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Abstract

Interpretability and fairness are critical in computer vi-

sion and machine learning applications, in particular when

dealing with human outcomes, e.g. inviting or not inviting

for a job interview based on application materials that may

include photographs. One promising direction to achieve

fairness is by learning data representations that remove

the semantics of protected characteristics, and are there-

fore able to mitigate unfair outcomes. All available models

however learn latent embeddings which comes at the cost

of being uninterpretable. We propose to cast this problem

as data-to-data translation, i.e. learning a mapping from

an input domain to a fair target domain, where a fairness

definition is being enforced. Here the data domain can be

images, or any tabular data representation. This task would

be straightforward if we had fair target data available, but

this is not the case. To overcome this, we learn a highly

unconstrained mapping by exploiting statistics of residuals

– the difference between input data and its translated ver-

sion – and the protected characteristics. When applied to

the CelebA dataset of face images with gender attribute as

the protected characteristic, our model enforces equality of

opportunity by adjusting the eyes and lips regions. Intrigu-

ingly, on the same dataset we arrive at similar conclusions

when using semantic attribute representations of images for

translation. On face images of the recent DiF dataset, with

the same gender attribute, our method adjusts nose regions.

In the Adult income dataset, also with protected gender

attribute, our model achieves equality of opportunity by,

among others, obfuscating the wife and husband relation-

ship. Analyzing those systematic changes will allow us to

scrutinize the interplay of fairness criterion, chosen pro-

tected characteristics, and prediction performance.

1. Introduction

Machine learning systems are increasingly used by gov-

ernment agencies, businesses, and other organisations to as-

∗Also with Higher School of Economics, Moscow, Russia

sist in making life-changing decisions such as whether or

not to invite a candidate to a job interview, or whether to

give someone a loan. The question is how can we ensure

that those systems are fair, i.e. they do not discriminate

against individuals because of their gender, disability, or

other personal (“protected”) characteristics? For example,

in building an automated system to review job applications,

a photograph might be used in addition to other features to

make an invite decision. By using the photograph as is, a

discrimination issue might arise, as photographs with faces

could reveal certain protected characteristics, such as gen-

der, race, or age (e.g. [14, 5, 4, 29]). Therefore, any au-

tomated system that incorporates photographs into its deci-

sion process is at risk of indirectly conditioning on protected

characteristics (indirect discrimination). Recent advances

in learning fair representations suggest adversarial training

as the means to hide the protected characteristics from the

decision/prediction function [2, 49, 33]. All fair represen-

tation models, however, learn latent embeddings. Hence,

the produced representations cannot be easily interpreted.

They do not have the semantic meaning of the input that

photographs, or education and training attainments, provide

when we have job application data. If we want to encourage

public conversations and productive public debates regard-

ing fair machine learning systems [18], interpretability in

how fairness is met is an integral yet overlooked ingredient.

In this paper we focus on representation learning models

that can transform inputs to their fair representations and

retain the semantics of the input domain in the transformed

space. When we have image data, our method will make a

semantic change to the appearance of an image to deliver

a certain fairness criterion1. To achieve this, we perform a

data-to-data translation by learning a mapping from data in

a source domain to a target domain. Mapping from source

to target domain is a standard procedure, and many meth-

ods are available. For example, in the image domain, if

we have aligned source/target as training data, we can use

the pix2pix method of [24], which is based on conditional

generative adversarial networks (cGANs) [36]. Zhu et al.’s

1Examples of fairness criteria are equality of true positive rates (TPR),

also called equality of opportunity [22, 47], between males and females.
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CycleGAN [50] and Choi et al.’s StarGAN [7] solve a more

challenging setting in which only unaligned training exam-

ples are available. However, we can not simply reuse ex-

isting methods for source-to-target mapping because we do

not have data in the target domain (e.g. fair images are not

available; images by themselves can not be fair or unfair, it

is only when they are coupled with a particular task that the

concern of fairness arises).

To illustrate the difficulty, consider our earlier example

of an automated job review system that uses photographs

as part of an input. For achieving fairness, it is tempting

to simply use GAN-driven methods to translate female face

photos to male. We would require training data of female

faces (source domain) and male faces (target domain), and

only unaligned training data would be needed. This solution

is however fundamentally flawed; who gets to decide that

we should translate in this direction? Is it fairer if we trans-

late male faces to female instead? An ethically grounded

approach would be to translate both male and female face

photos (source domain) to appropriate middle ground face

photos (target domain). This challenge is actually multi-

dimensional, it contains at least two sub-problems: a) how

to have a general approach that can handle image data

as well as tabular data (e.g. work experience, education,

or even semantic attribute representations of photographs),

and b) how to find a middle-ground with a multi-value (e.g.

race) or continuous value (e.g. age) protected characteristic

or even multiple characteristics (e.g. race and age).

