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Abstract

Maps are an increasingly important tool in our daily

lives, yet their rich semantic content still largely depends

on manual input. Motivated by the broad availability of

geo-tagged street-view images, we propose a new task aim-

ing to make the map update process more proactive. We

focus on automatically detecting changes of Points of Inter-

est (POIs), specifically stores or shops of any kind, based on

visual input. Faced with the lack of an appropriate bench-

mark, we build and release a large dataset, captured in two

large shopping centers, that comprises 33K geo-localized

images and 578 POIs. We then design a generic approach

that compares two image sets captured in the same venue

at different times and outputs POI changes as a ranked list

of map locations. In contrast to logo or franchise recogni-

tion approaches, our system does not depend on an external

franchise database. It is instead inspired by recent deep

metric learning approaches that learn a similarity function

fit to the task at hand. We compare various loss functions to

learn a metric aligned with the POI change detection goal,

and report promising results.

1. Introduction

Maps have become a useful companion in our daily lives,

as they provide a convenient and searchable representation

of our physical world. To achieve map usability, raw geo-

graphical data is manually enriched with associated seman-

tic information [18,38]. This way, maps can be queried and

explored in an effective and user-friendly manner.

Points of interest (POIs), i.e. well-localized landmarks

that one may find useful or interesting, typically constitute

an important part of this semantic content. POIs can be

shops or stores of all kinds, including restaurants, cafés,

banks, and so forth. Currently, most of this content is

gathered and entered mostly by hand in the map database

[18, 27, 41], but this process is tedious and expensive. This

is problematic as map semantic content is alive by definition

and, thus, subject to frequent changes. In addition, out-of-

Figure 1. Overview of the proposed system. We detect changes

of Points-of-Interest (POIs) as a first step towards the long-term

goal of fully-automated map updates. To that purpose, we compare

two sets of images captured at different moments. Image pairs

corresponding to the same physical location are first formed and

then compared using specially trained embeddings extracted by a

deep network. The comparison is simply carried out as an inner-

product between the two ℓ2-normalized embeddings.

date POI information can be a source of accidents and user

frustration [8, 37].

In this paper, we ask the following question: Could the

map maintenance burden be alleviated by leveraging recent

advances in computer vision? We notice that, much like hu-

mans, who unconsciously build a mental map of their sur-

rounding relying heavily on their ocular sense, machines

should also be able to perform semantic mapping-related

4086



(a) POI appearance (b) POI replacement (c) POI disappearance (d) no change

Figure 2. The different cases of POI changes. The first three columns show the cases we wish to detect. The last case is not a POI change,

but is challenging due to the lack of clearly identifiable brand or logo and the strong viewpoint and lighting changes.

tasks from visual input. We make one step towards the am-

bitious goal of fully-automated map maintenance and tackle

the detection of POI changes based on spatio-temporally

localized scene photographs. This task more specifically

consists in notifying a database operator whenever a POI is

changed, which happens when a new POI appears, a POI is

replaced by another one or a POI disappears, see Fig. 2.a–c.

It implies comparing two sets of images captured at dis-

tinct moments and is challenging for several reasons. First,

the comparison must be robust to various sources of noise,

e.g. lighting, reflection, shadows, occlusions and viewpoint

changes. Image poses and scaling can dramatically differ

between the two captures, as exemplified in Fig. 2.d. Sec-

ond, substantial intrinsic variations of POI appearance hap-

pen over time due to seasonal changes, special sales, etc.

Third, the system is expected to produce an output aligned

with the final goal, i.e. a list of geographical POI spots likely

to have changed, which requires a novel framework.

This paper is also motivated by the recent explosion of

initiatives to capture photos spanning all areas of the real-

world: nowadays, online map services offer immersive ex-

periences regarding street views [3]. Given the existence

and availability of this data [4, 48], it is somewhat surpris-

ing that no work, to the best of our knowledge, has yet fo-

cused on this important aspect of map content update. One

potential reason for this absence is the lack of an appro-

priate benchmark. Although new datasets related to urban

localization [4, 5, 48], place attributes [54–56] and land-

marks [7,21,29–31] have recently emerged, information re-

lated to both POIs and time-stamps is unavailable.

