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Abstract

We present a generic, flexible and 3D rotation invari-

ant framework based on spherical symmetry for point cloud

recognition. By introducing regular icosahedral lattice and

its fractals to approximate and discretize sphere, convo-

lution can be easily implemented to process 3D points.

Based on the fractal structure, a hierarchical feature learn-

ing framework together with an adaptive sphere projection

module is proposed to learn deep feature in an end-to-end

manner. Our framework not only inherits the strong repre-

sentation power and generalization capability from convo-

lutional neural networks for image recognition, but also ex-

tends CNN to learn robust feature resistant to rotations and

perturbations. The proposed model is effective yet robust.

Comprehensive experimental study demonstrates that our

approach can achieve competitive performance compared

to state-of-the-art techniques on both 3D object classifica-

tion and part segmentation tasks, meanwhile, outperform

other rotation invariant models on rotated 3D object classi-

fication and retrieval tasks by a large margin.

1. Introduction

Deep learning methods for point cloud processing [16,

18, 22, 6] have attracted great attention recently. Compared

to 3D object reasoning techniques based on 3D voxels or

collections of images (i.e., views), directly processing 3D

points is more challenging. The intrinsic difficulty of point

cloud processing comes from its irregular format, which

makes capturing local structures of 3D objects costly. To

tackle this problem, previous works [18] utilize the set of

local points to approximate local structures by dynamically

querying the nearest points for each location, which intro-

duces a considerable computation cost during both training

and inference, and requires carefully designed module to

handle the non-uniform density in different areas.

Point clouds are usually obtained using 3D scanners for

real-world applications such as autonomous driving and

Figure 1. Generalization ability to unseen rotations versus accu-

racy on ModelNet40. Although previous deep learning algorithms

for point cloud show state-of-the-art accuracy, they generalize

poorly to unseen orientations. Besides, all other methods suffer

a sharp accuracy drop in performance when arbitrary rotations are

presented. Our model achieves superior performance on both ac-

curacy and generalization ability.

robotics, where the viewpoints, density and other attributes

of points may vary a lot in different scenarios. Therefore,

point cloud processing algorithms should be resistant to ro-

tations, perturbations, density variability and other noise

coming from sensor and environment. Although several ef-

forts have been devoted to learn robust feature from non-

uniform density [18] and 3D rotations [6], the robustness

of point cloud processing algorithm is still far from perfect.

Existing algorithms usually fail to balance performance and

robustness, where models with strong representation capa-

bility [16, 18] cannot generalize well to unseen rotations

and rotation equivariant algorithms [6, 5] show relatively

inferior performance.

Deep convolutional neural networks [12, 20, 9] have

led to a series of breakthroughs for image recognition and

shown strong representation power and generalization ca-
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pability in various tasks. One of the reasons for the tremen-

dous success is the hierarchical architecture of CNN, where

features from low, middle and high levels are naturally inte-

grated and features can be enriched hierarchically. Benefit-

ing from the regular grid format of image, feature maps can

be easily pooled or up-sampled, which allows CNN to learn

and enrich features using different receptive fields along

a multi-scale hierarchy. Previous success of convolutional

neural networks also suggests that it is important to main-

tain a stable neighboring operation. The stability comes in

two ways, a stable selection of neighbors, and the stability

of neighbors. For convolutional neural networks, the image

grids serve as a good natural regular pattern, which could

be easily incorporated with convolutional kernels to guar-

antee an invariant neighborhood. Such property does not

exist in point data, since different point clouds are usually

organized in different typologies, where we cannot always

maintain a stable selection (e.g., k nearest points) and the

stability of neighbors (e.g., points within a radius r) at the

same time due to the non-uniform density.

