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Abstract

The computer vision community has witnessed recent ad-

vances in scene categorization from images, with the state

of the art systems now achieving impressive recognition

rates on challenging benchmarks. Such systems have been

trained on photographs which include color, texture and

shading cues. The geometry of shapes and surfaces, as con-

veyed by scene contours, is not explicitly considered for this

task. Remarkably, humans can accurately recognize natural

scenes from line drawings, which consist solely of contour-

based shape cues. Here we report the first computer vi-

sion study on scene categorization of line drawings derived

from popular databases including an artist scene database,

MIT67 and Places365. Specifically, we use off-the-shelf

pre-trained Convolutional Neural Networks (CNNs) to per-

form scene classification given only contour information as

input, and find performance levels well above chance. We

also show that medial-axis based contour salience methods

can be used to select more informative subsets of contour

pixels, and that the variation in CNN classification perfor-

mance on various choices for these subsets is qualitatively

similar to that observed in human performance. Moreover,

when the salience measures are used to weight the con-

tours, we find that these weights boost our CNN perfor-

mance above that for unweighted contour input. That is,

the medial axis based salience weights appear to add useful

information that is not available when CNNs are trained to

use contours alone.

1. Introduction

Both biological and artificial vision systems are con-

fronted with a potentially highly complex assortment of vi-
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sual features in real-world scenarios. The features need

to be sorted and grouped appropriately in order to sup-

port high-level visual reasoning, including the recognition

or categorization of objects or entire scenes. In fact, scene

categorization cannot be easily disentangled from the recog-

nition of objects, since scene classes are often defined by

a collection of objects in context. A beach scene, for ex-

ample, would typically contain umbrellas, beach chairs and

people in bathing suits, all of whom are situated next to a

body of water. A street scene might have roads with cars,

cyclists and pedestrians as well as buildings along the edge.

How might computer vision systems tackle this problem of

organizing visual features to support scene categorization?

In human vision, perceptual organization is thought to

be effected by a set of heuristic grouping rules originating

from Gestalt psychology [13]. Such rules posit that visual

elements ought to be grouped together if they are, for in-

stance, similar in appearance, in close proximity, or if they

are symmetric or parallel to each other. Developed on an

ad-hoc, heuristic basis originally, these rules have been val-

idated empirically, even though their precise neural mecha-

nisms remain elusive. Grouping cues, such as those based

on symmetry, are thought to aid in high-level visual tasks

such as object detection, because symmetric contours are

more likely to be caused by the projection of a symmetric

object than to occur accidentally. In the categorization of

complex real-world scenes by human observers, local con-

tour symmetry does indeed provide a perceptual advantage

[23], but the connection to the recognition of individual ob-

jects is not as straightforward as it may appear.

In computer vision, symmetry, proximity, good continu-

ation, contour closure and other cues have been used for im-

age segmentation, curve inference, object recognition, ob-

ject manipulation, and other tasks [14, 2, 7, 17]. Instantia-

tions of such organizational principles have found their way

into many computer vision algorithms and have been the

subject of regular workshops on perceptual organization in

artificial vision systems. However, perceptually motivated
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Figure 1: (Best viewed by zooming in on the PDF.) An illustration of our approach on an example from a database of line

drawings by artists of photographs of natural scenes. The bottom left panel shows the reconstruction of the artist-generated

line drawing from the AOF medial axes. To its right we present a hot colormap visualization of two of our medial axis based

contour salience measures.

salience measures to facilitate scene categorization have re-

ceived little attention thus far. This may be a result of the

ability of CNN-based systems to accomplish scene catego-

rization on challenging databases, in the presence of suffi-

cient training data, directly from pixel intensity and colour

in photographs [18, 21, 11, 24]. CNNs begin by extracting

simple features, including oriented edges, which are then

successively combined into more and more complex fea-

tures in a succession of convolution, nonlinear activation

and pooling operations. The final levels of CNNs are typ-

ically fully connected, which enables learning of object or

scene categories [20, 1, 8, 16]. Unfortunately, present CNN

architectures do not explicitly allow for properties of ob-

ject shape to be represented explicitly. Human observers,

in contrast, recognize an object’s shape as an inextricable

aspect of its properties, along with its category or identity

[12].