As a first contribution, we provide a new and challeng-

ing annotated dataset to bring this interesting task to the

attention of researchers. The dataset is composed of thou-

sands of photographs, captured in two large shopping malls,

each comprising hundreds of POIs. By focusing on in-

door images, which are simpler to analyze and parse than

outdoor scenes, we isolate the problem at hand from other

out-of-scope challenges. Since change detection assumes

temporality, photographs are divided into two groups cap-

tured at different time-stamps separated by several months.

We also provide the precise geo-localization of each photo,

estimated at acquisition time using a LIDAR. Overall, our

dataset comprises 578 POI instances and more than 33K

images with relative 6-DoF camera pose information. More

importantly, we have annotated POI changes at two differ-

ent levels: at the image-level, but also at a geographical

level.

Our second contribution is a novel and generic approach

for POI change detection. Our system is based on three key

stages: (1) temporally distant images are matched to form

pairs if their poses overlap; (2) for each pair, the images are

compared to detect POI changes; (3) pairwise predictions

are aggregated at the scale of the entire venue. The pro-

posed system only makes loose assumptions on the quality,

content and exhaustiveness of the input photographs. Re-

markably, it is able to detect changes even in the absence of

clearly identifiable logos or signage.

Our third contribution is a benchmark of several alterna-

tive techniques for the image pair comparison step (second

stage above). These range from keypoint-matching with ge-

ometric verification to state-of-the-art deep learning tech-

niques for metric learning, see Fig. 1. The method that

works best, based on deep embedding trained with a triplet

loss, achieves promising results.

The rest of the paper is organized as follows. We dis-

cuss related work in Section 2 and present our new dataset,

coined MallScape, in Section 3. We describe the proposed

overall approach for POI change detection in Section 4 and

benchmarks different methods and options in Section 5.
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2. Related Work

Change detection in images has been a long topic of

interest [35] in multiple domains such as medical imag-

ing [28], remote sensing [11, 12], camera surveillance [15,

23,53] or aerial image analysis [2,9,22,42]. In the medical

field, change detection has mainly been seen as a way of

monitoring the appearance of tumors or other anomalies in

X-ray or MRI images. To that aim, several images taken at

different moments are first carefully aligned and then pixel-

wise compared [28]. Similar problems arise in the con-

text of aerial images [2, 9, 42] and remote sensing [11, 12],

where the goal is again to observe the evolution of specific

regions or constructions between images precisely aligned

beforehand. These approaches rely on specific constraints

and conditions and are not easily generalizable to other

cases [15].

Closer to our problem, the task of detecting struc-

tural changes in outdoor urban scenes has recently devel-

opped [2, 9, 16, 22, 42]. Similar to our case, these meth-

ods feed on geo-localized photographs, typically captured

by vehicle-mounted cameras equipped with GPS tracking

devices. By comparing pairs of pictures of the same lo-

cation captured at different moments, they aim to predict

a binary pixel mask indicating structural changes, e.g. dis-

placed objects or road works. For successful predictions,

image pairs must first undergo an accurate aligment pro-

cedure using complex and error-prone 3D reconstruction

techniques [2, 6]. In this work, we do not make assump-

tions on the precise alignment of images. More impor-

tantly, these methods are blind to the nature of the change

and it is unclear if they would detect a POI change, which

does not necessarily involves any structural changes (e.g.

see Fig. 2.b). On the contrary they would incorrectly detect

structural changes due to periodical store-front rearrange-

ments or special events like Christmas. Finally, these meth-

ods are optimizing pixel-level metrics that are not suited

to the goal of map updates. We detect and aggregate POI

changes at a geographical scale inside entire venues.

Logo and franchise detection. Another category of work

has focused on recognizing POIs, or rather what makes

them identifiable: logos or representative symbols of their

brands. Deep approaches for logo detection [44, 45] have

recently outperformed former hand-crafted approaches [39,

40] and larger datasets have been collected by fetching im-

ages on social media such as Flickr and Twitter [49]. While

it is theoretically possible to detect POI changes based on

tracking brand logos or signage over time, it is subject to

two major issues: (i) it implies that an exhaustive database

of logos and brands is available and up-to-date, which is

unrealistic given that new brands appear every day, and

(ii) it overlooks the fact that in practice, due to occlusions,

changes in viewpoint and image framing, logos and sig-

nages are often absent (e.g. see Fig. 2.d). Moreover many

POIs do not belong to any franchise. In this work, we pro-

pose a framework that makes none of the two above as-

sumptions and is still able to accurately detect POI changes.

