class c, denoted by X̃c,

to get the per-class effective path P̃c =
⋃

x∈X̃c
P(x); for

the network-level perspective, we aggregate images from

the whole training set X̃ to get the overall effective path

P̃ =
⋃

x∈X̃
P(x).

Path Sparsity The derived overall effective path is highly

sparse compared to the full model, indicating that critical

information is reserved. We define the weight (synapse)

density of the effective path DW (DS) as the ratio of its

weights (synapses) over the entire weights (synapses). They

can be calculated in Equation 4, where W
l and W̃ l (Sl and

S̃l) is the layer l’s entire weight (synapse) set and weight

(synapse) set in overall effective path, respectively.

DW =

∑L

l=1

∣

∣

∣
W̃ l

∣

∣

∣

∑L

l=1
|Wl|

,DS =

∑L

l=1

∣

∣

∣
S̃l

∣

∣

∣

∑L

l=1
|Sl|

(4)

We extracted the overall effective path for popular DNN

models including LeNet-5 [20], AlexNet [17], ResNet-

50 [15], Inception-v4 [36], and VGG-16 [34]. With θ = 0.5,

their synapse densities are 13.8%, 20.5%, 22.2%, 41.7%,

17.2%, respectively. Note that those values are calculated

after aggregating all training samples (i.e. overall effective

path). Prior work CDRP [37] reported similar sparsity values,

which, however, was calculated based on an individual im-

age because different images’ CDRPs cannot be aggregated

directly while effective path can. We also conduct an exper-

iment which shows the DNN accuracy drops immediately

when we start deactivating portions of the effective path,

which indicates that the extracted path is not only sparse but

also representative.

3. Effective Path Visualization

The per-class path dissects the network to different com-

ponents and can be used to understand why the neural net-

work can distinguish different classes and study the impact

of changing the network structure. We perform the path

similarity analysis among different classes, which leads to

a finding called path specialization. Different classes acti-

vate not only sparse but also a distinctive set of neurons and

synapses for the inference task.

We first study the similarity of per-class effective paths.

The similarity between class c1 and c2 is calculated by the

Jaccard coefficient of their synapse set as in Equation 5.

Jc1,c2 = J(S̃c1 , S̃c2) =

∣

∣

∣
S̃c1

⋂

S̃c2

∣

∣

∣

∣

∣

∣
S̃c1

⋃

S̃c2

∣

∣

∣

(5)

Fig. 2 shows the class-wise path similarity in LeNet, un-

veiling the existence of path specialization: the averaged

similarity between two classes is low (around 0.5). On aver-

age, two classes activate about 50% common paths, as well

as 50% distinctive paths. We can also conjecture that the

degree of path specialization reflects the visual similarity

between the two classes. For example, in Fig. 2, digit ‘1’

has the highest degree of specialization (i.e., lowest path

similarity against other digits): its average similarity with

other classes is around 0.35 (compared to the 0.5 average

value). The reason is most likely attributed to its unique

shape. In contrast, digit ‘5’ and ‘8’ have the highest path

similarity of 0.6, also likely owing to their similar shapes.

We observe the existence of the path specialization in

other datasets and networks. Fig. 3 shows the path density
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Figure 5: (a) Path similarity for LeNet. (d-e): Distribution of per-layer similarity for AlexNet on ImageNet. Each line plot

represents the mean of each kind of adversarial examples’ similarity, with the same-color band around to show the standard

deviation. The dashed line split convolutional layers and FC layers. (b): Rank-1 similarity. (c): Rank-1 similarity delta. (d):

Rank-2 similarity. (e): Rank-2 similarity delta.

growth when merging per-class (ImageNet) paths for ResNet-

50. The growth of both weight and synapse follow the same

trend (weight density is greater owing to weight sharing).

The density increases rapidly initially, indicating the high

degree of path specialization. After 50 classes, the density

still increases but at a much slower pace. This matches the

class hierarchy in the ImageNet dataset, which has around

100 basic categories: different categories have a larger degree

of path specialization while classes in the same categories

have a smaller specialization degree.