Motivated to address these challenges, we propose an

alternative framework for point cloud recognition in this

work, named Spherical Fractal Convolutional Neural Net-

works (SFCNN), to learn deep point cloud features effec-

tively and robustly. Different from existing methods that

learning features directly from original set of points or its

abstractions, a novel structure that consists of a regular

icosahedral lattice and its fractals is introduced to approxi-

mate and discretize continuous sphere. More specifically,

we design a trainable neural network to project original

points onto the fractal structure adaptively, which helps our

model resistant to rotations and perturbations while max-

imally preserve details of the input 3D shapes. Convolu-

tion, pooling and upsampling operations can be easily de-

fined and implemented on the lattices. Based on the fractal

structure, network structures adopted from CNN based im-

age recognition are proposed to improve the representation

power and generalization capability for point cloud recog-

nition. Benefiting from the stability of local operations and

spherical symmetry, our model surpasses most previous al-

gorithms on both robustness and effectiveness as presented

in Figure 1. Comprehensive experimental study on Model-

Net40 classification [27], ShapeNet part segmentation [29]

and SHREC’17 perturbed retrieval [19] demonstrates that

our approach can achieve competitive performance com-

pared to state-of-the-art techniques on both 3D object clas-

sification and part segmentation tasks, meanwhile, outper-

form other rotation invariant models on rotated 3D object

classification and retrieval tasks by a large margin.

2. Related Work

Deep Learning for 3D Object Recognition: Benefiting

from deeper and better features, the past few years have

witnessed a great development in 3D object recognition.

3D objects can be represented by various formats, which

leads to different methods for learning. These methods can

be categorized into three categories: view-based methods,

volumetric methods and point-based methods. View-based

techniques [23] takes a collection of 2D views as input for

3D shape reasoning, where CNNs for image processing can

be directly adopted. Typically, a shared CNNs for single

view recognition is applied for each view independently

and then features from different views are aggregated to a

single representation during inference. Volumetric meth-

ods [27, 14, 17] apply 3D convolutional neural networks

on voxelized shapes, which suffers a lot from the computa-

tional bottleneck brought by sparse 3D grids and thus can

only built upon relatively shallow networks and low input

resolution. Point-based methods is firstly proposed by Qi et

al. [16], which directly consumes point clouds and thus

significantly speed-up 3D shape reasoning. Recent stud-

ies on point-based methods [18, 22] show on-par or even

better performance on 3D object recognition with much

lower computational cost and demonstrate the effectiveness

as well as efficiency of this group of methods. However, the

robustness of point-based methods has rarely been explored

in recent works.

Feature Learning on Irregular Data: Qi et al. [16] pi-

oneered a new type of deep learning method on irregular

data, which achieves input order invariant feature learning

by utilizing symmetry function over 3D coordinates. This

work explore feature learning on points via aggregating fea-

tures individually learned from each point. Local informa-

tion matters in feature learning, which has been proved by

the success of CNN architectures. Follow-up work called

PointNet++ [18] improves the original method by exploit-

ing local structures among points, which is achieved by

densely querying and fusing neighboring points for each

point. Su et al. [22] captures local structures in a differ-

ent way, where original points are mapped into a high-

dimensional lattice and thus point clouds can be processed

using bilateral convolutional layers. Similar with their

method, lattice structure is also introduced in this work to

improve the efficiency and stability of point processing, but

our method further exploits spherical lattice structure and

can generalize to various tasks including classification, part

segmentation and retrieval.

Robust Feature Learning: The robustness is essential in

real-world applications of point cloud processing systems.

There have been some efforts improve the robustness of fea-

ture learning algorithm. For example, Qi et al. [16] adopted

an auxiliary alignment network to predict an affine trans-

formation matrix and applied this transformation on input

points and intermediate features to make model resistant to

affine transformation. Different from introducing an aux-
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Figure 2. The overall structure of SFCNN. Our proposed feature learning framework can be easily extended to various tasks from point

cloud recognition including classification, retrieval and part segmentation. In our framework, input points are adaptively projected onto

the discretized sphere. Then, a hierarchical feature learning architecture is designed to capture local and global patterns of point cloud.

Features from different hierarchies are summarized to form the representation of input data. Benefiting from the symmetric projection and

the hierarchical structure, our framework is effective yet robust.

iliary network, Esteves et al. defined several SO(3) equiv-

ariant operations on sphere to process 3D data, which can

achieve better invariance and generalize well to unseen ro-

tations. However, this model suffers from imperfect projec-

tion method and convolution operations defined in spectral

domain, which shows poorer capability than spatial convo-

lutions on regular grids. Moreover, spherical CNN is orig-

inally designed for voxelized shapes. To the best of our

knowledge, this work is the first attempt to study the rota-

tion invariance of point cloud processing algorithm.