Image retrieval and metric learning. Our approach is

inspired by recent progress in image retrieval. In partic-

ular, recognizing places despite appearance and illumina-

tion changes over time and seasons is typically cast as an

image retrieval problem [4, 5, 48]. Image retrieval aims to

define a distance measure between images so that, given

an image query, similar images can be retrieved from a

large collection [21, 29, 31]. Ideally, this distance metric

should be invariant to semantically meaningless variations

induced by lighting or viewpoint changes. Recent works

have shown that this metric can be learned with supervi-

sion using deep Siamese networks [25]. In fact, deep metric

learning has proven overwhelmingly effective for image re-

trieval [14, 34], person re-identification [51], fine-grained

image classification [52], 3D object retrieval [20] and place

recognition [5]. We follow this example and learn, using

minimal supervision, a distance metric that fits POI change

detection.

In more detail, deep metric learning consists of learn-

ing an embedding function that project images in a space

where Euclidean distance is an acurate measure of their se-

mantic similarity. Many variants of the objective loss func-

tion have been developed, e.g. the contrastive [17], double-

margin [24], triplet [43], and quadruplet [10] losses. Each

has its own specificity (see a review in [25, 50]) but they

have the common goal of pushing apart points belonging to

different classes in the embedding space while at the same

time attracting points having the same label. We experiment

with several of these techniques for our problem.

3. The MallScape dataset

In this section, we describe a new dataset specifically tai-

lored to the task of POI change detection. It is composed of

indoor scene photographs captured in real shopping centers.

Each image comes with a precise 6 degrees-of-freedom (6-

DoF) localization pose obtained by LIDAR. To observe real

exemplars of POI changes, two distinct acquisition sessions

separated by several months have been conducted. The

dataset can be downloaded at [1].

Acquisition scenario. Our mapping device sweeps the

venue and captures photos densely enough so that every

portion of the wall appears at least in one photo in close-up,

without any other special contraints. In order to ensure that

POIs are well visible even when the device is very close to

them, we mount cameras such that they pitch slightly up-

wards. This lazy acquisition scenario makes the capture

system easier to implement and more scalable in realistic
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Table 1. Summary of MallScape-A and MallScape-B datasets.

Dataset MallScape-A MallScape-B Total

Floor B1 1F 2F 3F 4F B1 -

# of images 696 5640 5736 3912 156 17531 33671

# of POI 13 106 87 73 2 297 578

# of changes 0 6 6 4 0 6 22

(a) MallScape-A (b) MallScape-B

Figure 3. Parts of the floor maps corresponding to the first floor

of MallScape-A (a) and the retail areas of MallScape-B (b). Each

POI is represented by a distinct color.

conditions. We now describe the two large shopping cen-

ters that have served for the acquisition campaign.

MallScape-A is a five-story building comprising 281

POIs, where the total retail floor area is about 460, 000 m2.

We captured data twice with a 6-month time gap and took

360-degree panoramic images every 7 meters. Images were

then mapped back to standard rectilinear camera lenses with

12 equidistant horizontal viewpoints in portrait mode, each

having horizontal and vertical fields of view of 70 and 85

degrees, respectively.

MallScape-B covers about 144, 000m2, and contains 297

POIs on a single underground floor. About 17K pictures

were captured during two sessions separated by 3 months.

Unlike the MallScape-A dataset, we used standard cameras

equipped with fish-eye lenses, resulting in photographs in

landscape mode with horizontal and vertical fields of view

of respectively 107 and 70 degrees.

After the collection, images were carefully reviewed and

annotated by semi-automatic methods in order to label the

POI visible in each image as well as record POI changes.

We provide with the dataset the labels of the POIs appear-

ing in each image. Overall, the dataset contains a total of

578 POIs and 22 POI changes. Details about the number

of images, number of POIs and number of POI changes are

summarized in Table 1. Excerpts of the floor maps can be

seen in Fig. 3, each color denoting a different POI.

Some image pairs showing the same POI at two different

moments are exemplified in Fig. 5. Statistics computed over

the camera pose for all such pairs are displayed in Fig. 4. On

MallScape-A, the average distance between the two cameras

is 4 meters, while the average intersection-over-union of the

visual content is 0.66 (computation of these metrics is de-

tailed later in Section 4.2). This shows that image pairs have

substantially different viewpoints overall.
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(b) MallScape-B

Figure 4. Statistics on positive image pairs for both shopping cen-

ters MallScape-Aand MallScape-B. Positive pairs, formally de-

fined in Eq. (7), are the ones showing the same part of the same

POI. We present histograms of the geometric overlap (computed

according to Eq. (5)) between these pairs and their geometric dis-

tances (in meters). Cameras can be up to 10 meters away, resulting

in significant viewpoint difference.