We propose a solution to the multi-dimensional

challenge described above by exploiting statistical

(in)dependence between translated images and protected

characteristics. We use the Hilbert-Schmidt norm of the

cross-covariance operator between reproducing kernel

Hilbert spaces of image features and protected character-

istics (Hilbert-Schmidt independence criterion [20]) as an

empirical estimate of statistical independence. This flexible

measure of independence allows us to take into account

higher order independence, and handle a multi-/continuous

value and multiple protected characteristics.

Related work We focus on expanding the related topic of

learning fair, albeit uninterpretable, representations. The

aim of fair representation learning is to learn an interme-

diate representation of the data that preserves as much in-

formation about the data as possible, while simultaneously

removing protected characteristic information such as age

and gender. Zemel et al. [48] learn a probabilistic mapping

of the data point to a set of latent prototypes that is inde-

pendent of protected characteristic (equality of acceptance

rates, also called a statistical parity criterion), while retain-

ing as much class label information as possible. Louizos

et al. [32] extend this by employing a deep variational

auto-encoder (VAE) framework for finding the fair latent

representation. In recent years, we see increased adver-

sarial learning methods for fair representations. Ganin et

al. [15] propose adversarial representation learning for do-

main adaptation by requiring the learned representation to

be indiscriminate with respect to differences in the domains.

Multiple data domains can be translated into multiple demo-

graphic groups. Edwards and Storkey [12] make this con-

nection and propose adversarial representation learning for

the statistical parity criterion. To achieve other notions of

fairness such as equality of opportunity, Beutel et al. [2]

show that the adversarial learning algorithm of Edwards

and Storkey [12] can be reused but we only supply training

data with positive outcome to the adversarial component.

Madras et al. [33] use a label-aware adversary to learn fair

and transferable latent representations for the statistical par-

ity as well as equality of opportunity criteria.

None of the above learn fair representations while simul-

taneously retaining the semantic meaning of the data. There

is an orthogonal work on feature selection using human per-

ception of fairness (e.g. [21]), while this approach undoubt-

edly retains the semantic meaning of tabular data, it has not

been generalized to image data. In an independent work to

ours, Sattigeri et al. [40] describe a similar motivation of

producing fair representations in the input image domain;

their focus is on creating a whole new image-like dataset,

rather than conditioning on each input image. Hence it is

not possible to visualise a fair version for a given image as

provided by our method (refer to Figures 2 and 3).

2. Interpretability in Fairness by Residual De-

composition

We will use the illustrative example of an automated

job application screening system. Given input data (pho-

tographs, work experience, education and training, personal

skills, etc.) x
n ∈ X , output labels of performed well or

not well yn ∈ Y = {+1,−1}, and protected characteris-

tic values, such as race or gender, sn ∈ {A,B,C,D, . . .},

or age, sn ∈ R, we would like to train a classifier f that

decides whether or not to invite a person for an interview.

We want the classifier to predict outcomes that are accurate

with respect to yn but fair with respect to sn.

2.1. Fairness definitions

Much work has been done on mathematical definitions

of fairness (e.g. [28, 8]). It is widely accepted that no single

definition of fairness applies in all cases, but will depend

on the specific context and application of machine learning

models [18]. In this paper, we focus on the equality of op-

portunity criterion that requires the classifier f and the pro-

tected characteristic s be independent, conditional on the la-

bel being positive 2, in shorthand notation f ⊥⊥ s | y = +1.

2With binary labels, it is assumed that positive label is a desir-

able/advantaged outcome, e.g. expected to perform well at the job.
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Expressing the shorthand notation in terms of a conditional

distribution, we have P(f(x)|s, y = +1) = P(f(x)|y =
+1). With binary protected characteristic, this reads as

equal true positive rates across the two groups, P(f(x) =
+1|s = A, y = +1) = P(f(x) = +1|s = B, y = +1).
Equivalently, the shorthand notation can also be expressed

in terms of joint distributions, resulting in P(f(x), s|y =
+1) = P(f(x)|y = +1)P(s|y = +1). The advantage

of using the joint distribution expression is that the vari-

able s does not appear as a conditioning variable, making it

straightforward to use the expression for a multi- or contin-

uous value or even multiple protected characteristics.

