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Abstract

We present Occlusion-Net1, a framework to predict 2D

and 3D locations of occluded keypoints for objects, in a

largely self-supervised manner. We use an off-the-shelf de-

tector as input (e.g. MaskRCNN [16]) that is trained only

on visible key point annotations. This is the only supervision

used in this work. A graph encoder network then explic-

itly classifies invisible edges and a graph decoder network

corrects the occluded keypoint locations from the initial de-

tector. Central to this work is a trifocal tensor loss that

provides indirect self-supervision for occluded keypoint lo-

cations that are visible in other views of the object. The

2D keypoints are then passed into a 3D graph network that

estimates the 3D shape and camera pose using the self-

supervised reprojection loss. At test time, Occlusion-Net

successfully localizes keypoints in a single view under a di-

verse set of occlusion settings. We validate our approach on

synthetic CAD data as well as a large image set capturing

vehicles at many busy city intersections. As an interesting

aside, we compare the accuracy of human labels of invisible

keypoints against those predicted by the trifocal tensor.

1. Introduction

Virtually any scene has occlusions. Even a scene with

a single object exhibits self-occlusions - a camera can only

view one side of an object (left or right, front or back), or

part of the object is outside the field of view. More complex

occlusions occur when one or more objects block part(s)

of another object. Understanding and dealing with occlu-

sions is hard due to the large variation in the type, number

and extent of occlusions possible in scenes. As such, oc-

clusions are an important reason for failure of many com-

puter vision approaches for object detection [9, 14, 34, 16],

tracking[49, 5, 44, 41], reconstruction [20, 19] and recogni-

tion, even today’s advanced deep learning based ones.

The computer vision community has collectively at-

tempted numerous approaches to deal with occlusions [12,

1The code and dataset can be found at http://www.cs.cmu.edu/

˜ILIM/projects/IM/CarFusion/

Figure 1: Accurate 2D keypoint localization under severe

occlusion in our CarFusion dataset. Different colors depicts

different objects in the scene.

13, 26, 35] for decades. Bad predictions due to occlu-

sions are dealt with as noise/outliers in robust estimators.

Many methods provide confidence or uncertainty estimates

to downstream approaches that need to sort out whether the

uncertainty corresponds to occlusion. But it is hard to pre-

dict performance as they usually do not take occlusions ex-

plicitly into account.

On the other hand, occlusions are explicitly treated as

missing parts in model fitting methods [50, 40]. These ap-

proaches have had better success as they exploit a statistical

model of a particular type of object (e.g. car, human, etc.).

But much remains to be done. For instance, severe occlu-

sions, such as when a large part of an object is blocked, can

result in poor fitting[52]. Further, often these approaches do

not explicitly know which parts of an object are missing and

attempt to simultaneously estimate the model fit as well as

the missing parts.

In this work, we present an approach to explicitly pre-

dict 2D and 3D keypoint locations of the occluded parts of

an object using graph networks, in a largely self-supervised

manner. Our method receives as input, the output of any

detector (e.g., using the MaskRCNN architecture [16]) that

has been trained on a particular category of object with hu-

man supervision of only visible keypoints and their types

(e.g., front, back, left, right). Implicitly, then, the key points

that are not labeled are assumed to be invisible. This is the
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Figure 2: Occlusion-net: We illustrate the overall approach to training a network to improve localization of occluded key-

points. The input is a ROI region from any detector, which is passed through multiple convolutional layers to predict the

heatmaps with a confidence score. These confidences are passed through a graph encode-decoder network and trained using

multi-view trifocal tensor loss for localization of occluded 2D keypoints. The output from the decoder is passed through a 3D

encoder to predict the shape basis and the camera orientation. This network is a self-supervised graph network and trained

using reprojection loss with respect to the 2D decoder output.

only human supervision used in this work. The detector

usually provides an uncertainty of all key point locations.

We first show that the distribution of the uncertainties for

visible and occluded points overlap significantly, making it

hard to predict which key points are occluded at test time.