(a) (b) (c) (d)

Figure 5. Examples of matching images pairs (each column shows

the same place seen from different viewpoints and moments). Our

proposed deep metric learning-based approach can accomodate

images showing a single POI (a), multiple POIs (b), and no POI at

all (c). We show in column (d) an example of dramatic appearance

variations due to advertisement.

4. POI Change Detection

We describe in this section the problem that we want to

solve. We then propose a generic metric learning approach

to solve it, and discuss different options for training the cen-

tral pairwise image similarity.

4.1. Problem formulation

We are interested in automatically determining, for each

location within a certain area, if a POI at this location has

changed or not over a period of time. Let Dt denote a

dataset of geo-localized images captured at time t1, i.e.

1for simplicity, we assume simultaneity of the capture.
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Dt = {(Iti ,Θ
t
i)}i where Iti is an image and Θt

i its asso-

ciated 6-DoF camera pose. We further assume the existence

of a second dataset Dt′ captured at a different time t′ > t.

Note that we do not make any assumption on the correspon-

dences between images and poses between Dt and Dt′ ex-

cept that both image sets are captured in the same area.

Our first goal is to learn a function ς that predicts the

similarity between two localized images:

ς : (Iti ,Θ
t
i)× (It

′

j ,Θ
t′

j ) 7→ [0, 1]. (1)

We design ς such that the similarity is high when the two

images show the same POI, and low otherwise. We inves-

tigate various ways of accomplishing this goal in the next

sections.

Eventually, we want to find all modifications or alter-

ations of POIs in the target area, regardless of the rea-

son. Formally, our final goal is to score each potential

POI location with a corresponding change likelihood. Let

g : P 7→ [0, 1] denote such POI change scoring function,

where P ⊂ R
3 denotes the coordinate space of all locations

addressed by latitude, longitude and elevation. In practice,

we implement g(·) straightforwardly by max-pooling the

pairwise similarity scores output by ς(·):

g(p) = 1− max
Θt

i ∈ Vt(p)

Θt′

j ∈ Vt′(p)

ς
(

(Iti ,Θ
t
i), (I

t′

j ,Θ
t′

j )
)

, (2)

where Vt(p) is the visibility set of p, i.e. the set of image

poses {Θt
i}i from which one can directly see location p (and

likewise for Vt′ ). Otherwise stated, function g(p) predicts a

POI change if not a single pair of images showing location

p has high similarity.

The final decision of whether or not a given map spot p

has undergone a change of POI is made by comparing g(p)
with a threshold τ . In practice, we beforehand smooth g(·)
using a Gaussian kernel of spatial radius σ = 2 meters to

remove noise. In our experiments, we evaluate the accuracy

of g(·) after thresholding as well as the average precision of

the spots ranked by g(·) (see Section 5.2).

4.2. Visibilty sets and posebased constraints

The formulation above assumes that we can compute the

set of locations visible for each image pose. We achieve this

by leveraging the floor map M that specifies the positions

of all walls. Specifically, we use a ray-casting technique

to compute the set of wall points that are visible from each

camera pose. The process is illustrated in Fig. 6. Each ray

starts from the camera center at P (Θ) ∈ R
3, passes through

the camera lens and continues until it hits a wall. The set of

rays form a conical region of width corresponding to the

field of view of the camera. Each hit point is labeled as

Figure 6. The knowledge of the floor map combined with simple

ray-casting technique allows us to compute the wall points U(Θ)
visible from camera pose Θ.

a potential POI location p (or more accurately, a potential

store-front facade), and their union constitutes U(Θ). The

unions of the visible facades from all viewpoints defines the

set of all potential POI locations:

P =
⋃

i

U(Θi). (3)

Conversely, the set of all camera poses seeing point p is

stored as its visibility set V(p) = {Θi|p ∈ U(Θi)}.

To simplify the similarity function ς (Eq. (1)), we before-

hand exclude all image pairs having inconsistent poses:

ς((Iti ,Θ
t
i), (I

t′

j ,Θ
t′

j )) =

{

s(Iti , I
t′

j ) if is valid(Θi,Θj),

0 otherwise,

(4)

where s is a trained similarity function purely relying on

visual input and defined in Section 4.3. An image pair

is deemed consistent, or valid, if its overlap is substan-

tial and if both images are close enough to a wall, as im-

ages far from store-fronts are generally poorly informative.

