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Abstract

Defenses against adversarial examples, when using
the ImageNet dataset, are historically easy to defeat.
The common understanding is that a combination of
simple image transformations and other various de-
fenses are insufficient to provide the necessary protec-
tion when the obfuscated gradient is taken into account.
In this paper, we explore the idea of stochastically com-
bining a large number of individually weak defenses into
a single barrage of randomized transformations to build
a strong defense against adversarial attacks. We show
that, even after accounting for obfuscated gradients, the
Barrage of Random Transforms (BaRT) is a resilient
defense against even the most difficult attacks, such as
PGD. BaRT achieves up to a 24⇥ improvement in accu-
racy compared to previous work, and has even extended
effectiveness out to a previously untested maximum ad-
versarial perturbation of ✏ = 32.

1. Introduction

Adversarial machine learning has been a research
area for over a decade [1], but it has recently received
increased focus and attention from the larger commu-
nity. This is largely due to the success of modern deep
learning techniques within the realm of computer vision
tasks and the surprising ease with which such systems
are fooled into giving incorrect decisions [2]. In particu-
lar, there are concerns about the safety of self-driving
cars, as they could be fooled into misreading stop signs
as speed limits, and other possible nefarious actions [3].

Consider an adversary A whom, given some vic-
tim model f(·), wants to alter ex = A(x) such that
f(x) 6= f(A(x)). Many works have attempted to find
a transform t(·) that can be applied to an image x to
yield a new image x̂ = t(x) such that f(x) = f(t(A(x))).
If it were possible to find such a defensive transform t(·)
it would allow us a simple and convenient way to cir-
cumvent the adversarial problem. This is particularly
alluring for computer vision, since there exists a rich

literature of computer vision transformations to pull
from. Athalye, Carlini, and Wagner [4] has shown that
the many attempts to find such a defensive transforma-
tion t(·) that defeats adversarial attacks have all failed,
due to a problem they term obfuscated gradients. More
broadly, every defense we are aware of that has under-
gone thorough evaluation has failed to produce any level
of protection for ImageNet[5], as exemplified in the Ro-
bustML catalog where all ImageNet results are reduced
to  0.1% accuracy.1 In contrast, we present a new,
state-of-the-art defense for ImageNet that pays some
cost to accuracy when not under attack, but achieves
a Top-5 accuracy of up to 57.1% when under attack.
These attacks are carried out by the strongest adver-
sary we could construct, which is significantly stronger
than those used in similar work in key respects.

In our work, we instead look not for a single transfor-
mation t(·), but propose to build a collection of many
different transforms t1,...,n from which we will randomly
select a subset to apply to each image at both training
and testing time. The individual transforms will be
randomly parameterized as will the particular subset
chosen and the order in which they are applied. By
creating a barrage of random transformations, we show
that such an ensemble defense can provide tangible ben-
efits against attack, even after taking into account all of
the methods by which obfuscated gradients can mislead
us into using a broken defense [4].

Overall we provide the following contributions:
• A new, state-of-the-art defense on ImageNet, that

fully accounts for the obfuscated gradients issue.
• Results that show ensembling weak defenses can

create a strong defense, provided they are combined
in a randomized fashion and the population of
defenses is large. Prior work had conjectured that
this was not the case [6].

BaRT is inspired by and builds upon a number of
prior works that have used singular transformations
to try to defend against attacks. We will review work
related to our approach in section 2 and detail both the

1https://www.robust-ml.org/
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BaRT strategy and it’s constituent transformations in
section 3, as well as the threat model of our adversary in
section 4. While heuristic in nature, we find that after
accounting for our strongest adversary we obtain state-
of-the-art robustness against attack on the ImageNet
dataset, which we show in section 5.

2. Related Work

While work on adversarial attacks against machine
learning models has existed for over a decade, recent
work that showed their success against neural net-
works [7, 8] has spawned increased motivation and at-
tention to this problem. There were some who thought
this concern was over stated, and that the number of
variations in position, lighting, angle, and other factors
that would occur in the real world would render ad-
versarial attacks a non-issue for physical systems [9].
However, it was later shown that these difficulties could
be circumvented making it possible for adversarial ex-
amples to be constructed [10, 11].