In summary, we find the existence of path specialization

phenomenon in trained DNNs, which unveils that DNNs

activate different blocks when handling different classes.

Inspired by the observation, we study the possibility of using

the effective path to detect adversarial samples.

4. Adversarial Samples Defense

In this section, we study how to exploit the observed path

specialization phenomenon to detect adversarial samples.

Adversarial samples are generated by adding a small per-

turbation to normal images. The perturbation is small and

imperceptible by human beings but can lead to an incorrect

prediction of the neural network. We evaluate 6 different

attacks (i.e. methods to generate misleading perturbation for

a given input image), whose examples are shown in Fig. 4.

For each attack, we always choose the canonical im-

plementation. We use Foolbox [30] implementations

and its default parameters in version 1.3.2 for Fast

Gradient Sign Method (FGSM) [13], Basic Iterative

Method(BIM) [18], DeepFool [24], Jacobian-based Saliency

Map Attack(JSMA) [28]. For Carlini and Wagner(C&W) at-

tacks [6], we use the open-source code released by the paper

authors. We use adversarial patch [4] implementation pro-

vided in CleverHans [27] and extend it to support AlexNet

without modification to its settings.

We first explore the distribution of effective path for nor-

mal and adversarial examples, and show that adversarial

images activate distinctive effective path to fool the DNN.

Our further analysis indicates that effective path similarity

provides a generic detection metric across all studied adver-

sarial attacks. Based on the analysis result, we propose a

low-dimensional and uniform metric to detect adversarial

samples from different kinds of attacks.

4.1. Adversarial Samples Similarity Analysis

On the basis of path specialization, we study the similarity

of the effective path between normal images and adversarial

images. We introduce another similarity metric called image-

class path similarity, which indicates how many synapses

in the image’s effective path come from the predicted class’s

effective path. It can be calculated as JP = J(S,S ∩ S̃p) =

|S ∩ S̃p|/|S|, where p is the image’s predicted class, S is the

synapse set of image effective path, and S̃p is the synapse

set of class p’s effective path. Because the per-class effective

path is far larger than the image’s effective path, their Jaccard

coefficient will be nearly zero. As such, the image-class path

4780



similarity is essentially the Jaccard coefficient between the

image’s effective path and the intersection set of effective

path between the image and predicted class.

Fig. 5a shows the distribution of image-class path simi-

larity for both normal images and a rich set of adversarial

images in MNIST for LeNet. The similarity values for nor-

mal images are almost all 1, and note that they are not used

in the training and per-class path extraction. In contrast, the

similarity values for adversarial images are mostly smaller

than 1, indicating effective path as a great metric to distin-

guish between normal and adversarial images.

For deeper and more complicated DNNs, we breakdown

the image-class path similarity metric to different layers. It

can be calculated as J l
P
= |Sl ∩ S̃l

p|/|S
l| for layer l. Fig. 5b

compares the per-layer similarity for normal images (from

test set) and adversarial images on AlexNet, and show that

normal images demonstrate a higher similarity degree than

adversarial images. We further calculate the similarity delta,

which equals to the similarity value of a normal image minus

the similarity value of its corresponding adversarial image.

Fig. 5c shows that all adversarial attacks cause almost iden-

tical similarity decrease pattern, where the largest decrease

occurs in the middle layers, i.e. boundary between convolu-

tional layers and fully connected layers.

Recall that we extract the effective path starting from

the predicted class, i.e. rank-1 class, which we call rank-1

effective path. We also study the rank-2 effective path which

starts from the rank-2 class. Fig. 5d compares the rank-2

effective path similarity for normal and adversarial images.

Different from the rank-1 effective path, adversarial images

demonstrate a higher similarity degree than normal images.

