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Abstract

Intersection over Union (IoU) is the most popular evalu-

ation metric used in the object detection benchmarks. How-

ever, there is a gap between optimizing the commonly used

distance losses for regressing the parameters of a bounding

box and maximizing this metric value. The optimal objec-

tive for a metric is the metric itself. In the case of axis-

aligned 2D bounding boxes, it can be shown that IoU can

be directly used as a regression loss. However, IoU has a

plateau making it infeasible to optimize in the case of non-

overlapping bounding boxes. In this paper, we address the

weaknesses of IoU by introducing a generalized version as

both a new loss and a new metric. By incorporating this

generalized IoU (GIoU ) as a loss into the state-of-the art

object detection frameworks, we show a consistent improve-

ment on their performance using both the standard, IoU

based, and new, GIoU based, performance measures on

popular object detection benchmarks such as PASCAL VOC

and MS COCO.

1. Introduction

Bounding box regression is one of the most fundamental

components in many 2D/3D computer vision tasks. Tasks

such as object localization, multiple object detection, ob-

ject tracking and instance level segmentation rely on ac-

curate bounding box regression. The dominant trend for

improving performance of applications utilizing deep neu-

ral networks is to propose either a better architecture back-

bone [15, 13] or a better strategy to extract reliable local

features [6]. However, one opportunity for improvement

that is widely ignored is the replacement of the surrogate

regression losses such as ℓ1 and ℓ2-norms, with a metric

loss calculated based on Intersection over Union (IoU ).
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Figure 1. Two sets of examples (a) and (b) with the bounding

boxes represented by (a) two corners (x1, y1, x2, y2) and (b) cen-

ter and size (xc, yc, w, h). For all three cases in each set (a) ℓ2-

norm distance, ||.||2, and (b) ℓ1-norm distance, ||.||1, between the

representation of two rectangles are exactly same value, but their

IoU and GIoU values are very different.

IoU , also known as Jaccard index, is the most commonly

used metric for comparing the similarity between two arbi-

trary shapes. IoU encodes the shape properties of the ob-

jects under comparison, e.g. the widths, heights and loca-

tions of two bounding boxes, into the region property and

then calculates a normalized measure that focuses on their

1658



areas (or volumes). This property makes IoU invariant to

the scale of the problem under consideration. Due to this

appealing property, all performance measures used to eval-

uate for segmentation [2, 1, 25, 14], object detection [14, 4],

and tracking [11, 10] rely on this metric.

However, it can be shown that there is not a strong cor-

relation between minimizing the commonly used losses,

e.g. ℓn-norms, defined on parametric representation of two

bounding boxes in 2D/3D and improving their IoU values.

For example, consider the simple 2D scenario in Fig. 1 (a),

where the predicted bounding box (black rectangle), and the

ground truth box (green rectangle), are represented by their

top-left and bottom-right corners, i.e. (x1, y1, x2, y2). For

simplicity, let’s assume that the distance, e.g. ℓ2-norm, be-

tween one of the corners of two boxes is fixed. Therefore

any predicted bounding box where the second corner lies

on a circle with a fixed radius centered on the second corner

of the green rectangle (shown by a gray dashed line cir-

cle) will have exactly the same ℓ2-norm distance from the

ground truth box; however their IoU values can be signifi-

cantly different (Fig. 1 (a)). The same argument can be ex-

tended to any other representation and loss, e.g. Fig. 1 (b).

It is intuitive that a good local optimum for these types of

objectives may not necessarily be a local optimum for IoU .

Moreover, in contrast to IoU , ℓn-norm objectives defined

based on the aforementioned parametric representations are

not invariant to the scale of the problem. To this end, several

pairs of bounding boxes with the same level of overlap, but

different scales due to e.g. perspective, will have different

objective values. In addition, some representations may suf-

fer from lack of regularization between the different types

of parameters used for the representation. For example, in

the center and size representation, (xc, yc) is defined on the

location space while (w, h) belongs to the size space. Com-

plexity increases as more parameters are incorporated, e.g.

rotation, or when adding more dimensions to the problem.