Still, the intuition that adjustments in angle, posi-
tion, or other kinds of visual transformations of some
object could defeat an adversary by somehow filtering
or removing the adversary’s perturbations was strong
and alluring. As such, many papers have been presented
that attempt to defeat adversaries using some kind of
image pre-processing before classification (e.g., [12–14]).
As far as we are aware, these types of defenses have
all been defeated in the white-box threat model, either
by correctly incorporating the defense into the adver-
sary’s search procedure [2], or by properly accounting
for obfuscated gradients [4]. Obfuscated gradients oc-
cur when the defense has, intentionally or not, masked
information about the gradient making it unreliable (or
non-existent) for the adversary to use. These can occur
in a number of ways, but all of which have proposed
workarounds to obtain a suitable approximate gradient
for the adversary to use [4]. In this work, we use only
techniques which have already been defeated to build
our defense. This way we can leverage known solutions
to the obfuscated gradient and thus fully account for
the problem and ensure our adversary’s attack has full
knowledge of the defense.

Few approaches have been able to scale up to Im-
ageNet’s size, and we find most works that have at-
tempted to defend it against attack have been based on
transformations or denoising. Prakash, Moran, Garber,
et al. [15] claimed 81% accuracy under attack and Liao,
Liang, Dong, et al. [16] 75%, but both were reduced to
0% under just ✏ = 4 when obfuscated gradients were ac-
counted for [17]. Xie, Zhang, Yuille, et al. [18] claimed
86% accuracy and Guo, Rana, Cissé, et al. [13] 75%, but
these were later also reduced to 0% accuracy[4]. Even

different approaches with more modest claims were later
shown to be deficient, such as Kannan, Kurakin, and
Goodfellow [19] who initially reported 27.9% accuracy
but which was later demonstrated to be 0.1% [20].

Others before us have looked at building a multi-
component defense, but prior work has reached the
conclusion that a combined defense is no stronger than
any of its constituent members [6]. In this paper we
demonstrate that this is not necessarily true. Prior
attempts at ensembling defenses have all combined their
constituents in a fixed strategy, which has failed to be
useful. In contrast, we demonstrate that a stochastic
combination of weak defenses is effective.

A number of recent works have looked at develop-
ing provably secure training procedures for deep learn-
ing [21–23]. We believe that in the long term this is the
most encouraging and desirable path toward defending
against adversarial attacks. However, these methods
are not yet usable for large datasets. The most recent
work in this area has been “scaling up” to cifar-10 [24],
which is orders of magnitude smaller than ImageNet.

The state-of-the-art defense that has been repeatedly
found to be effective is Adversarial Training, which in-
volves augmenting the training data with adversarially
crafted examples generated as the training progresses [8].
Madry, Makelov, Schmidt, et al. [25] used adversarial
training on the cifar dataset, which still has the best
empirical robustness to attack [24] and has been repeat-
edly validated as effective and capable of fully defending
against the best known adversaries under the white-
box threat model [4]. Kurakin, Goodfellow, and Bengio
[26] attempted to scale adversarial training up to the
ImageNet dataset, which they found especially diffi-
cult. As far as we are aware, their work provides the
best uncontested defense against adversarial attack on
ImageNet. Against an adversary operating in the L∞

distance, they obtain Top-1 and Top-5 accuracy of 1.5%
and 5.5% for Top-1 and Top-5 respectively for a max
perturbation of ✏ = 16. We will show that our defense
outperforms adversarial training across all ✏ 2 [2, 16],
and even continues to provide a robust defense up to
✏ = 32. We are not aware of any prior work which has
considered an L∞ adversary given this wide of a range.