To address this issue, we design an encoder-decoder graph

network that first predicts which edges have an occluded

node, and then localizes the occluded node in 2D in the de-

coder. Visible or invisible edge classification is trained us-

ing the implicit non-labeled supervision of occluded points.

We then train the decoder graph network to localize in-

visible keypoints using multiple wide-baseline views of ob-

jects. Our observation is that while some parts may be miss-

ing in one view, they are visible and labeled in another view.

But how do we provide supervision for a hidden point lo-

cation in a view? We use two views where a keypoint is

seen (and labeled by humans) and compute the trifocal ten-

sor using camera matrices to predict its location in the view

where the keypoint is occluded. We call this the Trifocal

tensor loss, which is minimized to correct the 2D keypoint

positions from the initial detector. Compared to other ap-

proaches that use multiple views [38, 32, 37], our approach

explicitly predicts occluded keypoints.

The predicted 2D keypoints (both occluded and visible)

are then used in a graph network to estimate the 3D ob-

ject shape and the camera projection matrix. Similar to pre-

vious work [52, 39], we will estimate the parameters of a

shape basis computed a priori of the object of interest. The

training is performed in a self-supervised way by minimiz-

ing the reprojection loss i.e. error between the reprojection

and the predicted 2D keypoint locations. We train the entire

pipeline, called Occlusion-net, end-to-end with the afore-

mentioned losses.

We evaluate our approach on images of vehicles captured

at busy city intersections with numerous types and severity

of occlusions. The dataset extends the previous CarFusion

dataset [32] to include many more city intersections, where

18 views of the intersection are simultaneously recorded.

A MaskRCNN car detector is trained using 100000 cars,

with human labeled visible keypoints to produce a strong

baseline for our method to compare to and build upon. Our

Occlusion-net significantly outperforms (about 10%) this

baseline across many metrics and performs well even in the

presence of significant occlusions (see Figure 1). As an in-

teresting exercise, we also show a comparison of the trifo-

cal loss against human labeling of the 2D occluded point

locations and observe that humans label around 90% of the

points to lie within the acceptable range of error. We also

evaluate our approach on a large synthetic CAD dataset,

showing similar performance benefits and improvements of

up to 20% for occluded keypoints. Our network is efficient

to train and can localize keypoints in 2D and 3D in real-

time (more than 30 fps) at test-time. While we have demon-

strated our approach on vehicles, the framework is general

and applies to any object category.

2. Related Work

Occlusion Detection: While there has been significant

progress in predicting the visible keypoints by using part

detectors learned from CNNs [33, 42, 26, 2, 27, 46], most

of these methods fail short to precisely localize occluded

keypoints. Using synthetic data, Moreno et al. [31] show

that such occlusion modeling is crucial. To address this

problem, many methods employ active shape models [6] for

vehicle detection under occlusion [51, 52, 43]. However,

these methods only model self-occlusions and omit often

seen occlusions by other objects. Recently, [37, 32] pro-

pose a multi-view bootstrapping approach to generate ac-
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curate CNN training data when precise human labeling is

not possible. However, their methods are trained in stages

and do not explicitly model the interaction between visible

and occluded points. Most related to our work, [25] only

incorporates intermediate keypoint supervisions from CAD

model during training. Interestingly, they show that train-

ing such a model on synthetic images can generalize to real

images. We train our model on real images and incorporate

multiview constraints to propagate ground truth visible key-

points from multiple views to supervise occluded points.

Graph Neural Networks: Modeling keypoints as a graph

problem can be dated back to the first attempt at scene un-

derstanding [11, 30]. Multiple works have built on this

graph representation and solved pose using belief propaga-

tion [10, 36]. Recently, [8, 21, 1, 17, 7] have extended clas-

sical graphical modeling to a deep learning paradigm and

showed better modeling capability for unstructured data.

Based on the success of these methods on the graph clas-

sification tasks, multiple recent works have extended the

methods to address multiple 3D problems like Shape seg-

mentation [48], 3D correspondence [28] and CNN on sur-

faces [29]. We model keypoint prediction as a deformable

graph that is learned using multi-view supervision.