The reason is that the predicted rank-2 class for an adver-

sarial image is often the rank-1 class of its corresponding

normal image (i.e. without adding the perturbation). In

comparison, the predicted rank-2 class for a normal image

has no such relationship, and therefore has a lower degree

of similarity than adversarial image. Moreover, different

adversarial attack methods cause a similar pattern as Fig. 5e

shows.

In summary, extending class-wise path similarity to the

image-class case opens the door of using effective path to

detect adversarial images: mainstream adversarial attacks

modify the normally inactive path to fool the DNN and their

impact indicates a uniform pattern. In the next subsection,

we propose a simple and highly interpretable method to

exploit these observations for detecting adversarial samples.

4.2. Defense Model

Based on the per-layer similarity analysis, we propose

to use the rank-1 and rank-2 effective path similarity to

detect adversarial samples. We study four different detection

models, including linear model, random forest, AdaBoost,

and gradient boosting. Among them, the linear model is the

simplest one with the strongest interpretability. As we will

show later, the linear model also achieves similar accuracy

of other more complex models, proving that the selected

input features (effective path similarity values) are strong

indicators for detecting adversarial images.

Linear Model For the linear model, we propose jointed

similarity as the defense metric. It can be calculated as

J̃P =
∑L

l=1
ωlJ l

P
−

∑L

l=1
ωl′J l

P

′
, where J l

P
and J l

P

′
are

respectively rank-1 and rank-2 similarity for layer l, ωl and

ωl′ are their coefficients that satisfy ωl ≥ 0, ωl′ ≥ 0. The

joint similarity reflects the low rank-1 similarity degree and

high rank-2 similarity degree of adversarial images. An

image is detected as an adversarial image if its joint similarity

is less than a threshold. The simple linear model avoids

overfitting and offers strong interpretability.

We use LeNet-5 on MNIST, AlexNet on ImageNet and

ResNet-50 v2 on ImageNet for evaluation. For each dataset,

effective path extraction is performed on the overall training

set with θ = 0.5. For each model, adversarial examples from

all evaluated attacks are aggregated, shuffled and split into

10% for the training of joint similarity’s coefficients and 90%

for defense performance evaluation. Notice that we only

generate adversarial examples for the first test image in each

class of ImageNet due to the significant computational cost.

The training of joint similarity’s coefficients is performed by

SGD running 10000 epochs, with elastic-net regularization

(l1 ratio is 0.5) for sparsity.

Other Models We also study to use other more complex

models, including random forest, AdaBoost, and gradient

boosting. These three approaches are also used to construct

models based on CDRPs [37]. However, our input features

for those approaches are a vector formed by each layer’s

rank-1 and rank-2 effective path similarity while prior work’s

input features have a much larger dimension (e.g. 1152 for

AlexNet and 15104 for ResNet-50). For sake of consistency,

we apply the same adversarial example preprocessing with

the linear model. We use 100 estimators for random forest

and gradient boosting, while AdaBoost is limited to 50 es-

timators. All unmentioned configurations of these models

stay the same with the default values in scikit-learn v0.19.2.

5. Evaluation

In this section, we evaluate the adversarial sample de-

tection accuracy based on effective path. We first focus on

the highly interpretable linear detection model and show its

detection performance on a wide range of different attacks,

datasets, and models. We then compare our approach with

prior work CDRP [37] and show that our approach achieves

better accuracy, requires less training samples, and general-

izes well to different types of adversarial attacks.

5.1. Linear Model

We first evaluate the detection accuracy of the linear

model in Sec. 4.2 for a wide range of adversarial attacks.
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Figure 6: Detection results for LeNet (on MNIST), AlexNet

(on ImageNet), and ResNet-50 with joint similarity.
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Figure 7: Linear model detection results for AlexNet on

different attack methods.