3. A Barrage of Random Transforms

Given the research that has been performed over the
past year, it is clear that a single transformation of
the input image is not sufficient to produce a reliable
defense. We take the perspective that given an omnipo-
tent adversary, randomness is one way to construct a
decision process that the adversary can not trivially cir-
cumvent. The question then becomes: is there a way to
randomly pre-process images before they are classified
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by a CNN, such that accuracy is not obliterated and the
adversary is unable to effectively operate?

Since we are working on images, we can make use of
a plethora of pre-existing image transformation and pre-
processing steps that have been developed by the com-
puter vision community over the past several decades.
We leverage these to create 10 groups G1,...,10 of trans-
formations. Each group Gj will have some number
of transforms t(·) contained within that group. We
used a total of n = 25 different transforms t1,...,25,

and denote the set of all transforms T =
S25

i=1 ti, and
8j,Gj ⇢ T , with each group of transforms having no
overlap (Gj \Gk = ; for j 6= k).

Each transform ti(·) will have some parameters pi
that alter the behavior of the transform, and so by
randomly selecting the values of p we can can have
ti(x|pi) produce many different outputs, introducing
a stochastic component. This alone is not new, but
we also have a collection of n different transforms to
choose from. To further maximize the randomness, we
select an ordering, or “permutation,” ⇡ of k transforms
to apply. The ordering ⇡ will change every time we
attempt to use a model f(·), with the goal being that
f(x) = f(t

π(1)(tπ(2)(. . . (tπ(k)(A(x)))))).

The intuition is that by randomly selecting k out of n
transforms, where each transform is itself randomized,
and applying them in a random order, we create a
defense that the adversary A can not easily defeat.
We focused on this randomness on top of randomness
because it provides a mechanism that the adversary can
not easily deal with, even if they have perfect knowledge
of all transformations ti and the parameters pi that
alter their behavior. The space of possible actions is too
large to find a single alteration ex = A(x) such that the
attacker will successfully induce an error by the model
for all permutations ⇡ and parameterizations p

π(...).

The transforms we use are listed below. There are
five singleton-groups (a group that has only one trans-
form member, |Gi| = 1). When a group has more than
one constituent transform, we randomly select a trans-
form from the group to act as the group’s representa-
tive, selecting a new representative on every application.
This is to prevent the choice of multiple transformations
which all have very similar effects from being applied
at the same time, thereby increasing the diversity of
changes made to each input.

We emphasize that for every individual transform we
evaluate in this work, we have independently tested the
transform and achieved 100% evasion success against
it using the attack methodology outlined in subsec-
tion 4.1. As such, we know that all of these defenses are
insufficient in isolation. Thus it is their stochastic com-
bination that makes them significantly stronger than

any constituent member. This is counter to previous
conclusions that ensembling defenses are not effective
and only as strong as the strongest individual defense
in the ensemble [6]. The critical difference between our
own and prior ensembling defense work is is the num-
ber of defenses (25 weak defenses, compared to  3 for
most prior work), and the use of randomness to select
subsets of defenses in random orderings.

We employ 25 transforms in total, and so only briefly
describe the larger groups here. Further explanation,
and Python code, are provided in the appendix.

Color Precision Reduction Reducing bit-resolu-
tion of color was originally proposed as a defense by
Xu, Evans, and Qi [27] and later reduced to 0% effec-
tiveness [4]. It works by simply reducing the number of
bits used to represent the color space of an image, and
was tested down to using just 1 bit of color. We incor-
porate this approach, and make the transform random
in two ways. First, the number of colors will be reduced
to a value selected from U [8, 200]. Second, with 50%
probability we choose between: 1) using the same num-
ber of colors for each channel, or 2) selecting a different
random number of colors to be used by each channel.

JPEG Noise Using lossy JPEG compression to intro-
duce artifacts was introduced by Kurakin, Goodfellow,
and Bengio [10]. Their work looked at how different
values of the JPEG compression level (a range from 1
to 100) reduced the impact of adversarial attacks for
different values of ✏  16. However, it was subsequently
defeated, having 0% effectiveness [4]. When using this
approach, we randomize it by selecting the compression
level from U [55, 95].