3. Occlusion-Net

Occlusion-Net consists of three main stages - visible

keypoints detection, occluded 2D keypoint localization and

3D keypoint localization networks - as shown in Figure 2.

The 2D-Keypoint Graph Neural Network deforms the graph

nodes to infer the 2D image locations of the occluded key-

points. The 3D-Keypoint Graph Neural Network localizes

the 3D keypoints of the graph using a self-supervised train-

ing procedure. We combine these networks to accurately

predict the 3D and 2D keypoint locations. Each of these

stages is described in the following sections.

3.1. 2DKeypoint Graph Neural Network

The 2D-Keypoint Graph Neural Network(2D-KGNN)

consists of three components: initial keypoint heatmap pre-

diction, a graph encoder to model the occlusion statistics of

the graph, and a graph decoder infering the 2D locations of

the occluded keypoints. We use the heatmap based meth-

ods [16][33] to compute the location of all the keypoints

in an image. The input to the graph network consists of k
keypoints, which are further categorized as v visible key-

points and o invisible/occluded keypoints. We denote the

vertex of the graph as V = (V1, ...,Vk) for k keypoints.

The relationship between all nodes is encoded in the edge

Eij = {Vi,Vj}, where

Eij =

{

1, if i ∈ v and j ∈ v

0, otherwise

We also denote V l as labeled keypoint annotations and

Vg as keypoints predicted from 2D-KGNN, respectively.

2D-KGNN Encoder: Occluded Edge Predictor The 2D

keypoint graph network (2D-KGNN) needs to infer the lo-

cations of the occluded keypoints (or, edges Eij) from the

keypoint heatmaps. We convert the heatmap into a graph

by encoding the location and confidence of each keypoint

into a node feature. The feature for keypoint i, can be more

formally represented as Vi = {xi, yi, ci, ti}, where (xi, yi)
is the location, ci is the confidence and ti is defined as the

type of the keypoint. Since, we do not know the underlying

graph, we use the GNN to predict the latent graph structure.

The encoder is modeled as q(Eij |V) = softmax(fenc(V))
where fenc(V) is a GNN acting on the fully connected

graph produced from the heatmaps. Given the input graph

our encoder computes the following message passing oper-

ations to produce the occlusion statistics:

h1
j = fenc(Vj) (1)

v → e :h1
(i,j) = f1

e ([h
1
i , h

1
j ]) (2)

e → v :h2
j = fv(

∑

i 6=j

h1
(i,j)) (3)

v → e :h2
(i,j) = f2

e ([h
2
i , h

2
j ]) (4)

In the above equations, ht denotes the tth hidden layer

of the network, while v and e denote the vertex and edge

of the graph. Here, v → e shows a convolution operation

from vertex to edge, while e → v represents the operation

from edge to vertex. The functions f() are implemented

as fully connected layers. The edge loss for this encoder is

the cross-entropy loss between the predicted edges and the

ground truth edges, given as:

LEdge = −
∑

i,j∈k

Eij log(E
l
ij) (5)

The E l
ij is the visibility statistics for each edge computed

from the labeled keypoints.

2D-KGNN Decoder: Occluded Point Predictor The de-

coder predict consistent 2D keypoint locations of the oc-

cluded keypoints from the erroneous initial graph and the

edges predicted from the encoder. This can mathematically

be represented as estimating Pθ(V
g|V, E), where Vg repre-

sents the output graph from the decoder and E is the input

from encoder, while V is the graph from the initial heatmap.