Aside from designing robust architecture, data augmen-

tation is also a widely used technique to improve the robust-

ness of neural networks. However, it requires higher model

capacity and brings extra computation burdens. Besides,

previous study [6] also shows aggressive data augmentation

like arbitrary 3D rotations on input data will harm the recog-

nition performance when robust architecture is not used. We

show that our model have sufficient capacity to incorporate

with different data augmentation methods and it is more ro-

bust than others when less augmentations are applied.

3. Approach

We propose an approach inspired by convolutional neu-

ral networks for image recognition. Due to the irregular

format of point cloud, we firstly map 3D points onto a dis-

cretized sphere that is formed by a fractalized regular icosa-

hedral lattice. Convolutional neural networks with multi-

scale hierarchy then is defined. Our model can be easily

extended to point cloud recognition tasks such as classifi-

cation and part segmentation. The overall framework of

our SFCNN is presented in Figure 2, where a multi-layer

perceptron classifier is can be added on features from dif-

ferent hierarchies to perform classification and an encoder-

decoder network inspired by similar architecture for image

semantic segmentation [1] is designed to conduct part seg-

mentation.

3.1. Preliminaries

The difficulty of point cloud processing mainly comes

from the irregular format of points. A natural solution to

tackle this challenge is transforming irregular points to a

regular format in 2D or 3D, where existing deep learn-

ing techniques like 2D and 3D convolutional neural net-

work can be directly used. However, existing volumetric

and view-based methods usually suffers from detail losses

brought by transformations, where the low resolution of 3D

voxelized grids prohibits the usage of local geometric de-

tails and the discontinuities across different views leads to

poor performance on detail sensitive tasks like shape seg-

mentation. As mentioned above, we project 3D objects

onto discretized sphere instead to address these issues. On

the one hand, the complexity of conducting neural network

algorithms on discretized sphere is O(n), where n is the

number of samples on sphere. Therefore, the complexity

of learning on discretized sphere is comparable with point-

based method like PointNet and much lower than volumet-

ric and view-based methods. On the other hand, sphere do-

main is continuous, global and rotation-invariant, allowing
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Figure 3. Different spherical discretization methods. (a) is the

equiangular sampling. (b)-(f) are discretized spheres produced

by the proposed equal-area sampling method with different fractal

levels varying from 0 to 4.

our algorithm to capture local structures from complete 3D

object while being robust.

Previous works [6, 3] discretize sphere with equiangu-

lar sampling, where the cell area varies significantly along

latitude. It will lead to significant inconsistency among dif-

ferent rotations and thus requires higher model capacity to

learn invariant feature. Instead, we build our model upon

spherical lattice with equal area spherical sampling. In prac-

tice, we discretize sphere with a regular icosahedron and its

fractal to maximally approach sphere, since Platonic solids

are the most highly symmetrical among spherical polyhe-

drons. Note that discretized sphere with perfect symmetry

does not exist [6, 25]. Nevertheless, our empirical study

shows that is can be overcome by feature learning process

with proper data augmentation. The differences between

equiangular sampling and ours is shown in Figure 3.

3.2. Detail-preserving Spherical Projection

Consider a point cloud of n points that can be repre-

sented as a set of 3D points X = {p1, p2, ..., pn}, where

each point pi contains 3D coordinates pi = (xi, yi, zi). In

a more generic setting, points can be equipped with addi-

tional features representing surface normal, appearance in-

formation and so on. Our method projects X to a set of N

features {Fi|Fi ∈ R
n, i = 1, ..., N} on a spherical lattice

L = (V,E), where L can be regarded as a undirected graph

that comprises N vertices V = {vi|i = 1, ..., N} and a set

of corresponding edges E and each feature Fi is associated

to an unique vertex vi.

Different from previous works [6, 25] that project points

through a hand-craft rule, a PointNet-like parametric pro-

jection module are introduced to maximally preserve the de-

tails and structures of the input point clouds. In practice, we

learn a shared small PointNet model for all vertices, which

takes k nearest points of each vertex as inputs and produces

a single feature vector as projected features on vertices. It

is worth to notice that different from other methods that re-

quires to search k nearest points dynamically, the spherical

lattice structure is shared for different inputs and thus pre-

processing algorithms like kd-tree can be applied to signif-

icantly accelerate searching. Moreover, since the number

of vertices can be pre-defined and is independent with point

number, the computational cost of our algorithm will not

rapidly increase when more points are sampled.