2.2. Residual decomposition

We want to learn a data representation x̃
n for each input

x
n such that: a) it is able to predict the output label yn, b)

it protects sn according to a certain fairness criterion, c) it

lies in the same space as x
n, that is x̃

n ∈ X . The third

requirement ensures the learned representation to have the

same semantic meaning as the input. For example, for im-

ages of people faces, the goal is to modify facial appearance

in order to remove the protected characteristic information.

For tabular data, we desire systematic changes in values of

categorical features such as education (bachelors, masters,

doctorate, etc.). Visualizing those systematic changes will

give evidence on how our algorithm enforces a certain fair-

ness criterion. This will be a powerful tool, albeit all the

powers hinge on observational data, to scrutinize the in-

terplay between fairness criterion, protected characteristics,

and classification accuracy. We proceed by making the fol-

lowing decomposition assumption on x:

φ(x) = φ(x̃) + φ(x̂), (1)

with x̃ to be the component that is independent of s, x̂ de-

noting the component of x that is dependent on s, and φ(·)
is some pre-trained feature map. We will discuss about the

specific choice of this pre-trained feature map for both im-

age and tabular data later in the section. What we want is to

learn a mapping from a source domain (input features) to a

target domain (fair features with the semantics of the input

domain), i.e. T : x → x̃, and we will parameterize this

mapping T = Tω where ω is a class of autoencoding trans-

former network. For our architectural choice of transformer

network, please refer to Section 3.

To enforce the decomposition structure in (1), we need

to satisfy two conditions: a) x̃ to be independent of s, and

b) x̂ to be dependent of s. Given a particular statistical

dependence measure, the first condition can be achieved

by minimizing the dependence measure between P =
{φ(x̃1), . . . , φ(x̃N )} = {φ(Tω(x

1)), . . . , φ(Tω(x
N ))} and

S = {s1, . . . , sN}; N is the number of training data points.

For the second condition, we first define a residual:

φ(x)− φ(x̃) = φ(x)− φ(Tω(x)) = φ(x̂), (2)

where the last term is the data component that is depen-

dent on a protected characteristic s. We can then enforce

the second condition by maximizing the dependence mea-

sure between R = {φ(x̂1), . . . , φ(x̂N )} = {φ(x1) −
φ(Tω(x

1)), . . . , φ(xN ) − φ(Tω(x
N ))} and S. We use the

decomposition property as a guiding mechanism to learn the

parameters ω of the transformer network Tω .

In the fair and interpretable representation learning task,

we believe using residual is well-motivated because we

know that our generated fair features should be somewhat

similar to our input features. Residuals will make learning

the transformer network easier. Taking into consideration

that we do not have training data about the target fair fea-

tures x̃, we should not desire the transformer network to

take the input feature x and generate a new output x̃. In-

stead, it should just learn how to adjust our input x to pro-

duce the desired output x̃. The concept of residuals is uni-

versal, for example, a residual block has been used to speed

up and to prevent over-fitting of a very deep neural network

[23], and a residual regression output has been used to per-

form causal inference in additive noise models [37].

Formally, given the N training triplets (X,S, Y ), to find

a fair and interpretable representation x̃ = Tω(x), our opti-

mization problem is given by:

minimize
Tω

N∑

n=1

L(Tω(x
n), yn)

︸ ︷︷ ︸

prediction loss

+λ1

N∑

n=1

‖xn − Tω(x
n)‖2

2

︸ ︷︷ ︸

reconstruction loss

+

+ λ2




−HSIC(R,S|Y = +1) + HSIC(P, S|Y = +1)
︸ ︷︷ ︸

decomposition loss






(3)

where HSIC(·, ·) is the statistical dependence measure, and

λi are trade-off parameters. HSIC is the Hilbert-Schmidt

norm of the cross-covariance operator between reproduc-

ing kernel Hilbert spaces. This is equivalent to a non-

parametric distance measure of a joint distribution and the

product of two marginal distributions using the Maximum

Mean Discrepancy (MMD) criterion[19]; MMD has been

successfully used in fairnesss literature in it’s own right

[32, 38]. Section 2.1 discusses defining statistical indepen-

dence based on a joint distribution, contrasting this with

a conditional distribution. We use the biased estimator of

HSIC [20, 42]: HSICemp. = (N − 1)−2 trHKHL, where

K,L ∈ R
N×N are the kernel matrices for the residual set

R and the protected characteristic set S respectively, i.e.