Comparisons between CNNs and human and monkey

neurophysiology appear to indicate that CNNs replicate the

entire visual hierarchy [9, 4]. Does this mean that the prob-

lem of perceptual organization is now irrelevant for com-

puter vision? In the present article we argue that this is

not the case. Rather, we show that CNN-based scene cat-

egorization systems, just like human observers, can benefit

from explicitly computed contour measures derived from

Gestalt grouping cues. We here demonstrate the computa-

tion of these measures as well as their power to aid in the

categorization of complex real-world scenes.

To effect our study, with its focus on the geometry of

scene contours, we choose to use the medial axis transform

(MAT) as a representation. We apply a robust algorithm

for computing the medial axis to analyze line drawings of

scenes of increasing complexity. The algorithm uses the av-

erage outward flux of the gradient of the Euclidean distance

function through shrinking circular disks [5]. With its ex-

plicit representation of the regions between scene contours,

the medial axis allows us to directly capture salience mea-

sures related to local contour separation and local contour

symmetry. We introduce two novel measures of local sym-

metry using ratios of length functions derived from the me-

dial axis radius along skeletal segments. As ratios of com-

mensurate quantities, these are unitless measures, which are

therefore invariant to image re-sizing. We also introduce

a measure of local contour separation. We describe meth-

ods of computing our perceptually motivated salience mea-

sures from line drawings of photographs of complex real-

world scenes, covering databases of increasing complexity.

Figure 1 presents an illustrative example of a photograph
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from an artist scenes database, along with two of our me-

dial axis based contour salience maps. Observe how the

ribbon symmetry based measure highlights the boundaries

of highways. Our experiments show that scene contours

weighted by these measures can boost CNN-based scene

categorization accuracy, despite the absence of colour, tex-

ture and shading cues. Our work indicates that measures of

contour grouping, that are simply functions of the contours

themselves, are beneficial for scene categorization by com-

puters, yet that they are not automatically extracted by state-

of-the-art CNN-based scene recognition systems. The crit-

ical remaining question is whether this omission is due to

the CNN architecture being unable to model these weights

or whether this has to do with the (relatively standard) train-

ing regime. We leave this for further study.

2. Average Outward Flux Based Medial Axes

In Blum’s grassfire analogy the medial axis is associated

with the quench points of a fire that is lit at the boundary of

a field of grass [3]. In the present paper, that boundary is the

set of scene contours, and the field of grass is the space be-

tween them. An equivalent notion of the medial axis is that

of the locus of centres of maximal inscribed disks in the re-

gion between scene contours, along with the radii of these

disks. The geometry and methods for computing the medial

axis that we leverage are based on a notion of average out-

ward flux, as discussed in further detail below. We apply the

same algorithm to each distinct connected region between

scene contours. These regions are obtained by morphologi-

cal operations to decompose the original line drawing.

Definition 2.1 Assume an n-dimensional open connected

region Ω, with its boundary given by ∂Ω ∈ R
n such that

Ω̄ = Ω∪ ∂Ω. An open disk D ∈ R
n is a maximal inscribed

disk in Ω̄ if D⊆ Ω̄ but for any open disk D′ such that D⊂D′,

the relationship D′ ⊆ Ω̄ does not hold.

Definition 2.2 The Blum medial locus or skeleton, denoted

by Sk(Ω), is the locus of centers of all maximal inscribed

disks in ∂Ω.