Non-targeted Attacks We evaluate non-targeted attacks,

which are free to use any class as the adversarial image’s

inference result, with three different norms: FGSM and BIM

with l∞ norm, DeepFool and C&W l2 (CWL2) attack with

l2 norm, and JSMA with l0 norm. For LeNet, we achieves an

area under the curve (AUC) value up to 0.95 in Fig. 6a. Even

the lowest AUC value is 0.92, because of significant path

similarity distinction between adversarial and normal images

of MNIST. On ImageNet, we achieve AUC of 0.85~0.86

for AlexNet and AUC of 0.88~0.89 for ResNet-50, which

has more layers to provide richer information for detection,

leading to better accuracy. The BIM has a low AUC value

of 0.82. The reason is that BIM iteratively modifies all

pixels (Fig. 4), which makes its rank-2 effective path behave

slightly different from other attacks.

Targeted Attack Targeted attacks are designed to mislead

the prediction to a specific target class. Fig. 7a shows the

result of evaluating targeted C&W l2 attack for AlexNet. We

achieve AUC of 0.94, which is better than the non-targeted

version. It is reasonable since the targeted attack’s stricter

constraint for target class requires larger perturbation, which

eases our detection.

Universal Perturbation Attack Universal perturbation at-

tacks generate perturbations that fool models on a large range

of examples. Adversarial Patch [4] is an attack that generates

universal perturbations in the form of image patches, which

is robust against patch transformations such as translations,

rotations or scaling. The result of adversarial patches in

Fig. 7b indicates that the detection becomes more accurate

when the patch becomes larger. Our method can reach AUC

of 0.9 when the patch scale relative to image size rises to

0.5.
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Figure 8: Detection accuracy comparison between effective

path and CDRP. Note that the four bars in an attack type

represent linear model, AdaBoost, gradient boosting, and

random forest in order. The blue bars indicate the AUC delta

between our work and CDRP, no matter which is higher. Our

work outperforms CDRP except on the linear model for the

patch and random attack.

Unrecognizable Examples Adversarial examples are usu-

ally human-recognizable, however, unrecognizable images

can also fool neural networks [26]. We find that effective

path can also be used to detect unrecognizable examples

by evaluated on LeNet and AlexNet. For LeNet, our detec-

tor can recognize 93.85% randomly generated images. For

AlexNet, our method achieves AUC of 0.91 as shown in

Fig. 7c. In this sense, effective path offers the DNNs the

ability to identify its recognizable inputs’ distribution.

To summarize, the simple linear model constructed with

effective path achieves high detection accuracy without re-

quiring attack-specific knowledge.

5.2. Comparison with Prior Work

We now compare effective path based detection with prior

work CDRP [37] with the linear model as well as three

different kinds of models described in Sec. 4.2.

Detection Accuracy Fig. 8 compares the detection accu-

racy between effective path based models and CDRP based

models. For both approaches, we find that random forest

performs the best while the linear model performs worst

among all models. However, the effective path approach

has a much smaller gap between random forest and linear

model than the CDRP approach. With the exception of patch

and random attack, the effective path based linear model can

outperform the CDRP based random forest model. In partic-

ular, the accuracy improvements for our approach are much

more significant for the first five attack methods that are non-

targeted and smaller for the two targeted attack method in the

middle. Note that the effective path based linear model per-

forms slightly worse on the patch and random attack, which

generate much different perturbation patterns (see Fig. 4).

Training Size We also study how the size of the training

set impacts the detection accuracy. We choose the linear

model and random forest model and gradually increase their

4782



500 1000 1500
Training size

0.6

0.7

0.8

0.9

1.0

AU
C

DeepFool
FGSM
FGSM_targeted
BIM
JSMA
CWL2
CWL2_targeted
Patch
Random
Ours
CDRPs

(a) Linear model.
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(b) Random forest.

Figure 9: Impact of training set size on the AUC.
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(a) Linear model.
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(b) Random forest.

Figure 10: Impact of attack number in the training set.

training set size. Fig. 9 compares our approach with the

CDRP approach. For the linear model, our approach sta-

bilizes with a small number of training samples (around

100 images) while the CDRP requires much larger training

set size. For the random forest model, both approaches re-

quire a larger training set while our approach is less sensitive

because our input feature is low dimensional and effective.