The rotation-variant point coordinates (x, y, z) make

features learned by vanilla PointNet projection module

varying with different input rotations. This face motivates

us to develop the following Aligned Spherical Coordinate

representation to improve the robustness of spherical pro-

jection modules.

Aligned Spherical Coordinate: Since input points are as-

signed to vertices on the lattice, we can represent the point

coordinates p as the sum of vertex coordinates v and offset

vector δv:

p = v + δv. (1)

Consider a rotation R that is applied on the input point

cloud. We can donate the rotated point p as p′ = v′ + δv′ ,

where v′ is a new vertex which p′ is assigned to. Since

only the nearest k points are assigned to the corresponding

vertex, we can assume ||v|| >> ||δv||. In order to make

projection module resistant to rotation, we propose a new

coordinate pv , named aligned spherical coordinate, to re-

place p as a more robust representation. pv can be obtained

by applying a rotation matrix Rv derived from Rodrigues’

rotation formula:

pv = Rvp
T , Rv = 2

(v + u)T (v + u)

(v + u)(v + u)T
− I, (2)

where u is a unit vector shared for all vertices and points (we

use u = (0, 0, 1) in our implementation), I is the identity

matrix and Rv is the rotation matrix that can rotates vector

from v to u. This transformation aligns all points that are as-

signed to v to the local coordinate system of v. Intuitively,

because all points are rotated toward u, the difference be-

tween pv and p′v only depends on the local structure around

p and thus pv is robust when it is assigned to different v due

to 3D rotation. Since the degree of freedom is not strictly

restricted, the transformed points pv are not perfectly rota-

tion invariant, but by using the proposed coordinate we can

significantly reduce the change of input coordinates when

rotation is applied on points. Meanwhile, the local structure

of each group of k points can be fully preserved. Actu-

ally, the change of offset vector can be viewed as a small

random shift on input point cloud, which has been used as

a data augmentation method in previous point-based algo-

rithms to avoid overfitting [16, 18]. Therefore, our method
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Figure 4. Detailed structure of building blocks. (a) is the basic

block for spherical feature learning. The basic block can be used to

perform symmetry convolution, feature pooling and up-sampling.

(b) is the residual block adopted from [9] to enable deeper feature

learning.

can achieve very strong robustness to 3D rotation in appli-

cations.

Invertibility Constraint: In our practice, the spherical pro-

jection module is jointly trained with the followed CNN

model in an end-to-end manner, which greatly increases

the difficulty of optimization. We therefore propose a reg-

ularization method incorporated with the final objective.

Specifically, we constrain the projection to be invertible:

Linv = dCH(X,

N
⋃

i

f(Fi)), (3)

where dCH is Chamfer distance, f is a multi-layer percep-

tron that maps feature on lattice to multiple 3D points. By

adding this constraint, the training process can be more sta-

ble and models can achieve better generalization capacity

and performance.

3.3. Convolutions on Spherical Lattices

Convolution operations can be easily implemented given

the regular spherical lattices. Similar with the convolu-

tion in 2D CNN, convolution on spherical lattices oper-

ates in local regions. For each vertex vi on spherical lat-

tices, convolution operation takes vi and its neighboring

vertices {vj |dL(vi, vj) = 1} as input, where dL is the graph

distance metric defined on lattice L. Different from con-

volutions on images, we cannot define a consistent order

of neighboring vertices {vj |dL(vi, vj) = 1}. Inspired by

graph CNN [15] and symmetry function proposed by [16],

we achieve symmetry convolution by computing:

F l+1

i = Conv(max
j

(Conv(concat(F l
i , F

l
j)))), (4)

where F l
i represents feature from the l-th layer at vi, Conv

denotes the convolution with kernel size 1, features from

neighboring vertices are concatenated with the feature of

vi along the channel dimension to fuse spatial information

while maintain symmetry and channel-wise max-pooling

is performed over all neighboring vertices of vi. The de-

tails of our convolutional block is presented in Figure 4,

where each block consists of two prevalent Convolution-

BatchNorm[10]-ReLU structures and we also adopt the idea

of residual learning [9] from image recognition to enable

deeper network.