First, the overlap between two images is computed as the

intersection-over-union of their respective visibility sets:

O(Θi,Θj) =
|U(Θi) ∩ U(Θj)|

|U(Θi) ∪ U(Θj)|
, (5)

Then, the average wall distance for a given image is com-

puted based on U(Θ) as D(Θ) = 1
|U(Θ)|

∑

p∈U(Θ) ‖p −

P (Θ)‖ (in practice, we use 10 meters as distance thresh-

old). These two conditions practically remove many irrel-

evant pairs in Eq. (2) and considerably speed up the infer-

ence.

4.3. Learning a similarity function

The goal of metric learning is to learn a similarity mea-

sure between images under some supervision. It has been

applied successfully to various fields, such as image re-

trieval [14,32] and person re-identification [10,51]. In prac-

tice, it is often formulated as the task of learning an image
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embedding function f(I) = x ∈ X , with X ⊂ R
N an ℓ2-

normalized embedding space of dimension N . Similarity s

from Eq. (4) is computed as the inner product between two

embeddings, i.e. we have

s(Ii, Ij) = max
(

0, f(Ii)
⊤f(Ij)

)

. (6)

We can now learn an embedding function that suits

our definition of similarity. More specifically, let

yi = {o1 . . . omi
} and yj = {o1 . . . omj

} denote the set of

POIs visible in image Ii and Ij . We define the ground-truth

similarity Y (i, j) as follows:

Y (i, j) =

{

1 if O(Θi,Θj) > 0.4 and |yi ∩ yj | > 0,

0 otherwise,

(7)

i.e. two images are not similar unless they show at least one

common part of the same POI. Fig. 5 shows several exam-

ples of matching (i.e. positive) image pairs.

Loss function. We use a deep network to learn function

f(·), trained with stochastic gradient descent. Gradients are

computed at each iteration according to the agreement be-

tween the ground-truth Y and the current similarity, com-

puted by Eq. (6), thanks to an appropriate loss function.

For instance, the contrastive loss [17, 33] denoted by Lc

attracts positive pairs (Y (i, j) = 1) to each other while

pushing negative pairs (Y (i, j) = 0) apart:

Lc(i, j) = Y (i, j) (1− s(Ii, Ij))

+ (1− Y (i, j))max (0, s(Ii, Ij)− τc) , (8)

where τc is a similarity threshold between negative pairs

below which the loss has no effect.

Ideally, we want to discriminate between changes and

non-changes by thresholding g(·) with τ . The most direct

way to achieve that is by penalizing any training image pairs

that deviates from this behavior. This corresponds to the

double-margin pairwise loss Ldm proposed in [24]:

Ldm(i, j) = Y (i, j)max
(

0,
(

τ +
m

2

)

− s(Ii, Ij)
)

+ (1− Y (i, j))max
(

0, s(Ii, Ij)−
(

τ −
m

2

))

.

(9)

where m is a tunable margin. Alternatively, we can use the

contrastive loss Lc with τc = τ − m
2 .

Finally, another popular loss is based on image

triplets [43]:

Lt(i, j, k) = max (0, m− s(Ii, Ij) + s(Ii, Ik)) ,

with Y (i, j) = 1 and Y (i, k) = 0. (10)

This loss has been shown to be easier to train because it

only enforces the relative ordering of the positive (i, j) and

negative (i, k) similarities [25, 50], whereas previous for-

mulations enforce an absolute similarity threshold. While

there is no guarrantee that the triplet loss will preserve a

global threshold τ suitable for g(·), in practice we observe

good performance.

The procedure for training is to repeatedly sample ran-

dom pairs or triplets of images (depending on the loss), and

to compute the loss for each. If the loss is non-zero, then the

loss gradient is computed and serves to update the network

weights. In practice, we sample as many positive pairs as

negative ones to balance the training.

5. Experimental results

5.1. Protocol and metrics

We now introduce evaluation metrics and experimental

protocols tailored to our problem and data. We perform the

evaluation at two different levels: on image pairs (interme-

diate goal in Section 4.1) and at the geographical level (our

final goal).