The following message passing steps are computed on the

graph network:

v → e :h(i,j) =
∑

p

Eij,pf
p
e ([Vi,Vj ]) (6)

e → v :µg
j = Vj + fv(

∑

i 6=j

h(i,j)) (7)

Pθ(V
g|V, E) = N (µg

j , ρ
2I) (8)
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Here Eij,p denotes the p-th element of the vector Eij . An

important thing to observe is the current state is added into

Eq. 7, so inherently the model is learning to deform the

keypoints i.e predict the difference ∆V = Vg − V . Further

in Eq. 7, µ is the mean location predictor and N produces

the probability of the locations. We only minimize the

distance between the predicted and ground truth occluded

points in this network using a trifocal tensor loss.

Trifocal Tensor Loss. We exploit multiple views of the

object captured “in the wild” to estimate the occluded key-

points. The assumption is that the keypoints occluded in

one view are visible in two or more different views. Thus,

the trifocal tensor [15] can transfer the locations in the two

visible views to the occluded view. Then, the loss for each

occluded keypoint is computed as:

LTrifocal =
∑

j∈o

[Vg
j ]×(

∑

i

(V ′)
i

jTi)[V
′′
j ]×, (9)

where i represents the three views considered for the

trifocal tensor T , Vg
j is the prediction from the decoder for

the occluded keypoint j in the current view, and V ′
j and

V ′′
j are the annotated keypoints j in two different views.

We computed T using the camera poses in the object

reference frame. In our setting, since the object (vehicle) is

rigid, the two visible views could come from any camera

viewing the same object at any other time instants.

3.2. 3DKeypoint Graph Neural Network

Given the graph from the 2D-KGNN decoder, the 3D-

keypoint graph neural network encoder predicts a 3D object

shape W and the camera projection matrix π. This encoder

takes as input the graph and predicts the 3D location of the

all the keypoints using a self-supervised projection loss.

Mathematically, this is formulated as q(β, π|V) = fenc(V),
where, β are the deformation coefficients of PCA shape

basis of the object and π is the camera projection matrix.

Shape Basis: We model the shape as a set of 3D keypoints

corresponding to the predicted 2D keypoints. We compute

the mean shape b0 and n principal shape components bj and

corresponding standard deviations σj , where 1 ≤ j ≤ n,

using the 3D repository of the object [3] with annotations

of 3D keypoints from [26]. Given the shape bases, any

set of deformable 3D keypoints can be represented as a

linear combination of the n principal components β as

W = b0 +
∑n

k=1 βk ∗ σk ∗ bk.

Camera Projection Matrix: Let π(W ) be the function

that projects a set of 3D keypoints W onto the image

coordinates. We use the perspective camera model and

describe π as a function of the camera focal length f , the

rotation q, represented as quaternion, and translation t of

the object in the camera coordinate frame [15]. We assume

the principle point of the camera is at the origin. To account

for the normalization of the image to a square matrix from

the original dimensions, we re-scale the projected 2D

points by s = w/h, where w and h denote the width and

height of the input image (see [22] for further details).

Keypoint Reprojection Loss: We train the 3D-Keypoint

Graph network in a self-supervised manner using the re-

projection loss, i.e. the difference between the projected 3D

keypoints and the keypoints computed from the 2D-KGNN:

LReproj =
∑

j∈k

||π(Wj)− Vg
j ||

2 (10)

The use of the 3D basis shape allows explicit enforcement

of 3D symmetry which provides further constraints for the

2D keypoint estimation via the reprojection loss.

3.3. Total Loss

Our Occlusion-Net is trained to minimize the sum of the

aforementioned losses:

L = LKeypoints + LEdge + LTrifocal + LReproj , (11)

where, LKeypoints is the cross-entropy loss over a t2-way

softmax output between the predicted keypoints and the

ground truth labels [16]. Here, t is the number of keypoints.

4. Experimental Results

We demonstrate the ability of our approach to infer oc-

cluded keypoints and 3D shape from a single view on the

new and challenging CarFusion dataset. We first describe

this dataset in section 4.1. We then perform ablative analy-

sis of the algorithm in Section 4.2. Finally, we show quali-

tative comparisons against the state of art Mask-RCNN [16]

detector in section 4.3. For a fair comparison, we retrain this

baseline model on our dataset. In the evaluation metrics,

2D-KGNN refers to the output after the decoder layer and

3D-KGNN refers to the projections of predicted 3D key-

points onto the image.