3.4. Spherical Fractal Structure

Given a set of spherical lattices {Li}, i = 0, 1, ..,M
in different fractal levels, where L0 represents the regu-

lar icosahedral lattice and M is model’s the highest fractal

level which input points are projected to, we can naturally

define a hierarchical feature learning framework based on

above-proposed convolution operation. Note that the pro-

posed convolution operation can be directly used for feature

learning in the same fractal hierarchy and performing pool-

ing on features from higher fractal level with the number of

neighboring vertices as 6. For up-sampling features from

lower fractal level, we sample 2 neighboring vertices and

use the mean of these two vertices as the new feature if the

current vertex does not exist in the last lattice, and just copy

the current vertex if it is already in the last level. Because

of the imperfect symmetry of spherical lattice, the vertices

from the original icosahedral lattice only have 5 neighbor-

hoods satisfying dG = 1. In practice, we do not use the L0

in the spherical fractal structure to improve the cross-level

consistency. Actually, the proposed symmetry convolution

is robust to the number of neighboring vertices, and thus de-

fects in lattices will not significantly harm the performance.

The network architecture of SFCNN for point cloud classi-

fication and retrieval is summarized in Table 1.

For part segmentation task, an encoder-decoder network

is used to predict per-point labels. For each points, we con-

catenate 3D coordinate with features from nearest vertex of

different fractal levels to form the final feature of each point.

3.5. Implementation

All of our models can be trained on a single GTX 1080ti

GPU. Our models are trained using Adam [11] optimizer

with a base learning rate of 0.001, where we decay learning

rate by 0.8 every 20 epochs. The models for classification

and retrieval tasks are trained for 250 epochs and models

for part segmentation are trained for 400 epochs. We fix the

mini-batch size to 32 for classification and retrieval tasks

and 16 to part segmentation tasks, and set the weight decay

as 1e-5 for all tasks. In all of our experiments, we randomly

sample points varying from 512 to 1536 to make our models

robust to different densities. We randomly dropout [21] the
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Table 1. The architecture of SFCNN for classification and re-

trieval. The number are channels of each block is shown in brack-

ets. Down-sampling is perform at the first block of stage 2, stage 3

and stage 4. Ni represents the number of vertices in the i-th frac-

tal level. We add a maxpool layer at the end of MLP projection

module to summarize the sampled k neighboring points for each

vertex. A Non-Local [26] layer is used before the last fully con-

nected layer of projection module to capture the local structures

better. C is the number of categories in classification task and K

is the channel width.

stage name output size architecture

projection N4 × 16K MLP (8K, 8K, 16K)

stage 1 N4 × 16K

[

16K
16K

]

×B

stage 2 N3 × 32K

[

32k
32k

]

×B

stage 3 N2 × 64K

[

64K
64K

]

×B

stage 4 N1 × 128K

[

128K
128K

]

× 2

classifier C MLP (512, 128, C)

features followed by the classifier with 0.8/0.5 probability

for classification/part segmentation task to avoid overfitting.

We use 1024 points for all tasks during testing, and voting

trick is used to boost performance.

4. Experiments

We conducted experiments on three different bench-

mark datasets ranging from ModelNet40 classification [27],

SHREC’17 perturbed retrieval [19] and ShapeNet part seg-

mentation [29]. The following describes the details of the

experiments, results and analysis.

4.1. ModelNet 3D Shape Classification

In this section, we evaluate our model on classification

task of ModelNet40 dataset and compare our method with

state-of-the-art 3D shape recognition techniques. We also

evaluate the robustness of the proposed method through ro-

tated data and perturbations generated by adversarial attack.

To better understand the proposed method, we further con-

ducted several ablation experiments.

Main results: ModelNet40 contains 12,311 CAD models

of 40 categories. We use the standard split [16, 18], where

9,843 shapes are used for training and 2,468 shapes are se-

lected for testing. Following [6], we evaluated our model

using three different settings: 1) training and testing with

azimuthal rotations (z/z), 2) training and testing with arbi-

trary rotations (SO3/SO3), and 3) training with azimuthal

rotations while testing with arbitrary rotations (z/SO3).

The results are presented in Table 2. All other models

suffer a sharp drop in classification performance in both the

z/SO3 and the SO3/SO3 setting, even the SO(3) equivari-

ant method [6] (2% and 12.2% in SO3/SO3 and z/SO3 re-

spectively). It can be observed that our model has a rel-

atively small accuracy drop and consistently outperforms

other methods across different settings. Note that some re-

cently proposed point cloud methods like [28] can achieve

slightly better performance on the z/z setting than ours.