To alleviate some of the aforementioned problems, state-of-

the-art object detectors introduce the concept of an anchor

box [22] as a hypothetically good initial guess. They also

define a non-linear representation [19, 5] to naively com-

pensate for the scale changes. Even with these handcrafted

changes, there is still a gap between optimizing the regres-

sion losses and IoU values.

In this paper, we explore the calculation of IoU between

two axis aligned rectangles, or generally two axis aligned n-

orthotopes, which has a straightforward analytical solution

and in contrast to the prevailing belief, IoU in this case can

be backpropagated [24], i.e. it can be directly used as the

objective function to optimize. It is therefore preferable to

use IoU as the objective function for 2D object detection

tasks. Given the choice between optimizing a metric itself

vs. a surrogate loss function, the optimal choice is the met-

ric itself. However, IoU as both a metric and a loss has a

major issue: if two objects do not overlap, the IoU value

will be zero and will not reflect how far the two shapes are

from each other. In this case of non-overlapping objects, if

IoU is used as a loss, its gradient will be zero and cannot

be optimized.

In this paper, we will address this weakness of IoU by

extending the concept to non-overlapping cases. We ensure

this generalization (a) follows the same definition as IoU ,

i.e. encoding the shape properties of the compared objects

into the region property; (b) maintains the scale invariant

property of IoU , and (c) ensures a strong correlation with

IoU in the case of overlapping objects. We introduce this

generalized version of IoU , named GIoU , as a new met-

ric for comparing any two arbitrary shapes. We also pro-

vide an analytical solution for calculating GIoU between

two axis aligned rectangles, allowing it to be used as a loss

in this case. Incorporating GIoU loss into state-of-the art

object detection algorithms, we consistently improve their

performance on popular object detection benchmarks such

as PASCAL VOC [4] and MS COCO [14] using both the

standard, i.e. IoU based [4, 14], and the new, GIoU based,

performance measures.

The main contribution of the paper is summarized as fol-

lows:

• We introduce this generalized version of IoU , as a new

metric for comparing any two arbitrary shapes.

• We provide an analytical solution for using GIoU as

loss between two axis-aligned rectangles or generally

n-orthotopes1.

• We incorporate GIoU loss into the most popular

object detection algorithms such as Faster R-CNN,

Mask R-CNN and YOLO v3, and show their per-

formance improvement on standard object detection

benchmarks.

2. Related Work

Object detection accuracy measures: Intersection over

Union (IoU ) is the defacto evaluation metric used in object

detection. It is used to determine true positives and false

positives in a set of predictions. When using IoU as an eval-

uation metric an accuracy threshold must be chosen. For

instance in the PASCAL VOC challenge [4], the widely re-

ported detection accuracy measure, i.e. mean Average Pre-

cision (mAP), is calculated based on a fixed IoU threshold,

i.e. 0.5. However, an arbitrary choice of the IoU threshold

does not fully reflect the localization performance of dif-

ferent methods. Any localization accuracy higher than the

threshold is treated equally. In order to make this perfor-

mance measure less sensitive to the choice of IoU thresh-

old, the MS COCO Benchmark challenge [14] averages

mAP across multiple IoU thresholds.

1Extension provided in supp. material
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Bounding box representations and losses: In 2D ob-

ject detection, learning bounding box parameters is crucial.

Various bounding box representations and losses have been

proposed in the literature. Redmon et al. in YOLO v1[19]

propose a direct regression on the bounding box parameters

with a small tweak to predict square root of the bounding

box size to remedy scale sensitivity. Girshick et al. [5] in R-

CNN parameterize the bounding box representation by pre-

dicting location and size offsets from a prior bounding box

calculated using a selective search algorithm [23]. To al-

leviate scale sensitivity of the representation, the bounding

box size offsets are defined in log-space. Then, an ℓ2-norm

objective, also known as MSE loss, is used as the objective

to optimize. Later, in Fast R-CNN [7], Girshick proposes

ℓ1-smooth loss to make the learning more robust against

outliers. Ren et al. [22] propose the use of a set of dense

prior bounding boxes, known as anchor boxes, followed by

a regression to small variations on bounding box locations

and sizes. However, this makes training the bounding box

scores more difficult due to significant class imbalance be-

tween positive and negative samples. To mitigate this prob-

lem, the authors later introduce focal loss [13], which is

orthogonal to the main focus of our paper.