4.1. Datasets

Car-render Self-occlusion dataset: We use the 472 cars

sampled from shapenet [4] and 3D annotated by [26]. We

select 12 keypoints from the annotated 36 keypoints and

render them from different viewpoints. The viewpoints

are randomly selected on a level 5 Icosahedron, at varying

focal lengths and distances from the object. We use 300

synthetic CAD models for training, 72 for validation and

100 for testing. We project the 3D keypoint annotations

of the CAD model with visibility. we trace a ray toward

the object from a pixel and check if the first intersection is

close to the ground truth location to determine visibility.
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Figure 3: We analyze the need for a 2D-KGNN encoder.

The left image shows the confidence score of the heatmaps

from the baseline method (the distribution is colored based

on Ground Truth visibility). The right image shows the

ROC curve of the predictions from graph encoder and base-

line. At 0.1 false positive rate, the baseline returns 0.5 true

positive rates compared to 0.8 of the 2D-KGNN.

CarFusion dataset: To model a wide range of real

occlusions, we collect an extensive dataset captured simul-

taneously by multiple mobile cameras at 60fps at 5 crowded

traffic intersections (extending previous work [32]). This

extended dataset consists of 2.5 million images out of

which 53000 images were sampled at uniform intervals

from each video sequence. Approximately, 100000 cars

detected in these images were annotated with 12 keypoints

each. Each annotation contains the visible and occluded

keypoint locations on the car. We do not use the occluded

keypoints for training the Occlusion-Net. We selected four

annotated intersections to train the network while using

one intersection to test it, which split the annotation data

into 36000 images for training and 17000 for testing. We

further compute 90-10 train validation split on the training

data to validate our training algorithm. The dataset was

completely captured “in the wild” and contains numerous

types and severity of occlusions.

Preprocessing: Computing the trifocal loss requires the

virtual camera poses in the object frame. For every image,

the virtual pose is estimated by solving a PnP [23] between

the visible keypoints and the 3D points computed from [32].

4.2. Quantitative Evaluation

We compare our approach with other state-of-the-art

keypoint detection networks. We use the PCK metric [47]

to analyze both the 2D and the 3D occluded keypoint

locations. According to the PCK metric, a keypoint is con-

sidered correct if it lies within the radius αL of the ground

truth. Here L is defined as the maximum of length and

width of the bounding box and 0 < α < 1. To evaluate the

3D reconstruction, we project the reconstructed keypoints

into their respective views and compute the 2D PCK error.

Occlusion Prediction: We demonstrate that the confidence

scores computed using MaskRCNN is insufficient to

predict occlusions. The left image in Fig 3 shows the

distributions of confidence scores of occluded and visible

0.0 0.1 0.2 0.3
Alpha (α)

0

20

40

60

80

100

PC
K

 (
in

 %
)

Human Annotation Vs Trifocal Tensor

Figure 4: On the left, we show accuracy of human anno-

tations with respect to geometrically obtained keypoints.

We observe that most of the keypoints are labeled within

α = 0.1 PCK error. On the right, count of multi-view cor-

respondences of keypoints predicted using different meth-

ods. When few views are available, the occluded points

predicted by Occlusion-Net provide much more correspon-

dences to improve multi-view reconstruction.

points. These distributions overlap significantly making it

hard to distinguish occluded points from visible points. In

contrast, by modeling a graph network to exploit relative

locations of the keypoints, we observe a significant boost

in the accuracy of occlusion prediction as seen from the

right image in figure 3. We observe an AUC of 0.83 with

MaskRCNN, whereas 2D-KGNN gives an AUC of 0.95.