Generalizability Generalizability measures a defense’s

ability to withstand unknown attacks. To study the gen-

eralizability of our detection model, we perform a control

experiment: we gradually add the adversarial samples from

different attack types for training the detection model and

observe the model detection accuracy all on attack types.

Fig. 11 shows the experiment results where we add the ad-

versarial samples in the order of legend shown in the right.

For both linear model and random forest model, our work

generalizes well to unseen attacks because effective path cap-

tures their common behavior. The CDRP based linear model

performs worse for all non-targeted attacks, and its accuracy

on targeted attack (FGSM_targeted and CWL2_targeted)

shows an abrupt increase once incorporating the correspond-

ing samples for training the model.

5.3. Sensitivity Study

After demonstrating the accuracy of using effective path

to detect adversarial samples, we now perform sensitivity

study on its parameters, including the θ in Equation 1 and

the number of extracted layers. Our results further unveil op-

timization opportunity to make effective path more practical.

Parameter Sensitivity The first tunable parameter of ef-

fective path extraction is θ. We test C&W l2 attack with θ
value varying from 0.1 to 1.0 in Fig. 11a. The detection per-

formance remains almost unchanged when θ is in range of
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Figure 11: Effective path θ sensitivity study.
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Figure 12: Effective path layer number impact on AUC.

Table 1: Effective path extraction time (second).

Method Effective Path (Full) Effective Path (Partial) CDRP

AlexNet 1.43 ± 0.09 0.43 ± 0.17 106.4 ± 5.2

ResNet-50 68.32 ± 2.43 0.83 ± 0.21 406.3 ± 6.3

0.5 and 1.0, and decreases from θ = 0.3. Fig. 11b shows that

the effective path size under θ = 0.3 decrease by one order

of magnitude compared with θ = 1.0, with slightly lower

detection accuracy. We choose θ = 0.5 as default value

to save storage space and improve extraction performance

without accuracy loss.

Layer Sensitivity Another tunable parameter of effective

path extraction is the number of layers as it is extracted layer

by layer. We perform experiments to study the layer num-

ber’s impact on the adversarial sample detection accuracy

and show the result in Fig. 12. Note that we extract the effec-

tive path starting from the last layer and the last three layers

are fully connected layers in AlexNet. For both linear model

and random forest, we observe that the AUC performance

for all attacks except random attack saturates after three lay-

ers, i.e. FC layers. The random attack detection accuracy

saturates after four layers, i.e. one additional CONV layer.

With the layer sensitivity insight, we can extract effective

path for just enough layers instead of the full network, which

can significantly reduce the extraction time. Tbl. 1 compares

the extraction time for AlexNet and ResNet-50. Extracting

the full effective path for the entire network is still much

less expensive (70× for AlexNet and 6× for ResNet-50)

than extracting CDRP which requires the retraining process.

Moreover, extracting the partial effective path can lead to

even faster process time, which translate to 240× and 500×
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Table 2: Comparison with other defenses.
Type Defense l0 l2 l∞ Attack Generalizability Scale

Detector

Effective Path Y Y Y all discussed strong ImageNet

[23] - Y Y (non-)targeted weak CIFAR-10

[22] - Y Y (non-)targeted - CIFAR-10

[37] - - Y targeted - ImageNet

Adversarial [21] - Y Y (non-)targeted weak CIFAR-10

Training [25] - - Y (non-)targeted weak CIFAR-10

Input [14] - Y Y (non-)targeted - ImageNet

Transformation [5] - - Y (non-)targeted - CIFAR-100

Randomization
[38] - Y Y (non-)targeted - ImageNet

[8] - - Y (non-)targeted - CIFAR-10

Generative [32] Y Y Y (non-)targeted + random strong MNIST

Model [31] - Y Y (non-)targeted - MNIST

time reduction compared to CDRP extraction.