Swirl We introduce a simple defense which is to apply
a weak swirl to the image, rotating the pixels around
a randomly selected point in the image. The radius
of intensity is randomly selected from U [10, 200], and
strength from U [0.1, 2.0].

Noise Injection In early work Tabacof and Valle
[28] looked at the impact of addition Gaussian noise
on adversarial attacks. We extend this by randomly
selecting from Gaussian, Poisson, Salt, Pepper, Salt &
Pepper, and Speckle noise to be inserted. With a 50%
chance we will either: 1) apply the same noise to every
channel, or 2) apply a randomly selected noise type to
each channel independently.

FFT Perturbation We introduce a defense built
around perturbing the 2D FFT of each channel of the
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input image separately. In the frequency domain of the
image, we scale all coefficients by a value sampled from
U [0.98, 1.02] (used for all channels). Then for each chan-
nel, we randomly choose between 1) zeroing out random
coefficients of the FFT, or 2) zeroing out the lowest
frequency coefficients of the FFT. The proportion of
coefficients that will be set to zero is a random value
selected from U [0.0, 0.95]. After altering the coefficients
in the frequency domain we return a new, modified
image in the spatial domain.

Zoom Group We consider two transforms that have
the effect of zooming into the image. To prevent “over
zooming” into the image, they are grouped and only one
is selected from the group at each step. A simple zoom
into a random portion of the image is done, similar to
prior work [13], as well as a content-aware zoom based
on seam carving [29].

Color Space Group We include four transforms
that operate by altering the channels of the image by
adding a random constant value, but provide larger im-
pact by first converting the image from RGB to a differ-
ent color space, and then converting back to RGB after
modification. While a more difficult approach would be
to allow every pixel in every color coordinate to receive
a different value, we intentionally choose the simpler
constant value to aid our adversary. This approach is
applied to the HSV, XYZ, LAB, and YUV color spaces
as the four transform members of this group.

Contrast Group We consider three different types
of histogram equalization. Because each one attempts
to re-scale and redistribute the values of the histogram
of an image to broaden the covered range, they do not
make sense to apply in a sequential manner. We use a
simple version of Histogram Equalization, an adaptive
variant called clahe [30], and an approach known as
“contrast-stretching.”

Grey Scale Group We as humans are usually able
to recognize most objects from grey scale imagery, and
as such, include conversion to grey scale as one of our
defense techniques. For this reason we perform grey-
scale transformation four different ways which can be
applied selectively to different color channels.

Denoising Group The final group we consider is a
number of classical denoising operations and transfor-
mations. We group them to avoid over-zealous appli-
cation that can result in images which appear overly
blurry and become difficult to interpret. This includes

a Gaussian blur, median, mean, and mean-bilateral [31]
filtering, Chambolle and wavelet [32] denoising, and non-
local mean denoisng. Prior works have used the median
filter [12], wavelet [15, 17], and non-local mean [27] as
defenses, but all have since been defeated.

4. Methodology

Given the set of transformations outlined in section 3,
we will use a ResNet50 model as our base architecture
for experimentation. In particular, we will start with a
pre-trained ResNet50 model, and perform an additional
100 epochs of training on ImageNet using Adam[33]. For
each dataset in the batch, we randomly pick k ⇠ U [0, 5]
transformations to apply to each image, so that the
model is familiar with the transformations we apply
at test time. Following Biggio, Fumera, and Roli [34],
we will now fully state the threat model that we will
operate in.

Once we have a trained model, our adversary will
attack it in three ways: 1), reduce the Top-1 accuracy
(any output besides the correct class is a success for the
attacker); 2) reduce the Top-5 accuracy (any output is
a success for the attacker provided the correct class is
ranked sixth or lower), and; 3) increase the targeted
success rate. In the first two conditions the attacker can
trick the model into any incorrect classification. In the
final condition, the attacker has a specific, randomly
selected class that it must induce the model into out-
putting. All of these attacks will be performed on the
standard ImageNet validation set.