Ground-truth. The quality of the similarity measure on

image pairs is evaluated with respect to the ground-truth

Y (i, j) ∈ {0, 1} defined in Eq. (7). For the geographi-

cal level, we annotate the set of potential POI locations P
(Eq. (3)) as follows: each location p ∈ P belonging to a

true POI change is marked as positive, and negative oth-

erwise. For convenience we abuse notations and denote it

as Y (p) ∈ {0, 1} in the following. We now introduce the

different metrics.

ROC curve. Detecting POI changes can be seen as a bi-

nary classification task: change (Y (p) = 1) vs. no change

(Y (p) = 0). The ROC curve allows to measure the overall

performance of a binary classifier at multiple thresholds. It

is produced by computing the true and false positive rates

(TPR and FPR, respectively) for all thresholds:

TPR(τ) =

∑

p I[g(p) ≥ τ ]
∑

p Y (p)
, FPR(τ) =

∑

p I[g(p) < τ ]
∑

p 1− Y (p)

We also report the area under the curve (AUC). We compute

these metrics both for image pairs (denoted as pROC and

pAUC) and for geographic locations (denoted as gROC and

gAUC).

Average Precision (AP). Our final goal can also be for-

mulated as globally ranking all map locations in terms of

POI change likelihood. We measure the system perfor-

mance in terms of ranking using the AP. The AP computed

for image pairs is denoted as pAP and the geographic-level

AP is denoted as gAP in the following.
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Train and test splits. MallScape consists of two sub

datasets captured in different venues. Despite the large

number of dataset images, there are relatively few instances

of POI changes. This can increase the variance of the noise

in the evaluation metrics and negatively affect the evalua-

tion. To smooth the performance, we therefore train and

test on one and the other venue in turns and finally average

the results:

• Split 1: train on MallScape-A and test on MallScape-B;

• Split 2: train on MallScape-B and test on MallScape-A

Since the styles of the two venues are significantly different,

these splits also ensures that good performance is not due to

training set overfitting.

5.2. Quantitative results

Implementation details All our models are formed by a

ResNet-101 [19] backbone to which we append a global

generalized-mean pooling layer [33]. The embedding di-

mension is N = 2048. After some preliminar experiments,

we decide to use a weight decay of 0 and a learning rate

of 10−5, decreased by 2 every 2000 iterations. We em-

ploy standard data augmentation during training to increase

generalization performance [19]. To improve training speed

and test performance, we follow standard practice for pre-

training and hard-negative mining [14,32,34]. We also tune

the margin m and threshold τc parameters separately for

each loss.

Results. We study the performance of the different loss

functions presented in Section 4.3. We also compare to

three baseline approaches. The first one relies on keypoint-

matching followed by geometric verification [26] to com-

pute the similarity s from Eq. (4) using a sigmoid. The

second one is based on a state-of-the-art logo detector [46]

able to recognize 352 common logos in real-world images.

In this case, images are thus compared in terms of detected

brands. Lastly, we also include the performance of embed-

dings extracted from the last convolutional layer of a net-

work pretrained on ImageNet [47] for reference.

Results for all methods with all metrics are presented in

Table 2. It is clear that off-the-shelf features trained on

ImageNet produce poor embeddings, highlighting the im-

portance of learning the metric. Similarly, SIFT-based fea-

tures are unable to analyze the complex semantic changes

involved in the POI detection task. In contrast, the logo-

based baseline specifically focuses on semantic aspects that

are key to the task, yet, it performs more poorly than the Im-

ageNet baseline. After inspection, we find that many POI

images do not contain any logos for which the detector was

trained. These 352 known logos form, after all, a rather

small part of all logos potentially appearing in real POI im-

ages. We therefore believe that approaches explicitly recog-

nizing brands are rather impractical, as noted in Section 2.

(a) Split 1 (b) Split 2

Figure 7. ROC curves for all methods on both splits at the geo-

graphic level (gROC).

Unsurprisingly, the three methods based on metric learn-

ing (ML) perform similarly in terms of average pAUC

and gAUC. However the quality of the ranking of POI

scores (gAP) is significantly better for the triplet loss Lt.

This is in agreement with previous findings that the triplet

loss better behaves during training in general than pair-

wise losses [14, 50]. Interestingly, we note that image-level

metrics can be in complete disagreement with geograph-

ical metrics. This is for instance the case on the second

split where ImageNet features yield, at the same time, the

best pAP score and the worse gAP score by far among

deep methods. This underlines the fact that detecting POI

changes should be evaluated with respect to its final goal (at

the geographical level) instead of relying on simpler image-

level criteria (e.g. pixelwise or image-level metrics applied

on image pairs).