Kij = k(ri, rj) and Lij = l(si, sj) (similar definition for

measuring independence between sets P and S). We use

a Gaussian RBF kernel function for both k(·, ·) and l(·, ·).
Moreover, Hij = δij −N−1 centres the observations of set

R and set S in RKHS feature space. The prediction loss
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is defined using a softmax layer on the output of the trans-

former network. While in image data we add the total vari-

ation (TV) penalty [34] on the fair representation to ensure

spatial smoothness, we do not enforce any regularization

term for tabular data. In summary, we learn a new represen-

tation x̃ that removes statistical dependence on the protected

characteristic s (by minimizing HSIC(P, S|Y = +1)) and

enforces the dependence of the residual x − x̃ and s (by

maximizing HSIC(R,S|Y = +1)). We can then train any

classifier f using this new representation, and it will inher-

ently satisfy the fairness criterion [33].

Neural style transfer and pre-trained feature space

Neural style transfer (e.g. [17, 25]) is a popular approach

to perform an image-to-image translation. Our decomposi-

tion loss in (3) is reminiscent of a style loss used in neural

style transfer models. The style loss is defined as the dis-

tance between second-order statistics of a style image and

the translated image. Excellent results [17, 25, 43, 44] on

neural style transfer rely on pre-trained features. Following

this spirit, we also use a “pre-trained” feature mapping φ(·)
in defining our decomposition loss. For image data, we take

advantage of the powerful representation of deep convolu-

tional neural networks (CNN) to define the mapping func-

tion [17]. The feature maps of x in the layer l of a CNN

are denoted by F l
x
∈ RNl×Ml where Nl is the number of

the feature maps in the layer l and Ml is the height times

the width of the feature map. We use the vectorization of

F l
x

as the required mapping φ(x) = vec(F l
x
). Several lay-

ers of a CNN will be used to define the full mapping (see

Section 3). For tabular data, we use the following random

Fourier feature [39] mapping φ(x) =
√

2/D cos(〈θ,x〉+ b)
with a bias vector b ∈ R

D that is uniformly sampled in

[0, 2π], and a matrix θ ∈ R
d×D where θij is sampled from

a Gaussian distribution. We have assumed the input data

lies in a d-dimensional space, and we transform them to a

D-dimensional space.

3. Experiments

We gave an illustrative example about screening job ap-

plications, however, no such data is publicly available. We

will instead use publicly available data to simulate the set-

ting. We conduct the experiments using three datasets: the

CelebA image dataset3 [30], the Diversity in Faces (DiF)

dataset 4 [35], and the Adult income dataset5 from the UCI

repository [9]. The CelebA dataset has a total of 202, 599
celebrity images. The images are annotated with 40 at-

tributes that reflect appearance (hair color and style, face

shape, makeup, for example), emotional state (smiling),

3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
4https://www.research.ibm.com/

artificial-intelligence/trusted-ai/diversity-in-faces/
5https://archive.ics.uci.edu/ml/datasets/adult

gender, attractiveness, and age. For this dataset, we use

gender as a binary protected characteristic, and attractive-

ness as the proxy measure of getting invited for a job inter-

view in the world of fame. We randomly select 20K images

for testing and use the rest for training the model. The DiF

dataset has only been introduced very recently and contains

nearly a million human face images reflecting diversity in

ethnicity, age and gender. We include preliminary results

using 200K images for training and 200K images for test-

ing our model on this dataset. The images are annotated

with attributes such as race, gender and age (both contin-

ual and discretized into seven age groups) as well as facial

landmarks and facial symmetry features. For this dataset,

we use gender as a binary protected characteristic, and the

discretized age groups as a predictive task. The Adult in-

come dataset is frequently used to assess fairness methods.

It comes from the Census bureau and the binary task is to

predict whether or not an individual earns more than $50K

per year. It has a total of 45, 222 data instances, each with

14 features such as gender, marital status, educational level,

number of work hours per week. For this dataset, we fol-

low [48] and consider gender as a binary protected charac-

teristic. We use 28, 222 instances for training, and 15, 000
instances for testing. We enforce equality of opportunity as

the fairness criteria throughout for the three experiments.

3.1. The Adult Income dataset

The focus is to investigate whether (Q1) our proposed

fair and interpretable learning method performs on a par

with state-of-the-art fairness methods, and whether (Q2)

performing a tabular-to-tabular translation brings us closer

to achieving interpretability in how fairness is being sat-

isfied. We compare our method against an unmodified x

using the following classifiers: 1) logistic regression (LR)

and 2) support vector machine with linear kernel (SVM),

We select the regularization parameter of LR and SVM over

6 possible values (10i for i ∈ [0, 6]) using 3-fold cross

validation. We then train classifiers 1–2 with the learned

representation x̃ and with the latent embedding z of a

state-of-the-art adversarial model described in Beutel et al.