Topologically, Sk(Ω) consists of a set of branches, about

which the scene contours are locally mirror symmetric, that

join at branch points to form the complete skeleton. A

skeletal branch is a set of contiguous regular points from

the skeleton that lie between a pair of junction points, a pair

of end points or an end point and a junction point. At regu-

lar points the maximal inscribed disk touches the boundary

at two distinct points. As shown by Dimitrov et al. [5]

medial axis points can be analyzed by considering the be-

havior of the average outward flux (AOF) of the gradient

of the Euclidean distance function through the boundary of

the connected region. Let R be the region with boundary

∂R, and let N be the outward normal at each point on the

boundary ∂R. The AOF is given by the limiting value of
∫

∂R〈q̇,N〉ds
∫

∂R ds
, as the region is shrunk. Here q̇ = ∇D, with D

the Euclidean distance function to the connected region’s

boundary, and the limiting behavior is shown to be different

for each of three cases: regular points, branch points and

end points. When the region considered is a shrinking disk,

at regular points of the medial axis the AOF works out to be

− 2
π sinθ , where θ is the object angle, the acute angle that a

vector from a skeletal point to the point where the inscribed

disk touches the boundary on either side of the medial axis

makes with the tangent to the medial axis. This quantity is

negative because it is the inward flux that is positive. Fur-

thermore, the limiting AOF value for all points not located

on the medial axis is zero.

This provides a foundation for both computing the me-

dial axis for scene contours and for mapping the computed

medial axis back to them. First, given the Euclidean dis-

tance function from scene contours, one computes the lim-

iting value of the AOF through a disk of shrinking radius

and associates locations where this value is non-zero with

medial axis points (Figure 1, top right). Then, given the

AOF value at a regular medial axis point, and an estimate

of the tangent to the medial axis at it, one rotates the tan-

gent by ±θ and then extends a vector out on either side

by an amount given by the radius function, to reconstruct

the boundary (Figure 1, bottom left). In our implementa-

tions we discretize these computations on a fine grid, along

with a dense sampling of the boundary of the shrinking disk,

to get high quality scene contour representations. Both the

Euclidean distance function and the average outward flux

computation are linear in the number of contour pixels, and

thus can be implemented efficiently.

3. Medial Axis Based Contour Saliency

Owing to the continuous mapping between the medial

axis and scene contours, the medial axis provides a con-

venient representation for designing and computing Gestalt

contour salience measures based on local contour separa-

tion and local symmetry. A measure to reflect local con-

tour separation can be designed using the radius function

along the medial axis, since this gives the distance to the

two nearest scene contours on either side. Local parallelism

between scene contours, or ribbon symmetry, can also be

directly captured by examining the degree to which the ra-

dius function along the medial axis between them remains

locally constant. Finally, if taper is to be allowed between

contours, as in the case of a set of railway tracks extend-

ing to the horizon under perspective projection, one can ex-

amine the degree to which the first derivative of the radius

function is constant along a skeletal segment. We introduce

novel measures to capture local separation, ribbon symme-

try and taper, based on these ideas.
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In the following we shall let p be a parameter that runs

along a medial axis segment, C(p) = (x(p),y(p)) be the

coordinates of points along that segment, and R(p) be the

medial axis radius at each point. We shall consider the in-

terval p ∈ [α,β ] for a particular medial segment. The arc

length of that segment is given by

L =
∫ β

α
||

∂C

∂ p
||d p =

∫ β

α
(x2

p + y2
p)

1
2 d p. (1)

3.1. Separation Salience

We now introduce a salience measure based on the local

separation between two scene contours associated with the

same medial axis segment. Consider the interval p ∈ [α,β ].
With R(p) > 1 in pixel units (because two scene contours

cannot touch) we introduce the following contour separa-

tion based salience measure:

SSeparation = 1−
(

∫ β

α

1

R(p)
d p

)

/(β −α). (2)

This quantity falls in the interval [0,1]. The measure in-

creases with increasing spatial separation between the two

contours. In other words, scene contours that exhibit further

(local) separation are more salient by this measure.