We also plot the gROC curve, for both splits, in Fig. 7.

It is interesting to note that the difficulty of the splits is not

homogeneous, and that methods behave quite differently on

both splits. While we expect the double-margin loss to per-

form better in term of gAUC, a detection metric, due to the

perfect alignment with the task at hand (Section 4.3), this is

only true for the first split. In contrast, the triplet and con-

trastive losses yield more stable performance on both splits.

5.3. Qualitative results on map database

We present quantitative results of POI change predic-

tions generated at the map level for each of the learned mod-

els in Fig. 8. Each row shows a part of the floop map aug-

mented with the geographical likelihood of POI changes, as

output by g(p) from Eq. (2). The likelihood is color-coded

from green (no change) to red (change).

We also show some image pairs corresponding to the

POIs pinned on the map. Some of them present dramatic

viewpoint changes, e.g. Fig. 8.a. The learned approaches

most correctly predict the absence of changes up to some

extent, e.g. in the case of first row. Conversely, the view-

point difference in the second row of Fig. 8.a exceeds the

tolerance range of the models and results in a false predic-

tion of POI change.
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(a) (b)

Figure 8. We present some examples of POI change likelihood output at the geographical level according to Eq. (2). The two rows are

from MallScape-A (top) and MallScape-B (bottom), respectively. We show two corresponding image pairs from the locations pinned on

the partial floor map (a). The change likelihood is color-coded as changed and not-changed.

Table 2. Performance evaluation for all methods and all metrics (see text for details).

Parameters Split 1 Split 2 Overall

name value pAUC pAP gAUC gAP pAUC pAP gAUC gAP pAUC pAP gAUC gAP

Local descriptor

SIFT [26]+RANSAC - - 0.533 0.080 0.731 0.101 0.823 0.101 0.795 0.167 0.678 0.091 0.763 0.134

Logo detection

YOLOv2 [36]+CAL [46] - - 0.690 0.005 0.711 0.077 0.642 0.003 0.638 0.058 0.666 0.004 0.675 0.068

Global representations

ImageNet [13] - - 0.932 0.386 0.758 0.201 0.932 0.245 0.827 0.391 0.932 0.316 0.793 0.296

Deep metric learning

ML+Lc (8) τc 0.5 0.970 0.591 0.787 0.393 0.959 0.214 0.898 0.508 0.965 0.403 0.843 0.451

ML+Ldm (9) m, τ 0.1, 0.1 0.961 0.556 0.793 0.330 0.930 0.105 0.868 0.408 0.946 0.331 0.831 0.369

ML+Lt (10) m 0.1 0.973 0.582 0.786 0.412 0.970 0.228 0.905 0.557 0.972 0.405 0.846 0.485

Since our framework allows to output results directly at

a geographical level, visualization is easy and straightfor-

ward. A human operator can rapidly understand the posi-

tions of all POI changes in a glance and update them ac-

cordingly, which can greatly ease the update process. Ul-

timately, the update process could become fully automatic

if logo or franchise recognition [44, 45, 49] would be per-

formed on the corresponding POI images.

6. Conclusion

We have presented a novel generic approach, based on

the deep metric learning framework, that can detect POI

changes from a set of spatiotemporally localized scene pho-

tographs. Several metric learning formulations were thor-

oughly evaluated and tested, which confirmed their overall

effectiveness for this problem. In particular, the triplet loss

seems best for this problem from an empirical perspective.

To enable training and evaluation, we have introduced a

new dataset dedicated to the POI change detection task. It

contains thousands of images and hundreds of POIs, mak-

ing it suitable for training deep models in realistic settings.

Not only can this dataset also serve as a benchmark suite for

other researchers interested in this task, but we believe that

it can also help to further develop new exciting tasks related

to automatic map creation and maintenance, thanks to the

rich information encompassed in the dataset.

We indeed acknowledge that the approach proposed here

calls for further research. For instance, it does not allow us

to understand if a single photo contains several POIs, and if

so, what their boundaries are. Yet automatic shop segmen-

tation is an important milestone to understand the spatial

extent of each POI and thus to map them to a geographic

location, which would certainly help to better detect and lo-

calize POI changes. We leave these issues for future work.
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