Evaluations of visible points: We show evaluation of our

network with respect to existing visible keypoint estimation

methods. Both 3D-KITTI[24] and PASCAL3D+ [45]

datasets have annotations only for visible keypoints and do

not contain occluded point annotations or multiple views to

directly evaluate our method. The 2D keypoint predictions

in [24] are evaluated only on visible keypoints and the

3D model is evaluated by fitting only visible keypoints on

objects that are not truncated or occluded by other objects

(”Full” in their table). Our model has not been trained on

either of these datasets or the CAD dataset from [24]. Table

1 compares our method against those on the annotated

2D visible points in 3D-KITTI. Table 1 also shows the

evaluation against the ground truth 3D model for the ”Full”

(unoccluded) case - the only case mentioned in [24]. We

observe that our approach outperforms the other methods

for two categories .i.e. Truncation and oth-Occlusion. This

can be attributed to the fact that our dataset models a range

of occlusion types and severity.

Importance of 3D-KGNN: The 3D pose computed

is useful for traffic analysis (speed, flow) and under-

standing/visualizing activity at busy city intersections.

3D-KGNN can also be used to find correspondence across

views for multi-view reconstruction, especially when there

are very few views available and the keypoints may be

occluded. Figure 4 demonstrates that 3D-KGNN finds

significantly more inliers for multiview correspondence

compared to 2D-KGNN or MaskRCNN.
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2D 3D yaw(Error)

Method Full Truncation Car-Occ Oth-Occ All Full Full

[18] 88.0 76.0 81.0 82.7 82.0 NA

[52] 73.6 NA 73.5 7.3

[25] 93.1 78.5 82.9 85.3 85.0 95.3 2.2

Ours 89.73 87.41 81.68 86.45 88.8 93.2 1.9

Table 1: PCK Evaluation[α=0.1] and comparison of

Occlusion-Net on 2D visible keypoints annotated in KITTI-

3D. Full denotes unoccluded cars, Truncation denotes cars

not fully contained in the image, Car-Occ denotes cars oc-

cluded by cars, and Oth-Occ denotes cars occluded by other

objects. All represents combining the statistics for all the

occlusion categories. Our method outperforms in most of

the occlusion categories. The 3D keypoint localization (last

two columns) in [25] is only evaluated on Full.

Human Annotation vs Geometric Prediction: The

CarFusion dataset has annotated keypoints for occluded

points as well as the visible points across multiple views.

Thus, as an interesting aside, we evaluate the accuracy of

hand-labeled occluded points with respect to those obtained

using the trifocal tensor, as shown in Figure 4. We observe

that at α = 0.1, nearly 90% of the hand-labeled keypoints

lie within the region of the geometrically consistent key-

points.

Accuracy Analysis: Figure 5 depicts the change in accu-

racy with respect to Alpha on Car-render dataset. We show

four different plots with different occlusion configuration,

ranging from 3 (very less occluded) to 9 (highly occluded)

invisible points out of 12 keypoints in total. We observe

that our method outperforms the baseline method in all con-

figurations for occluded keypoints. At α=0.1 we observe a

boost of 22% for 3 invisible points and 10% for 9 invisible

points. Figure 6 shows the change in accuracy with respect

number of occlusions for Car-render dataset. We plot the

graph for two different value of α and observe that 2D

graph method is more stable with increasing occlusion

compared to the 3D-KGNN. We show similar accuracy

vs. alpha plots on CarFusion dataset in Figure 8. We

observe that with increasing occlusions our method shows

higher accuracy improvement compared to the baseline

MaskRCNN. At α = 0.1 we nearly gain a boost of at least

6% in all the occlusion categories and nearly 12% boost for

5 occluded points. Figure 9 depicts the change in accuracy

with increasing number of occluded points on CarFusion

dataset. For the case of 4 invisible points configuration,

our approach is nearly 25% higher compared to the base-

line. To conclude we observe that the accuracy of KGNN

on occluded points is higher than using the baseline method.

Robustness Analysis: We analyze the effect of adding er-

ror to input locations of the graph to analyze the robustness

of the learned model. Figure 10 shows the accuracy with

respect to different Gaussian error added to the input graph.