3.2. Ribbon Symmetry Salience

Now consider the curve Ψ = (x(p),y(p),R(p)). Similar

to Equation 1, the arc length of Ψ is computed as:

LΨ =
∫ β

α
||

∂Ψ

∂ p
||d p =

∫ β

α
(x2

p + y2
p +R2

p)
1
2 d p. (3)

When two scene contours are close to being parallel locally,

R(p) will vary slowly along the medial segment. This mo-

tivates the following ribbon symmetry salience measure:

SRibbon =
L

LΨ

=

∫ β
α (x2

p + y2
p)

1
2 d p

∫ β
α (x2

p + y2
p +R2

p)
1
2 d p

. (4)

This quantity also falls in the interval [0,1] and is invariant

to image scaling since the integral involves a ratio of unit-

less quantities. The measure is designed to increase as the

scene contours on either side become more parallel, such as

the two sides of a ribbon.

3.3. Taper Symmetry Salience

A notion that is closely related to that of ribbon symme-

try is taper symmetry; two scene contours are taper symmet-

ric when the medial axis between them has a radius func-

tion that is changing at a constant rate, such as the edges

of two parallel contours in 3D when viewed in perspective.

To capture this notion of symmetry, we introduce a slight

variation where we consider a type of arc-length of a curve

Ψ
′ = (x(p),y(p), dR(p)

d p
). Specifically, we introduce the fol-

lowing taper symmetry salience measure:

STaper =
L

LΨ′
=

∫ β
α (x2

p + y2
p)

1
2 d p

∫ β
α (x2

p + y2
p +(RRpp)2)

1
2 d p

. (5)

The bottom integral is not exactly an arc-length, due to the

multiplication of Rpp by the factor R. This modification

is necessary to make the overall ratio unitless. This quan-

tity also falls in the interval [0,1] and is invariant to image

scaling. The measure is designed to increase as the scene

contours on either side become more taper symmetric, as in

the shape of a funnel, or the sides of a railway track.

Shape

Ribbon Salience

Taper Salience

Separation Salience

Figure 2: An illustration of ribbon symmetry salience, taper

symmetry salience and contour separation salience for three

different contour configurations. See text for a discussion.

These measures are all invariant to 2D similarity transforms

of the input contours

To gain an intuition behind these perceptually driven

contour salience measures, we provide three illustrative ex-

amples in Fig. 2. The measures are not computed point-

wise, but rather for a small interval [α,β ] centered at each

medial axis point (see Section 4.3 for details). When the

contours are parallel, all three measures are constant along

the medial axis (left column). The middle figure has high

taper symmetry but lower ribbon symmetry, with contour

separation salience increasing from left to right. Finally, for

the dumbbell shape, all three measures vary (third column).
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4. Experiments & Results

4.1. Artist Generated Line Drawings

Artist Scenes Database: Color photographs of six cate-

gories of natural scenes (beaches, city streets, forests, high-

ways, mountains, and offices) were downloaded from the

internet, and those rated as the best exemplars of their

respective categories by workers on Amazon Mechanical

Turk were selected. Line drawings of these photographs

were generated by trained artists at the Lotus Hill Research

Institute [22]. Artists traced the most important and salient

lines in the photographs on a graphics tablet using a custom

graphical user interface. Contours were saved as succes-

sions of anchor points. For the experiments in the present

paper, line drawings were rendered by connecting anchor

points with straight black lines on a white background at

a resolution of 1024× 768 pixels. The resulting database

had 475 line drawings in total with 79-80 exemplars from

each of 6 categories: beaches, mountains, forests, highway

scenes, city scenes and office scenes.