[2]. We also apply methods which reweigh the samples

to simulate a balanced dataset with regard to the protected

characteristic FairLearn [1] Fair Reduction 3-4 and

Kamiran & Calders [26] Kamiran & Calders 5-6, op-

timized with both the cross-validated LR and SVM (1-2),

giving (Fair Reduction LR), (Fair Reduction

SVM), (Kamiran & Calders LR) and (Kamiran &

Calders SVM) respectively. As a reference, we also com-

pare with: 7) Zafar et al.’s [47] fair classification method

(Zafar et al.) that adds equality of opportunity di-

rectly as a constraint to the learning objective function. It

has been shown that applying fairness constraints in suc-

cession as ‘fair pipelines’ do not enforce fairness [11, 3], as
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original x fair interpretable x̃ latent embedding z

Accuracy ↑ Eq. Opp ↓ Accuracy ↑ Eq. Opp ↓ Accuracy ↑ Eq. Opp ↓

1: LR 85.1± 0.2 9.2± 2.3 84.2± 0.3 5.6± 2.5 81.8± 2.1 5.9± 4.6
2: SVM 85.1± 0.2 8.2± 2.3 84.2± 0.3 4.9± 2.8 81.9± 2.0 6.7± 4.7
3: Fair Reduction LR [1] 85.1± 0.2 14.9± 1.3 84.1± 0.3 6.5± 3.2 81.8± 2.1 5.6± 4.8
4: Fair Reduction SVM [1] 85.1± 0.2 8.2± 2.3 84.2± 0.3 4.9± 2.8 81.9± 2.0 6.7± 4.7
5: Kamiran & Calders LR [26] 84.4± 0.2 14.9± 1.3 84.1± 0.3 1.7± 1.3 81.8± 2.1 4.9± 3.3
6: Kamiran & Calders SVM [26] 85.1± 0.2 8.2± 2.3 84.2± 0.3 4.9± 2.8 81.9± 2.0 6.7± 4.7
7: Zafar et al.∗ [47] 85.0± 0.3 1.8± 0.9 — — — —

Table 1. Results of training multiple classifiers (rows 1–7) on 3 different representations, x, x̃, and z. x is the original input representation,

x̃ is the interpretable, fair representation introduced in this paper, and z is the latent embedding representation of Beutel et al. [2]. We

boldface Eq. Opp. since this is the fairness criterion (the lower the better). ∗The solver of Zafar et al. fails to converge in 4 out of

10 repeats. Our learned representation x̃ achieves comparable fairness level to the latent representation z, while maintaining the constraint

of being in the same space as the original input.
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(‘Relationship Status‘) (‘Race‘)
Figure 1. Left Boxplots showing the distribution of the categorical feature ‘Relationship Status‘ Right Boxplots showing the distribution

of the categorical feature ‘Race‘. Left of each: original representation x ∈ X . Right of each: fair representation x̃ ∈ X .

such, we only demonstrate (fair) classifier 7 on the unmod-

ified x.

Benchmarking We train our model for 50, 000 iterations

using a network with 1 hidden layer of 40 nodes for both the

encoder and decoder, with the encoded representation being

40 nodes. The predictor acts on the decoded output of this

network. We set the trade-off parameters of the reconstruc-

tion loss (λ1) and decomposition loss (λ2) to 10−4 and 100
respectively. We then use this model to translate 10 differ-

ent training and test sets into x̃. Using a modified version

of the framework provided by Friedler et al. [13] we eval-

uate methods 1–6 using x and x̃ representations. To ensure

consistency, we train the model of Beutel et al. [2] with the

same architecture and number of iterations as our model.

Table 1 shows the results of these experiments. Our in-

terpretable representation, x̃ achieves similar fairness level

to Beutel’s state-of-the-art approach (Q1). Consistently, our

representation x̃ promoted the fairness criterion (Eq. Opp.

close to 0), with only a small penalty in accuracy.

Interpretability We promote equality of opportunity for

the positive class (actual salary > $50K). In Figure 1 we

show the effect of learning a fair representation, showing

changes in the ‘Relationship Status’ and ‘Race’ features of

samples that were incorrectly classified by an SVM as earn-

ing < $50K in x, but were correctly classified in x̃. The

visualization can be used for understanding how represen-

tation methods adjust the data for fairness. For example in

Figure 1 (left) we can see that our method deals with the

notorious problem of a husband or wife relationship status

being a direct proxy for gender (Q2). Our method recog-

nises this across all repeats in an unsupervised manner and

reduces the wife category which is associated with a nega-

tive prediction. Other categories that have less correlation

with the protected characteristic, such as race, largely re-

main unmodified (Figure 1 (right)).