Nevertheless, these algorithms are mainly built upon Point-

Net and its descendants, which are not robust enough when

point cloud is rotated.

We further conducted comprehensive ablation experi-

ments on the proposed framework to examine the effective-

ness of our models. Different settings on network archi-

tectures and projection modules were tested in our experi-

ments, which is shown in Table 3.

Ablation study on network architecture: We evaluated

our model with different numbers of channel and layers. We

can see that the performance and generalization ability to

unseen rotations consistently increase when deeper and/or

wider networks are applied. Our model shows similar prop-

erty as CNN for image convolutions, which suggests that

SFCNN successfully inherits the strong generalization ca-

pability of CNN and thus generalize well when the model

capacity increases.

Ablation study on projection module: We also conducted

experiments on the spherical projection module. Experi-

mental results shows that the number of sampled neighbor-

ing points k is crucial and sensitive in our model. When big-

ger k values are chose, sampling too many points for each

vertex harms the locality of vertices and thus this model

generalize poorly in both z/z and z/SO3 settings. On the

contrary, when much less points are sampled for each ver-

tex, it could be more difficult to capture the local structures

of input point cloud but it also improves the locality of ver-

tices. We found models with k = 16 achieved superior

performance and generalize well to different tasks includ-

ing retrieval and part segmentation.

Adversarial robustness: The robustness of point cloud al-

gorithm also depends on whether model is resistant to ran-

dom perturbations. Pervious studies on the robustness of

image recognition models show that deep learning algo-

rithm can be easily fooled by adversarial examples, which

are some images formed by applying small worst-case per-

turbations. A natural question is whether 3D recognition

algorithm can be fooled by this kind of perturbations. Un-

surprisingly, by applying a widely used adversarial attack

algorithm, called FGSM [8], we can form adversarial exam-
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Table 2. Comparisons of the classification accuracy (%) of our model with state-of-the-art methods on the ModelNet40 dataset. We report

the accuracy measured on three benchmarks including z/z, SO3/SO3 and z/SO3. Our model shows superior performance on all three

benchmarks. Our model can generalize well even to unseen rotations. † indicates that training data of MVCNN 80x is not restricted to

azimuthal.

Method input input size z/z SO3/SO3 z/SO3

VoxNet [14] voxel 303 83.0 87.3 -

SubVolSup [17] voxel 303 88.5 82.7 36.6

SubVolSup MO [17] voxel 303 89.5 85.0 45.5

Spherical CNN [6] projected voxel 2× 642 88.9 86.9 76.7

MVCNN 12x [23] view 12× 2242 89.5 77.6 70.1

MVCNN 80x [23] view 80× 2242 90.2 86.0 81.5†

PointNet [16] xyz 2048× 3 89.2 83.6 14.7

PointNet++ [18] xyz 1024× 3 90.7 85.0 21.2

PointNet++ [18] xyz + normal 5000× 6 91.9 85.8 19.7

PointCNN [13] xyz 1024× 3 91.7 84.7 44.5

Ours xyz 1024× 3 91.4 90.1 84.8

Ours xyz + normal 1024× 6 92.3 91.0 85.3

Table 3. Ablation study on ModelNet dataset. All models take

1024 points without surface normal as input. We conducted sev-

eral ablation experiments to examine the effectiveness of our mod-

els. Different settings on channel width K, block number B, sam-

pled neighborhood number k, coordinate alignment and invertibil-

ity constraint were tested in our experiments. We show the best

results in each group in bold.

Method z/z z/SO3

Baseline model (w/ alignment, w/o invertibility)

Baseline (K = 4, B = 2, k = 16) 90.2 83.2

Architecture

Wider ×1.5 (K = 6, B = 2, k = 16) 90.5 84.4

Wider ×2 (K = 8, B = 2, k = 16) 90.8 84.7

Deeper (K = 4, B = 3, k = 16) 90.7 83.7

Wider & deeper (K = 8, B = 4, k = 16) 91.0 85.0

Projection module: k

Bigger k (K = 4, B = 2, k = 64) 89.5 82.0

Smaller k (K = 4, B = 2, k = 4) 89.7 83.5

Projection module: alignment & invertibility

w/o alignment (K = 4, B = 2, k = 16) 90.3 47.2

w/ invertibility (K = 4, B = 2, k = 16) 90.8 83.7

Best model

w/ invertibility (K = 8, B = 3, k = 16) 91.4 84.8

ples for point clouds by using the gradient ascent strategy.