4.2. Machine Generated Line Drawings

MIT67/Places365 Given the limited number of scene

categories in the Artist Scenes database, particularly for

computer vision studies, we worked to extend our results

to the two popular but much larger scene databases of pho-

tographs - MIT67 [15] (6700 images, 67 categories) and

Places365 [24] (1.8 million images, 365 categories). Pro-

ducing artist generated line drawings on databases of this

size was not feasible, so instead we fine tuned the output

of the Dollar edge detector [6], using the publicly available

structured edge detection toolbox. From the edge map and

its associated edge strength, we produced a binarized ver-

sion, using per image adaptive thresholding. The binarized

edge map was then processed to obtain contour fragments

of width 1 pixel. Each contour fragment was then spatially

smoothed by convolution of the coordinates of points along

it, using a Gaussian with σ = 1, to mitigate discretization

artifacts. The same parameters were used to produce all the

MIT67 and Places365 line drawings. Figure 3 presents a

comparison of a resultant machine-generated and an artist-

generated line drawing for an office scene from the Artist

Scenes database. We have confirmed that on the artist’s line

drawing database 90% of the machine generated contour

pixels are in common with the artist’s line drawings. Figure

4 shows several typical machine generated line drawings

from the MIT67 and Places365 databases, but weighted by

our perceptual salience measures.

4.3. Computing Contour Salience

Computing contour salience for each line drawing re-

quired a number of steps. First, each connected region be-

tween scene contours was extracted. Second, we computed

Photograph Artist Machine

Figure 3: (Best viewed by zooming in on the PDF.) A com-

parison between a machine-generated line drawing and one

drawn by an artist, for an office scene from the Artist Scenes

database.

an AOF map for each of these connected components, as

explained in Section 2. For this we used a disk of radius

1 pixel, with 60 discrete sample points on it, to estimate

the AOF integral. We used a threshold of τ = 0.25 on the

AOF map, which corresponds to an object angle θ ≈ 23 de-

grees, to extract skeletal points. A typical example appears

in Figure 1 (top right). The resulting AOF skeleton was then

partitioned into medial curves between branch points or be-

tween a branch point and an endpoint. We then computed

a discrete version of each of the three salience measures in

Section 3, within a interval [α,β ] of length 2K+1, centered

at each medial axis point, with K = 5 pixels. Each scene

contour point was then assigned the maximum of the two

salience values at the closest points on the medial curves on

either side of it, as illustrated in Figure 1 (bottom middle

and bottom right).

4.4. Experiments on 5050 Splits of Contour Scenes

Our first set of experiments is motivated by recent work

that shows that human observers benefit from contour sym-

metry in scene recognition from contours [23]. Our goal is

to examine whether a CNN-based system also benefits from

such perceptually motivated cues. Accordingly, we created

splits of the top 50% and the bottom 50% of the contour

pixels in each image of the Artist Scenes and MIT67 data

sets, using the three salience measures, ribbon symmetry,

taper symmetry and local contour separation. An example

of the original intact line drawing and each of the three sets

of splits is shown in Figure 5, for the highway scene from

the Artist Scenes dataset shown in Figure 1.

On the Artist Scenes dataset human observers were

tasked with determining to which of six scene categories

an exemplar belonged. The input was either the artist-

generated line drawing or the top or the bottom half of a split

by one of the salience measures. Images were presented for

only 58 ms, and were followed by a perceptual mask, mak-

ing the task difficult for observers, who would otherwise

perform near 100% correct. The results with these short im-

age presentation durations, shown in Figure 6 (top), demon-

strate that human performance is consistently better with the

top (more salient) half of each split than the bottom one, for
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Figure 4: (Best viewed by zooming in on the PDF.) Examples of original photographs and the corresponding ribbon symmetry

salience weighted, separation salience weighted and taper symmetry salience weighted scene contours, using a hot colormap

to show increasing values. Whereas the Artist Scenes line drawings were produced by artists, the MIT67 and Places365 line

drawings were machine-generated.

each salience measure. The human performance is slightly

boosted for all conditions in the separation splits, for which

a different subject pool was used.