3.2. The CelebA dataset

Our intention here is to investigate whether (Q3) per-

forming an image-to-image translation brings us closer to

achieving interpretability in how fairness is being satisfied,

and whether (Q4) using semantic attribute representations

of images reinforces similar interpretability conclusions as

using image features directly.

Image-to-image translation Our autoencoder network
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translated

residual

Figure 2. Examples of the translated and residual images on

CelebA from the protected group of males (minority group) that

have been classified correctly (as attractive) after transformation.

These results are obtained with the transformer network for image-

to-image translation. Best viewed in color.

domain Acc. Eq. Opp. TPR TPR

X ↑ ↓ female male

orig. x images 80.6 33.8 90.8 57.0
orig. x attributes 79.1 39.9 90.8 50.9
fair x̃ images 79.4 23.8 85.2 61.4
fair x̃ attributes 75.9 12.4 87.2 74.8
fair x̃ fake images 78.5 23.0 87.5 64.5

Table 2. Results on CelebA dataset using a variety of input do-

mains. Prediction performance is measured by accuracy, and we

use equality of opportunity, TPRs difference, as the fairness crite-

rion. Here, domain of fake images (last row) denotes images syn-

thesized by the StarGAN[7] model from the original images and

their fair attribute representations. We boldface Eq. Opp. since

this is the fairness criterion.

is based on the architecture of the transformer network for

neural style transfer [25] with three convolutional layers,

five residual layers and three deconvolutional/upsampling

layers in combination with instance weight normalization

[44]. The transformer network produces the residual image

using a non-linear tanh activation, which is then subtracted

from the input image to form the translated fair image x̃.

Similarly to neural style transfer [17, 16, 25], for computing

the loss terms, we use the activations in the deeper layers of

the 19-layered VGG19 network [41] as feature representa-

tions of both input and translated images. Specifically, we

use activations in the conv3 1, conv4 1 and conv5 1 layers

for computing the decomposition loss, the conv3 1 layer ac-

tivations for the reconstruction loss, and the activations in

the last convolutional layer pool 5 for the prediction loss

and when evaluating the performance. Given a 176x176

color input image, we compute the activations at each layer

mentioned earlier after ReLU, then we flatten and l2 nor-

malize them to form features for the loss terms. In the HSIC

estimates of the decomposition loss, we use a Gaussian RBF

kernel k(x1, x2) = exp(−γ‖x1 − x2‖
2) width γ = 1.0 for

image features, and γ = 0.5 for protected characteristics (as

one over squared distance in the binary space). To compute

the decomposition loss, we add the contributions across the

three feature layers. We set the trade-off parameters λ1 and

λ2 of the reconstruction loss and the decomposition loss,

respectively, to 1.0, and the TV regularization strength to

10−3. Training was carried out for 50 epochs with a batch

size of 80 images. We use minibatch SGD and apply the

Adam solver [27] with learning rate 10−3; our TensorFlow

implementation is publicly available6.

Benchmarking and interpretability We enforce equal-

ity of opportunity as the fairness criterion, and we consider

attractiveness as the positive label. Attractiveness is what

could give someone a job opportunity or an advantaged out-

come as defined in [22]. To test the hypothesis that we have

learned a fairer image representation, we compare the per-

formance and fairness of a standard SVM classifier trained

using original images and the translated fair images. We

use activation in the pool 5 layer of the VGG19 network as

features for training and evaluating the classifier7.

We report the quantitative results of this experiment in

Table 2 (first and third rows) and the qualitative evaluations

of image-to-image translations in Figure 2. From the Table

2 it is clear that the classifier trained on fair/translated im-

ages x̃ has improved over the classifier trained on the origi-

nal images x in terms of equality of opportunity (reduction

from 33.8 to 23.8) while maintaining the prediction accu-

racy (79.4 comparing to 80.6). Looking at the TPR values

across protected features (females and males), we can see

that the male TPR value has increased, but it has an op-

posite effect for females. In the CelebA dataset, the pro-

portion of attractive to unattractive males is around 30% to

70%, and it is opposite for females; male group is therefore

the minority group in this problem. Our method achieves

better equality of opportunity measure than the baseline by

increasing the minority group TPR value while decreasing

the majority group TPR value. To understand the balanc-

ing mechanism of TPR values (Q3), we visualize a subset

of test male images that have been classified correctly as at-

tractive after transformation (those examples were misclas-

sified in the original domain) in Figure 2.