We observe that 3D-KGNN is more stable with increasing
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Figure 5: Accuracy with respect to different alpha values

of PCK for the Car-render dataset. Graph based methods

(2D/3D) outperform the MaskRCNN trained keypoints for

all the occlusion types. Specifically at alpha=0.1 we ob-

serve an increase of 22% for cases with 3 invisible points

and 10% in case of 9 invisible points (out of 12 keypoints).
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Figure 6: Accuracy plots with varying number of occluded

keypoints on the Car-render dataset. Graph based meth-

ods (2D/3D) outperform the baseline (in red) in the case of

α = 0.1. For a more conservative alpha, the performances

are comparable. The 2D KGNN plots in both the alpha sce-

narios have a variance of 5% and are robust to occlusion,

compared to the 3D KGNN plot (15%) and the baseline

MaskRCNN plot (25%).

error while 2D-KGNN performs well for highly occluded

points but falls steeply with increasing error in input.

4.3. Qualitative Evaluation

In this section, we analyze the visual improvements of

our method across different categories of occlusion. Figure

11 depicts the visual results of the algorithm in different oc-

clusion situations. We demonstrate results on four occlusion

types namely, self-occlusion, vehicle occluding car, other

objects occluding car, and truncation where the car is par-

tially visible. The first column depicts the output from the

MaskRCNN keypoints. The color is coded blue because the

output from heatmaps does not give statistics about the oc-

clusion categories of the keypoints. The other column show

ablation results on our approach. The results demonstrate
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Figure 7: Example results of occlusion-net on sample images of the CarFusion dataset. We accurately localize occluded

keypoints under a variety of severe occlusions. See supplementary for additional results. Different colors depict different

vehicles in the scene.
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Figure 8: Accuracy vs Alpha on the CarFusion dataset. Fo-

cusing on Alpha=0.1 across the plots, graph based meth-

ods show an improvement of 6% for cases where only 3

(out of 12) points are occluded and nearly 10% or more im-

provement for more severe occlusion, justifying the usage

of graph networks for occlusion modeling.
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Figure 9: Accuracy analysis with varying occlusion config-

urations. Notice for occlusions with 4 (out of 12) visible

points, our approach is nearly 25% higher compared to the

baseline for occluded points.

that predicting occluded keypoints as a heatmap generate

large errors in localization while learning a graph based la-

tent space improves the location of the occluded keypoints

with respect to the visible points. Specifically, in high

occlusion scenarios, graph-based methods show large im-

provement visually compared to MaskRCNN. We further
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Figure 10: The plots depict the change in accuracy for the

methods when Gaussian noise is added to the input key-

points. As expected, 3D-KGNN (green) performs much

better in the presence of strong noise.

show the results of our method on multiple cars simultane-

ously in Figure 7. Our method performs accurate occluded

keypoint localization on very challenging occluded cars.

5. Conclusion

We presented a novel graph based architecture to pre-

dict the 2D and 3D locations of occluded keypoints. Since

supervision for 2D occluded keypoints is challenging, we

computed the error using labeled visible keypoints from dif-

ferent views. We proposed a self-supervised network to lift

the 3D structure of the keypoints from the 2D keypoints.

We demonstrated our approach on synthetic CAD data as

well as a large image set capturing vehicles at many busy

city intersections and improve localization accuracy (about

10%) with respect to the baseline detection algorithm.
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Figure 11: Qualitative evaluation of the 2D/3D keypoint localization for different occlusion categories of cars from the

CarFusion dataset. The initial detector was trained using the MaskRCNN on the visible 2D keypoints. We use our self-

supervised 2D-KGNN and 3D-GNN to localize keypoints from a single view. 2D reprojections of the 3D keypoints are

shown in third column. The second and third columns show clear improvement in the localization of the occluded keypoints

with respect to the baseline MaskRCNN. The canonical 3D views computed using 3D-KGNN are shown in the last column.

The ground truth is obtained by applying trifocal tensor on the human labeled visible points to estimate the invisible points.

Green represents visible edges and red represents occluded edges.
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