Our adversary’s capability will include making modi-
fications to any input feature of the test data under the
L∞ metric, for which the adversary will attempt to mod-
ify the input x to a new input x̂ such that kx� x̂k∞ < ✏.
In our experiments, we will test a range of ✏ 2 [2, 32].

We will operate in the white-box scenario, and as-
sume that our adversary has full and complete knowl-
edge of our training data, architecture, weights, and
defensive transforms. To perform the attacks, we will
use the Fast Gradient Sign Method (FGSM) [8] because
it is a common baseline. More importantly, we will also
use Projected Gradient Descent (PGD) [26], which is
also targeted toward the L∞ metric and is currently the
strongest known attack for this metric. PGD has been
conjectured to be a near-optimal first-order attack [25].
We use the FoolBox library for the implementation of
these attacks [35].

To further ensure the attacker’s strength, we follow
recommendations from Demontis, Melis, Pintor, et al.
[36], and attempt to optimize for the adversary in the
L∞ ball with maximum confidence, rather than min-
imum distance. This includes making sure that the
PGD attack runs through all optimization steps, even
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Figure 1: Diagram of BPDA network architecture. Input is of dimension 3+2+ |P (t)|, first three dimensions are the
RGB channels, second two are the CoordConv channels, and the last set corresponds to the random parameters that
affect the transform t(·)’s output. Arrows that connect in the diagram indicate concatenation, yellow is convolution
(number of filters below) followed by batch-normalization, and red is the ReLU activation

if the attack appears to have been successful at an ear-
lier iteration. By default all experiments will perform
PGD with 40 attack iterations, with stronger attacks
in the appendix. Below we will further detail all the
steps we take to implement the adversary’s attack, so
that we fully account for the gradient obfuscation and
other issues that have thwarted previous defenses [2, 4].

4.1. Making A Strong Adversary

To maximize the strength of our attacker, we must
first resolve two issues. The first is that our transfor-
mation process is randomized, which means we can not
take the gradient from a single instance of the attack,
as the next realization of a transformed image will have
a differently parameterized transform. To remedy this
situation, we use the Expectation over Transformation
(EoT) [11]. The idea of EoT is to perform the transfor-
mation multiple times, and take the average gradient
over several runs. When we use iterative attacks like
PGD, this means for every iteration of the attack we
will take the average of several transforms at that step
in the attack.

The second issue we have is that not all of our trans-
formations are differentiable. The solution to this prob-
lem was proposed by Athalye, Carlini, and Wagner [4],
and is called Backward Pass Differentiable Approxima-
tion (BPDA). The idea is simple: when a transform
t(·) is not itself differentiable, use a neural network to
learn a function ft(·) that approximates the transform.
Since it is implemented with a neural network, ft(·)
is differentiable, and so we can use rft(·) to obtain a
gradient that is useful for the adversary as an approxi-
mation to rt(·). This approach is effective, and using
a naive identity function ft(x) = x is often sufficient
to defeat many attacks. Indeed, it is enough to defeat
most of our transforms individually. However, we learn
a small CNN to approximate this gradient to maximize
the adversary’s advantage.

We also recognize that while we have a repertoire of
transforms that are selected from at random, each trans-
form t itself is randomized as well. Denoting the set of
parameters of a transform t as P (t), the transform is de-