We observe a consistent localized area in face, specifi-

cally lips and eyes regions. The CelebA dataset has a large

diversity in visual appearance of females and males (hair

style, hair color) and their ethnic groups, so more localized

facial areas have to be discovered to equalize TPR values

across groups. Lips are very often coloured in female (the

majority group) celebrity faces, hence our method, to in-

6https://github.com/predictive-analytics-lab/

Data-Domain-Fairness
7We deliberately evaluate the performance (accuracy and fairness) us-

ing an auxiliary classifier instead of using the predictor of the transformer

network. Since the emphasis of this work is on representation learning,

we should not prescribe what classifier the user chooses on top of learned

representation.
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input
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Figure 3. Results of our approach (image-to-image translation via

attributes). Given N i.i.d. samples {(xn, yn)}Nn=1, our method

transforms them into a new fair dataset {(x̃n, yn)}Nn=1 where

(x̃n, yn) is the fair version of (xn, yn). The synthesized images

are produced by the StarGAN model [7] conditioned on the origi-

nal images and their fair attribute representation.

Figure 4. Results of Fainess GAN [40] (Fig.2) of non-attractive

(left) and attractive (right) males after pre-processing. Given N

i.i.d. samples {(xn, yn)}Nn=1, Fainess GAN transforms them into

a new fair dataset {(x̃n, ỹn)}N
′

n=1 where N ′ 6= N and (x̃n, ỹn)
has no correspondence to (xn, yn).
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Figure 5. Top 10 semantic attribute features that have been

changed in 647 males; those males were incorrectly predicted as

not attractive, but are now correctly predicted as attractive. 641
and 639 males out of 647 are now with “Heavy Makeup” and

“Wearing Lipstick” attributes, respectively, and 215 out of 647
males are now without a “5 o Clock Shadow” attribute.

crease the minority group TPR value, colorizes the lip re-

gions of the minority group (males). Interestingly, female

faces without prominent lipstick often got this transforma-

tion as well, prompting the decrease in the majority group

TPR value. Regarding eye regions, several studies (e.g. [4]

and references therein) have shown their importance in gen-

der identification. Also, a heavy makeup that is often ap-

plied to female celebrity eyes can also support our visual-

ization in Figure 2.

The image-to-image translation using transformer net-

work learns to produce coarse-grained changes, i.e. mask-

ing/colorizing face regions. This is expected as we learn

a highly unconstrained mapping from source to target do-

main, in which the target data is unavailable. To enable

fine-grained changes and semantic transformation of the

images, we now explore semantic attributes; attributes are

well-established interpretable mid-level representations for

images. We show how an attribute-to-attribute translation

provides an alternative way in analysing and performing an

image-to-image translation.

Attribute-to-attribute translation Images in the

CelebA dataset come with 40 dimensional binary attribute

annotations. We use all but two attributes (gender and

attractiveness) as semantic attribute representation of

images. We then perform attribute-to-attribute translation

with the transformer network and consider the same

attractive versus not attractive task and gender protected

characteristic as with the image data. We report the results

of this experiment in Table 2 (second and forth rows

correspond to the domain of attributes). First, we observe

that the predictive performance of the classifier trained

on attribute representation is only slightly lower than the

performance of the classifier trained on the image data

(79.1 versus 80.6), which enables sensible comparison of

the results in these two settings. Second, we observe better

gain in equality of opportunity when using the transformed

attribute representation comparing to transformed images

(12.4 is the best Eq. Opp. result in this experiment). This

comes at the cost of a drop in accuracy performance. The

TPR rates for both groups are higher when using translated

attribute representation than when using translated image

representation (third row versus fourth row). The largest

improvement of the TPR is observed in the group of

males (from 50.9 in the original attribute to 74.8 in the

translated attribute space). Further analysis of changes in

attribute representation reveals that equality of opportunity

is achieved by putting lipstick and heavy-makeup to the

male group (Figure 5). These top 2 features have been

mostly changed in the group of males. Very few changes

happened in the group of females. This is encouraging as

we have just arrived at the same conclusion (Figures 2 and

5), be it using images or using semantic attributes (Q4).