Carrying out CNN-based recognition on the Artist

Scenes and MIT67 line drawing datasets presents the chal-

lenge that they are too small to train a large model, such as

VGG-16, from scratch. To the best of our knowledge, no

CNN-based scene categorization work has so far focused

on line drawings of natural images. We therefore use CNNs

that are pre-trained on RGB photographs for our experi-

ments.

For our experiments on the Artist and MIT67 datasets,
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Ribbon Taper Separation

Figure 5: We consider the same highway scene as in Fig-

ure 1 (top left) and create splits of the artist generated line

drawings, each of which contains 50% of the original pix-

els, based on ribbon symmetry (left column), taper sym-

metry (middle column) and local contour separation (third

column) based salience measures. In each case the more

salient half of the pixels is in the top row.
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Figure 6: A comparison of human scene categorization per-

formance (top row) with CNN performance (middle and

bottom rows). As with the human observer data, CNNs per-

form better on the top 50% half of each split according to

each salience measure, that the bottom 50% half. In each

plot chance level performance (1/6 for Artist Scenes and

1/67 for MIT67) is shown with a dashed line.

we use the VGG16 convolutional layer network architec-

ture [19] with weights pre-trained on ImageNet. The last

three layers of the VGG16 network used for fine-tuning are

replaced with a fully connected layer, a softmax layer and a

classification layer, where the output label is one of the cat-

egories in each of our datasets. The images are processed

by this network and the final classification layer produces

an output vector in which the top scoring index is selected

CNN Human

Ribbon Sym vs Asymm Ribbon Sym vs Asymm

t(4) = 26.12 t(25) = 7.86

p = 1.3E−5 p = 3.2E−8

Taper Sym vs Asym Taper Sym vs Asym

t(4) = 12.39 t(25) = 6.46

p = 2.4E−4 p = 9.2E−7

Separation Far vs Near Separation Far vs Near

t(4) = 100.64 t(5) = 5.2
p = 5.85E−8 p = 3.0E−3

Table 1: T-tests results for CNN and human categorization

experiments.

as the prediction output. For the Places365 dataset, which

contains 1.8 million images, we used Resnet50 [10] with

its weights obtained by training on ImageNet, but rather

than fine-tune the network, we used the final fully connected

layer output as a feature vector input to an SVM classifier.

For all experiments on the Artist Scenes we use 5-fold cross

validation. Top-1 classification accuracy is given, as a mean

over the 5 folds, in Figure 6 (middle). The CNN-based sys-

tem mimics the trend we saw in human observers, namely

that performance is consistently better for the top 50% of

each of the three splits. We interpret this as evidence that all

three Gestalt motivated salience measures are beneficial for

scene categorization in both computer and human vision.

For MIT67 we use the provided training/test splits and

present the average results over 5 trials. The CNN-based

categorization results are shown in Figure 6 (bottom row).

It is striking that even for this more challenging database,

the CNN-based system still mimics the trend we saw in hu-

man observers, i.e., that performance is better on the top

50% than on the bottom 50% of each of the three splits and

is well above chance. For both the CNN and human cate-

gorization experiments, we run t-tests (see Table 1) which

show that for both the group differences are statistically sig-

nificant.

4.5. Experiments with Salience Weighted Contours

While we would expect that network performance would

degrade when losing half the input pixels, the splits also re-

veal a significant bias in favor of our salience measures to

support scene categorization. Can we exploit this bias to

improve network performance when given the intact con-

tours? To address this question, we carry out a second ex-

periment where we explicitly encode salience measures for

the CNN by feeding different features into the R, G, and B

color channels of the pre-trained network. We do this by

using, in addition to the contour image channel, additional

channels with the same contours weighted by our proposed

salience measures, each of which is in the interval [0,1].
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Channels
Artist MIT67

VGG16 VGG16

Photos 98.95 64.87

Contours 90.53 42.80

Contours, Ribbon 93.49 45.24

Contours, Taper 94.71 43.66

Contours, Separ. 93.91 43.89

Contours, Ribbon, Taper 95.02 45.36

Contours, Ribbon, Separ. 95.89 48.61

Contours, Taper, Separ. 96.23 47.18

Ribbon, Taper, Separ. 94.38 44.82

Table 2: Top 1 level performance in a 3-channel configu-

ration, on Artist Scenes and MIT67, with fine-tuning. TOP

ROW: Results of the traditional R,G,B input configuration.