Most popular object detectors [20, 21, 3, 12, 13, 16] uti-

lize some combination of the bounding box representations

and losses mentioned above. These considerable efforts

have yielded significant improvement in object detection.

We show there may be some opportunity for further im-

provement in localization with the use of GIoU , as their

bounding box regression losses are not directly representa-

tive of the core evaluation metric, i.e. IoU .

Optimizing IoU using an approximate or a surro-

gate function: In the semantic segmentation task, there

have been some efforts to optimize IoU using either an

approximate function [18] or a surrogate loss [17]. Simi-

larly, for the object detection task, recent works [8, 24] have

attempted to directly or indirectly incorporate IoU to bet-

ter perform bounding box regression. However, they suffer

from either an approximation or a plateau which exist in

optimizing IoU in non-overlapping cases. In this paper we

address the weakness of IoU by introducing a generalized

version of IoU , which is directly incorporated as a loss for

the object detection problem.

3. Generalized Intersection over Union

Intersection over Union (IoU ) for comparing similarity

between two arbitrary shapes (volumes) A,B ⊆ S ∈ R
n is

attained by:

IoU =
|A ∩B|

|A ∪B|
(1)

Two appealing features, which make this similarity mea-

sure popular for evaluating many 2D/3D computer vision

tasks are as follows:

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: A,B ⊆ S ∈ R
n

output: GIoU

1 For A and B, find the smallest enclosing convex object C,

where C ⊆ S ∈ R
n

2 IoU =
|A ∩B|

|A ∪B|

3 GIoU = IoU −
|C\(A ∪B)|

|C|

• IoU as a distance, e.g. LIoU = 1−IoU , is a metric (by

mathematical definition) [9]. It means LIoU fulfills all

properties of a metric such as non-negativity, identity

of indiscernibles, symmetry and triangle inequality.

• IoU is invariant to the scale of the problem. This

means that the similarity between two arbitrary shapes

A and B is independent from the scale of their space S

(the proof is provided in supp. material).

However, IoU has a major weakness:

• If |A∩B| = 0, IoU(A,B) = 0. In this case, IoU does

not reflect if two shapes are in vicinity of each other or

very far from each other.

To address this issue, we propose a general extension to

IoU , namely Generalized Intersection over Union GIoU .

For two arbitrary convex shapes (volumes) A,B ⊆ S ∈
R

n, we first find the smallest convex shapes C ⊆ S ∈ R
n

enclosing both A and B2. For comparing two specific types

of geometric shapes, C can be from the same type. For

example, two arbitrary ellipsoids, C could be the smallest

ellipsoids enclosing them. Then we calculate a ratio be-

tween the volume (area) occupied by C excluding A and B

and divide by the total volume (area) occupied by C. This

represents a normalized measure that focuses on the empty

volume (area) between A and B. Finally GIoU is attained

by subtracting this ratio from the IoU value. The calcula-

tion of GIoU is summarized in Alg. 1.

GIoU as a new metric has the following properties: 3

1. Similar to IoU , GIoU as a distance, e.g. LGIoU =
1 − GIoU , holding all properties of a metric such

as non-negativity, identity of indiscernibles, symmetry

and triangle inequality.

2. Similar to IoU , GIoU is invariant to the scale of the

problem.

3. GIoU is always a lower bound for IoU , i.e. ∀A,B ⊆
S GIoU(A,B) ≤ IoU(A,B), and this lower bound

becomes tighter when A and B have a stronger shape

2Extension to non-convex cases has been provided in supp. material.
3Their proof has been provided in supp. material.
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