In Table 4, we show that both PointNet and our model can

be fooled by adding small perturbations with ||δ||∞ < ε,

where the maximal absolute value in perturbation δ is re-

stricted to be smaller than ε. Compared to randomly sam-

pled perturbations, adversarial perturbations can be viewed

as a more efficient tool to examine the robustness of point

Table 4. Comparisons of adversarial robustness on ModelNet. Per-

formance of our model, PointNet and PointNet++ against white-

box FGSM attacks with different ε is presented. Our model is

significantly more robust under adversarial attacks.

PointNet PointNet++ Ours

Baseline 89.6 90.7 91.4

FGSM ε = 0.002 44.7 47.5 69.4

FGSM ε = 0.01 32.6 39.2 52.1

cloud algorithms under the worst cases. We can see that al-

though both PointNet and our proposed model suffer from

a significant drop in accuracy, our model is more robust.

4.2. SHREC’17 3D Shape Retrieval

We also conducted 3D shape retrieval experiments on

ShapeNet Core [4], following the perturbed protocal of the

SHREC’17 3D shape retrieval contest [19]. Our model for

shape retrieval is trained on training and validation sets pro-

vided by the contest. For a fair comparison with previous

methods, the model is trained following the practice in [6],

where an auxiliary in-batch triplet loss is used together with

softmax classification loss. In our implementation, the fea-

ture followed by the classifier is L2-normalized and used

as invariant descriptor of input point cloud. Cosine similar-

ity is used to compute the distance between samples. Other

details are same as [6].

Experimental results are presented in 5. Without tricks,

our method can outperform all other algorithms by a large

margin, including the winner of this contest. Compared to

the most participating methods in SHREC’17, our method

and implementation is simple yet efficient, which proves the

effectiveness of the proposed method.
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Table 5. Comparisons of the 3D retrieval performance of our model with state-of-the-art methods on the perturbed dataset of the SHREC’17

contest. We report the performance measured by standard evaluation metrics including precision, recall, f-score, mean average precision

(mAP) and normalized discounted cumulative gain (NDCG). The average of the micro macro mAP is used to rank performance follow-

ing [19]. Without tricks, our method can outperform other methods by a large margin.

micro macro

Method PN R@N F1@N mAP NDCG PN R@N F1@N mAP NDCG score

SHREC’17 participating methods

Furuya [7] 0.814 0.683 0.706 0.656 0.754 0.607 0.539 0.503 0.476 0.560 0.566

Tatsuma [24] 0.705 0.769 0.719 0.696 0.783 0.424 0.563 0.434 0.418 0.479 0.557

Zhou [2] 0.660 0.650 0.643 0.567 0.701 0.443 0.508 0.437 0.406 0.513 0.487

Spherical CNN [6] 0.717 0.737 - 0.685 - 0.450 0.550 - 0.444 - 0.565

Spherical CNN [5] 0.701 0.711 - 0.676 - 0.443 0.508 - 0.406 - 0.541

Ours 0.778 0.751 0.752 0.705 0.813 0.656 0.539 0.536 0.483 0.580 0.594

Table 6. Part segmentation results on ShapeNet Part Segmentation dataset. We report the mean IoU across all part classes and IoU for each

categories are reported, where we use ’EP’ and ’SB’ to represent earphone and skateboard respectively.

Method mIoU aero bag cup car chair EP guitar knife lamp laptop motor mug pistol rocket SB table

PointNet [16] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [18] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

SyncSpecCNN [30] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

SPLATNet3D [22] 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3

SpiderCNN [28] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

Ours 85.4 83.0 83.4 87.0 80.2 90.1 75.9 91.1 86.2 84.2 96.7 69.5 94.8 82.5 59.9 75.1 82.9

4.3. ShapeNet Semantic Part Segmentation

As a generic framework, SFCNN can be applied to vari-

ous tasks for point cloud processing. We can easily extend

our framework to 3D shape semantic segmentation by em-

ploying the encoder-decoder network architecture.