terministic given a specific realization p ⇠ P (t) of these
transforms. To learn our model ft(·), we will create an
input that has 5 + |P (t)| channels, and is the same size
as the image to be learned. The first three channels will
be the RGB channels of the original image. The next
two channels will be the CoordConv values proposed
by Liu, Lehman, Molino, et al. [37], so that our net-
works can deal with location specific transformations.
We found CoordConv necessary in our BPDA model
to effectively approximate the Swirl transform. The re-
maining |P (t)| channels will each have a constant value,
which is the value of the realized parameters p. Placing
the random values p each into their own distinct chan-
nel provides a mechanism for us to allow the network
ft(·) to learn the fully specified deterministic mapping.
Each CNN ft(·) has 6 convolutional layers, followed by
batch-normalization and then a ReLU activation. For
each layer we include a skip connection from the input,
following the DenseNet approach. (See Figure 1). We
train the network as a denoising auto-encoder, where
the target is the parameterized transform of the image
(i.e., the loss is kft(x, p)� t(x|p)k22), with 100 epochs of
training for all 25 BPDA networks. Once ft(·) is trained,
we perform BPDA by back-propagating through ft(·)
to the first 3 channels that correspond to the original
image RGB values.

Combining BPDA and EoT as we have described
above, we can defeat any of our transforms individually
100% of the time for both targeted and un-targeted
attacks. This confirms that we have implemented
these approaches appropriately, and have maximized
the strength of our adversary.

As part of our evaluation, we also wish to address
a concern raised by Madry, Makelov, Schmidt, et al.
[25], which is the computational cost of a threat model.
They argue that the strength of an adversary should be
in some way computationally constrained, in the same
manner that cryptographic problems are secure because
we assume the adversary does not have the dramatic
compute resources necessary to attack a given encryp-
tion scheme. Using 10 iterations of EoT combined with
the iterative nature of PGD (40 optimization steps)
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means we must perform 400 gradient calculations per
attack, combined with the time to compute the image
transformations and back-propagate through the ad-
ditional BPDA networks. This takes about 48 hours
per experiment given a workstation with 10 CPU cores
and a Titan X GPU. We will also consider results with
40 EoT iterations — the highest we have observed in
the literature — to evaluate if an even stronger adver-
sary would be significantly more successfully, but these
experiments required 240 hours each on a DGX-1. In
total, the results presented in this paper consumed ap-
proximately 320 days on our DGX-1. We include tests
at both of these EoT scales to help confirm our attack is
robust, and simply increasing the number of iterations
of the adversary does not dramatically change results.
We also feel we are approaching a limit of reasonable
compute for an adversary to have, and would be the
largest barrier to replication if we pushed to even more
attack iterations.

4.1.1. Medoid over Transformations

We take a moment to define a new type of attack to
help ensure that we are not inadvertently engaging in
accidental obfuscation of gradients. In particular, we
note that the expectation over transformation approach
uses the mean gradient over some transformation, shown
more formally in Equation 1 where zEoT is the number of
iterations of the EoT sampling and t(i) is a deterministic
realization of the transform t (i.e., the pseudo random
number generator has been seeded with the value i to
provide a deterministic result).

rEt(i)∼tf(t
(i)(x)) ⇡

1

zEoT

zEoTX

i=1

rf(t(i)(x)) (1)

One possible source of gradient obfuscation might be
that the mean of the distribution does not exist or is not
well defined. This notion comes from the recognition
that in our larger framework t in Equation 1 corresponds
to our entire randomized pipeline of selecting k trans-
forms from G1,...,10. Our concern by analogy is that we
could have a situation similar to the Cauchy distribu-
tion: The mean of the Cauchy distribution does not
exist; every empirical mean is equally likely. However,
one can successfully estimate the Cauchy distribution’s
position by instead using the median.

With this notion in mind, we include a new Medoid
over Transformations (MoT) estimate, in which we
use the medoid of the gradients of a sample of zMoT

transformations as our gradient estimate to perform
attacks with.

argmin
i

zMoTX

j=1

krf(t(i)(x))�rf(t(j)(x))k22 (2)

If we are accidentally performing gradient obfusca-
tion by instead pushing information from the mean to
the medoid — similar to the behavior of a Cauchy dis-
tribution — we would expect to see an increase in per-
formance with the MoT attack compared to the EoT.
Our results will confirm that this is not the case, as the
MoT attack performs worse than the EoT attack. How-
ever, we include the results and attack description here
to build further confidence that we have attempted to
make the strongest attack possible.