Image-to-image translation via attributes Given the

remarkable progress that has been made in the field to-

wards image synthesis with the conditional GAN mod-

els, we attempt to synthesize images with respect to the

attribute description. Specifically, we use the StarGAN
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model [7], the state-of-the-art model for image synthesis

with multi-attribute transformation, to synthesize images

with our learned fair attribute representation. For this, we

pre-train the StarGAN model to perform image transforma-

tions with 38 binary attributes (excluding gender and attrac-

tive attributes) using training data. We then translate all im-

ages in CelebA with respect to their fair attribute represen-

tation. We evaluate the performance of this approach and

report the results in Table 2 (last row). We also include

the qualitative evaluations of image-to-image translations

via attributes in Figure 3. These visualizations essentially

generalize counterfactual explanations in the sense of [45]

to the image domain. We have just shown the “closest syn-

thesized world”, i.e. the smallest change to the world that

can be made to obtain a desirable outcome. Overall, the

classifier trained using this fair representation shows simi-

lar Eq. Opp. performance and comparable accuracy to the

classifier trained on representation learned with the trans-

former network. However, the TPR rates for both protected

groups are higher (last row versus third row), especially in

the group of males, when using this representation.

Pre-processing approaches The aim of the pre-

processing approaches such as [40, 6] is to transform the

given dataset of N i.i.d. samples {(xn, yn)}Nn=1
into a

new fair dataset {(x̃n, ỹn)}N
′

n=1
. It is important to note that

N ′ is not necessarily equal to N , and therefore (x̃n, ȳn)
has no correspondence to (xn, yn). [6] has proposed this

approach for tabular (discrete) data, while [40] has ex-

plored image data. Here, we offer a unified framework

for tabular (continuous and discrete) and image data that

transforms the given dataset {(xn, yn)}Nn=1
into a new fair

dataset {(x̃n, yn)}Nn=1
where (x̃n, yn) is the fair version of

(xn, yn). What is the advantage of creating a fair repre-

sentation per sample (our method) rather than on the whole

dataset at once [40, 6]? The first can be used to provide

an individual-level explanation of fair systems, while the

latter can only be used to provide a system-level explana-

tion. For comparison, we include here a snapshot of re-

sults presented in [40] using the CelebA dataset in Figure 4.

The figure shows eigenfaces/eigensketches with the mean

image of the new fair dataset {(x̃n)}N
′

n=1
(in the center) of

the 3 × 3 grid. No per sample visualisation (x̃n) was pro-

vided. Left/right/top/bottom images in Fig. 4 show varia-

tions along the first/second principal components. In con-

trast, Figure 3 shows a per sample visualisation (x̃n) using

our proposed method.

3.3. The Diversity in Faces dataset

We extract and align face crops from the images and use

128x128 facial images as the inputs. Our preliminary exper-

iment has similar setup to the image-to-image translation

on the CelebA dataset except that the prediction task has

seven age groups to be classified. As the fairness criterion

we enforce equality of opportunity considering the middle

age group (31-45) to be desirable (as the positive label when

conditioning). As before, to test the hypothesis that we have

learned a fairer image representation, we compare the per-

formance and fairness of the SVM classifier trained using

original images and the translated fair images (with features

as activations in the pool 5 layer of the VGG19 network).

We achieve 52.85 as the overall classification accuracy over

seven age groups when using original image features and

an increased 60.26 accuracy when using translated images.

The equality of opportunity improved from 27.21 using

original image representation to 9.85 using fair image rep-

resentation. Similarly to the CelebA dataset, the image-to-

image translation using transformer network learns to pro-

duce coarse-grained changes, i.e. masking/colorizing nose

regions (as opposed to lips and eyes regions on CelebA).

These preliminary results are encouraging and further anal-

ysis will be addressed as a future extension.

4. Discussion and Conclusion

It is not clear if fairness and interpretability

are conflicting requirements. Reviewer #1

They are not, however interpretability in how fairness is

enforced has so far been overlooked despite being an inte-

gral ingredient for encouraging productive public debates

regarding fair machine learning systems. Interpretability in

machine learning models can help to ascertain qualitatively

whether fairness is met [46, 10]. This paper takes a step fur-

ther and advocates interpretability to ascertain qualitatively

how fairness is met, once we have agreed to enforce fairness

(e.g. equality of opportunity) in machine learning mod-

els. We specifically focus on enforcing fairness in repre-

sentation learning. Unlike other fair representation learning

methods that learn latent embeddings, our method learns a

representation that is in the same space as the original input

data, therefore retaining the semantics of the input domain.

Our method picks up consistently in 10 out of 10 repeated

experiments whether a person is a husband or wife as a di-

rect proxy for gender, and subsequently reduces the wife

category which is associated with a negative prediction. In

our experiments with people’s faces, eyes and lips are con-

sidered to be the direct proxy for gender attractiveness, and

nose regions for being in a certain age group. As a potential

future direction, we plan to further analyze the interpretabil-

ity in fairness using causal reasoning [31].
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