The ShapeNet Part dataset [29] is a widely used bench-

mark to evaluate 3D part segmentation, which contains

16,681 objects from 16 categories. Each object have 2-6

part labels. We reported the standard evaluation metrics in-

cluding mean IoU across all part classes and IoU for each

categories following previous works.

Experimental results are shown in Table 6. Our model

obtained an mIoU of 85.4, which shows very competitive

performance compared to state-of-the-art methods.

Our experiments demonstrate that our framework has

strong capacity of capturing and understanding local and

global structures in different tasks. Meanwhile, our

model is also very efficient. Training PointNet++ and

SPLATNet3D for part segmentation tasks on ShapeNet

takes 3.5 and 2.5 days [22] respectively on the similar hard-

ware configurations, while our model can converge less than

24 hours on a single 1080ti GPU.

5. Conclusion

In this paper, we present the SFCNN framework, which

is a generic, flexible and 3D rotation invariant framework

based on spherical symmetry for point cloud recognition.

Our framework shows similar properties as CNN for im-

age recognition and extends CNN to learn robust feature

resistant to rotations and perturbations. Comprehensive ex-

perimental study demonstrates the proposed model is effec-

tive yet robust. Our approach can achieve competitive per-

formance compared to state-of-the-art techniques on both

ModelNet40 classification and ShapeNet part segmentation

tasks. Meanwhile, our model can also show superior per-

formance on rotated ModelNet and SHREC’17 perturbed

shape retrieval tasks.
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Welling. Spherical cnns. arXiv preprint arXiv:1801.10130,

2018. 1, 8

[6] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-

dia, and Kostas Daniilidis. Learning so (3) equivariant repre-

sentations with spherical cnns. In ECCV, pages 52–68, 2018.

1, 3, 4, 6, 7, 8

[7] Takahiko Furuya and Ryutarou Ohbuchi. Deep aggregation

of local 3d geometric features for 3d model retrieval. In

BMVC, 2016. 8

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples (2014).

arXiv preprint arXiv:1412.6572. 6

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 1, 5

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 5

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, pages 1097–1105, 2012. 1

[13] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In NeurIPS, pages 828–838, 2018. 7

[14] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition. In

IROS, pages 922–928. IEEE, 2015. 2, 7

[15] Mathias Niepert, Mohamed Ahmed, and Konstantin

Kutzkov. Learning convolutional neural networks for graphs.

In ICML, pages 2014–2023, 2016. 5

[16] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. CVPR, 1(2):4, 2017. 1, 2, 4, 5, 6, 7, 8

[17] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classification on 3d data. In

CVPR, pages 5648–5656, 2016. 2, 7

[18] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, pages 5099–5108,

2017. 1, 2, 4, 6, 7, 8

[19] Manolis Savva, Fisher Yu, Hao Su, M Aono, B Chen, D

Cohen-Or, W Deng, Hang Su, Song Bai, Xiang Bai, et al.

Shrec17 track large-scale 3d shape retrieval from shapenet

core55. In Proceedings of the 10th eurographics workshop

on 3D object retrieval, 2017. 2, 6, 7, 8

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. The Jour-

nal of Machine Learning Research, 15(1):1929–1958, 2014.

5

[22] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In CVPR, pages 2530–2539, 2018. 1, 2, 8

[23] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller. Multi-view convolutional neural networks

for 3d shape recognition. In ICCV, pages 945–953, 2015. 2,

7

[24] Atsushi Tatsuma and Masaki Aono. Multi-fourier spectra

descriptor and augmentation with spectral clustering for 3d

shape retrieval. The Visual Computer, 25(8):785–804, 2009.

8

[25] William P Thurston. Three-Dimensional Geometry and

Topology, Volume 1, volume 1. Princeton university press,

2014. 4

[26] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. arXiv preprint

arXiv:1711.07971, 10, 2017. 6

[27] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

CVPR, pages 1912–1920, 2015. 2, 6

[28] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. ECCV, 2018. 6, 8

[29] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan

Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,

Leonidas Guibas, et al. A scalable active framework for re-

gion annotation in 3d shape collections. TOG, 35(6):210,

2016. 2, 6, 8

[30] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-

speccnn: Synchronized spectral cnn for 3d shape segmenta-

tion. In CVPR, pages 6584–6592, 2017. 8

460