OTHER ROWS: Combinations of intact scene contours, and

scene contours weighted by our salience measures.

These contour salience images replace the standard three

channel (R,G,B) inputs to the network. For all experiments,

training is done on the feature maps generated by the new

feature-coded images.

The results for the Artist Scenes dataset and for MIT67,

are shown in Table 2. It is apparent that with these salience

weighted contour channels added, there is a consistent boost

to the results obtained by using contours alone. In all cases

the best performance boost comes from a combination of

contours, ribbon or taper symmetry salience, and separation

salience. We believe this is because taper between local

contours as a perceptual salience measure is conceptually

very close to our ribbon salience measure. Local separation

salience, on the other hand, provides a more distinct and

complementary perceptual cue for grouping.

For MIT67 the performance of 64.87% on photographs

is exactly consistent with that reported in [24]. Remark-

ably, two-thirds of this level of performance (42.8%) is

obtained using only machine generated line drawings, and

this goes up to three-fourths (48.6%) when using contours

weighted by ribbon and separation salience. For MIT67

we have also compared (fine-tuned) Hybrid1365 VGG on

photographs (78.74% top-1) versus photographs with con-

tours, ribbon, and separation salience weighted contours

overlayed (80.45% top-1).

Encouraged by the above results, we repeated the

same experiment for the much more challenging Places365

dataset, but this time using just a pre-trained network and

a linear SVM. For this dataset chance recognition perfor-

mance would be at 1/365 or 0.27%. Our results are shown

in Table 3. Once again we see a clear and consistent trend

of a benefit using salience weighted contours as additional

feature channels to the contours themselves, with the best

performance gain coming from the addition of ribbon sym-

Channels Places365 (Res50)

Photos 33.04

Contours 8.02

Contours, Ribbon 9.18

Contours, Taper 11.73

Contours, Separ 10.53

Contours, Ribbon, Taper 12.05

Contours, Ribbon, Separ 14.23

Contours, Taper, Separ 11.77

Ribbon, Taper, Separ 12.64

Table 3: Top 1 performance in a 3-channel configuration on

Places365, with an off-the-shelf pre-trained network and a

linear SVM (see text). The top row shows the results of the

traditional R,G,B input configuration, while the others show

combinations of intact scene contours and scene contours

weighted by our salience measures.

metry salience and separation salience.

5. Conclusion

We have reported the first study on CNN based recogni-

tion of complex natural scenes from line drawings derived

from 3 databases of increasing complexity. To this end, we

have demonstrated the clear benefit of using Gestalt moti-

vated medial axis based salience measures, to weight scene

contours according to their local ribbon and taper symme-

try, and local contour separation. We hypothesize that mak-

ing such contour salience weights explicit helps a deep net-

work organize visual information to support categorization,

in a manner which is not by default learned by these net-

works from the scene contour images alone. In our experi-

ments, we used different CNN models to isolate the effect of

these perceptually motivated scene contour grouping cues,

and also the potential to perform scene categorization from

contours alone, with color, shading and texture absent. In

the artist’s line drawings, MIT67 and Places365 databases,

the percentage of contour ink pixels over all the RGB pix-

els in the photographs, is only 7.44%, 8.75% and 8.32%, on

average.

The possibility to train a CNN model from scratch us-

ing our 1.8 million line drawings of Places365 now lies

ahead. The feasibility of fully trained networks on draw-

ings has been demonstrated by work on free-hand sketches

[25], which, despite its superficial similarity with our work,

follows a very different purpose. We plan on making our

contour salience measure computation code, and our line

drawing databases, publicly available.
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