5. Results

Few people have had their defense stand up to fur-
ther testing due to a variety of issues related to ob-
fuscated gradients and failing to fully account for all
components of the defense when designing the white-
box adversary. Fewer still have been able to scale their
defensive techniques up to the ImageNet dataset. Now
that we have defined our methodology to make sure
we have accounted for both obfuscated gradients and
ensure our adversary has fully captured the defense in
their attack, we will show how we obtain new state-of-
the-art results on the ImageNet dataset, as well as the
associated costs in achieving such performance.

Kurakin, Goodfellow, and Bengio [26] provide the
strongest results on the full ImageNet dataset that we
are aware of. They do this with adversarial training,
which they noted had great difficulty scaling up to
the ImageNet corpus. At a maximum perturbation of
✏ = 16, they achieved only a Top-1 accuracy of 1.5% and
a Top-5 accuracy of 5.5% when under attack by PGD.

For BaRT, we will by default assume ✏ = 16, the
number of transformations k = 5, and the number of
EoT runs will be 10. In our experiments we will investi-
gate changing all of the values to observe their impact
on our effectiveness against attack. We begin by show-
ing the accuracy of our methods in Table 1. Here we
can see the first immediate down side to BaRT, which
is a significant reduction in accuracy if our model is not
under attack. The off-setting benefit is the first signifi-
cant improvement in accuracy when the model is under
attack. At a cost of increased runtime, it is possible
to create multiple inferences of an input by applying
the transform t(·) multiple times, and then classifying
each differently transformed version of the image. This
creates an ensemble effect, and removes any loss in ac-
curacy due to BaRT’s application. Due to space, details
on ensembling BaRT are left to Appendix E.

5.1. Experiments

The immediate product of our work is that the BaRT
strategy provides a 9.3–24 times improvement in accu-
racy on ImageNet compared to prior state of the art.
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Table 1: Accuracy (%) of baseline prior work on ad-
versarial training [26] and BaRT. ‘Clean Images’ is the
results of classifying non-attacked images without any
transforms; ‘Attacked’ shows results when using PGD
with ✏ = 16.

Clean Images Attacked

Model Top-1 Top-5 Top-1 Top-5

Inception v3 78 94 0.7 4.4
Inception v3 w/Adv.Train 78 94 1.5 5.5
ResNet50 76 93 0.0 0.0
ResNet50-BaRT, k = 5 65 85 16 51
ResNet50-BaRT, k = 10 65 85 36 57

2 4 8 16 22 32

0

0.2

0.4

0.6

Max Adversary Distance ✏

A
cc

u
ra

cy

BaRT Top-1 EoT=10 Bart Top-5 EoT=10
BaRT Top-1 EoT=40 BaRT Top-5 EoT=40

Adv. Train Top-1 Adv. Train Top-5

Figure 2: Accuracy of model under attack by PGD for
varying adversarial distances ✏ with EoT steps={10,40}.

We now further investigate the differing parameters of
our defense. First we look at the larger range of ✏, the
bound on the adversary’s freedom to alter the input.
In Figure 2 we show accuracy under PGD attack as ✏

varies from 2 to 32. We note that ✏ = 16 is the largest
we have observed in any prior work, and is considered
a powerful adversary. We are the first to test ✏ = 32,
and still show non-trivial robustness to attack.

In these results we see that BaRT dominates adver-
sarial training across all values of ✏. We also see that
adversarial training degrades quickly as ✏ moves from
just 2 to 4. In contrast BaRT Top-1 and Top-5 accu-
racy when attacked with ✏ = 32 is still better than the
results with adversarial training and ✏ = 4. For ✏ > 2,
BaRT also shows Top-1 accuracy higher than adversar-
ial training’s Top-5 accuracy.

0 1 2 3 4 5 6 7 8 9 10
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Figure 3: Accuracy of model when varying the number
of transforms used, both when not under attack and
when being attacked by PGD.