In summary, effective path enables the use of the highly

interpretable linear model to detect a broad range of adver-

sarial attacks, and can achieve great accuracy on different

datasets and models. Compared to prior work CDRP [37],

our approach achieves better accuracy, requires less training

samples, and generalizes well to different adversarial attacks.

6. Related Work

To compare our defense method with prior work, we first

categorize various defenses methods to the five types listed

in Tbl. 2. Since almost all the compared work reported a sim-

ilar detection accuracy (AUC value 0.9 - 0.95), we focus the

comparison on the comprehensiveness, attack method, gener-

alizability, and scale of their evaluation. The "-" in the table

indicates that there are not enough details or experimental

results to deduce an appropriate conclusion.

Detector Our work fits in the detector category, which

does not require any modification to inputs, models, or train-

ing process. Prior work [23] trained a DNN from network

activations to detect adversarial examples. The detector

subnetwork doesn’t generalize well across different attack

parameters or attack types because the activation values are

highly attack-specific, which motivates [22] to propose Mag-

Net. MagNet uses a reformer to move adversarial examples

to normal examples’ manifold. However, [7] shows that

MagNet can be defeated by a little increase of perturbation.

The closest work to ours is [37], which uses the im-

portance coefficients of different channels in the network

(named critical data routing paths, abbr. CDRPs) to detect

adversarial examples. However, CDRPs do not have ag-

gregation capability as a single channel can have different

significance values for different images. As such, CDRPs

fail to defend non-targeted attacks and have weak general-

izability. In comparison, we use the effective path, which

is essentially a binary value for each neuron/synapse, and

therefore can be directly aggregated. Our method generalizes

well for different attacks and provides strong transferability.

Adversarial Training Adversarial training requires addi-

tional training step to protect the DNNs. It has two known

disadvantages: it is difficult to perform in the large-scale

dataset like ImageNet [19], at the same time easy to overfit

to the trained kinds of adversarial examples. Even adversar-

ial training proposed by [21], considered as the only effective

defense among white-box-secure defenses at ICLR 2018 [2],

is found overfitting on the trained l∞ metric [33].

Input Transformation Many image transformations like

rescaling, bit-depth reduction and compression can disturb

attacks and increase the perturbation lower bound, with the

sacrifice of classification accuracy. This kind of defense

method works less well for patch-based attacks and does not

provide the ability to filter unrecognizable examples.

Randomization Randomization-based defense methods

apply random modifications to model weights. They can

increase required distortion by forcing attacks to generate

transferable adversarial examples over a series of possible

modified models. However, they also stochastically alter the

prediction results, leading to the overhead of more forward

passes or retraining steps.

Generative Model Generative model based defenses

change the classification model. They project the inputs

onto the manifold before classification. [32] propose a classi-

fication model that shows good generality and transferability

on MNIST, but its performance on large dataset like Ima-

geNet is still obscure. GAN-based defenses are also hard to

apply in ImageNet scale due to its computational cost.

7. Conclusion and Future Work

In this work, we propose a novel profiling based method

to extract the deep neural network’s (DNN) path information

when inferring an image. This method does not modify the

DNN structure and can extract meaningful path information

that represents the critical dataflow inside the DNN. We study

how to use the extracted path information to decompose a

DNN model into different functional blocks corresponding

to different inference classes. Through analysis, we find that

adversarial images can activate functional blocks different

from normal images to fool the DNN’s prediction results

because all the blocks are connected. We propose a defense

method that only uses the information from the training set

and the image itself, without requiring any knowledge of a

specific attack. The defense method achieves high accuracy

and broad coverage of mainstream attacks.

Besides adversarial defense, the effective path can also

be used to understand the DNN’s working mechanism. In

the appendix, we report our preliminary result on how the

training process and different DNN topology affects the

effective path density and similarity. We believe that the

functionality based decomposition is a promising direction

for understanding DNNs.
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