These results also demonstrate that while increasing
the number of EoT steps does increase the adversary’s
success rate, the difference is not large. Using 40 steps
already requires a level of compute not reasonable for
most institutions, and gives us confidence that other
attempts to simply throw even more compute to the
adversary will be nonviable. This is before we consider
that it is relatively easy to write these transformations,
and we could add even more transformations to the
pipeline to further impede the adversary’s compute
requirements and reduce their success rate. While we
do not have the resources to test exhaustively, we show
in Appendix F that using even 520 PGD steps shows
no significant change in the attacker’s success rate.

Next we investigate the number of transforms applied.
For these results, we remind the reader that BaRT was
only trained with up to k = 5 transforms applied to the
training data. In Figure 3 we plot the Top-1 and Top-5
accuracy of BaRT (under attack and on clean images)
as a function of the number of transforms k selected at
test time. Our initial expectation was that we would
see the best performance (i.e., greatest accuracy under
attack) when k = n/2, as this would maximize the
number of combinatorial paths

�
n

k

�
. However, this was

not the case.

Instead we see that every transformation ti(·) we ap-
ply produces some associated costs and benefits. The
benefit is that increasing k ! n improves our perfor-
mance when under attack. A slight dip occurs after
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Figure 4: Attacker success rate against BaRT model
when varying the number of transforms used, for both
FGSM and PGD attacks with ✏ = 16.

k = 5 transformations are applied, which we expect is
related to using k  5 during training. One can also ob-
serve a steady decrease in the accuracy on non-attacked,
clean images as k increases, which happen to almost
intersect at k = 10. Adding more transformations also
has an impact on run-time, but calculating the trans-
formations is fast relative to the cost of needing a GPU
for CNN inference, and is approximately three orders
of magnitude faster than running the attacks.

Overall this validates that an ensemble of weak de-
fenses can form a single strong defense, provided that
the ensemble is applied in a random fashion. We also
see that maximizing the combinatorial search space is
not a dominating strategy, since we see maximal ad-
versarial robustness at k = 10 instead of k = 5. This
tells us that the amount of transformation applied to
the image is also an important component of defeating
the adversary, as this is maximized at k = 10. Cumula-
tively, we could argue that selecting the value of k to
use in practice should be a function of the likelihood
of being under attack. If a model is continuously un-
der attack or needs maximal worst-case performance,
one should choose k = 10 because the non-attacked
accuracy is not meaningful when under attack.

We also explore the impact on targeted adversarial
attacks in Figure 4, where we look at the attacker’s suc-
cess rate as a function of k. Here we can see that when
no transformations are present, PGD attack achieves
100% success rate against the model, but quickly de-
grades as transformations are added — reaching 0.0%
success at k = 10 transformations. We note that ad-
ditional runs may produce values near zero instead of
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Figure 5: Accuracy of model under attack by EoT and
MoT versions of PGD for varying adversarial distances
✏ and EoT steps=40.

at zero, but it suffices to show that the ability for the
adversary to perform targeted attacks can be almost
completely impeded by our BaRT defense.

Lastly, in subsubsection 4.1.1 we considered the possi-
bility that we might be engaging in obfuscated gradients
by moving information to the medoid of the distribu-
tion. We developed a new Medoid over Transformation
attack to test this hypothesis. The results are shown in
Figure 5. While MoT does produce adversarial exam-
ples, it has uniformly worse performance compared to
using the mean gradient. As such we further conclude
that we have not relied on obfuscated gradients, and
that our defense is effective.

6. Conclusion

We have introduced BaRT, a strategy for defending
image classifiers against attack by randomly selecting
a few transforms from a large pool of stochastic trans-
formations, and apply each in a random order before
processing the image. This scales to datasets like Ima-
geNet, and provides state-of-the-art results when under
attack even after accounting for all known obfuscated
gradients. While heuristic in nature, our results pro-
vide evidence that a strong defense can be made from
many weaker ones, and indicates strategic applications
of randomness may benefit future work.
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