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Abstract

Intersection over Union (IoU) is the most popular evalu-

ation metric used in the object detection benchmarks. How-

ever, there is a gap between optimizing the commonly used

distance losses for regressing the parameters of a bounding

box and maximizing this metric value. The optimal objec-

tive for a metric is the metric itself. In the case of axis-

aligned 2D bounding boxes, it can be shown that IoU can

be directly used as a regression loss. However, IoU has a

plateau making it infeasible to optimize in the case of non-

overlapping bounding boxes. In this paper, we address the

weaknesses of IoU by introducing a generalized version as

both a new loss and a new metric. By incorporating this

generalized IoU (GIoU ) as a loss into the state-of-the art

object detection frameworks, we show a consistent improve-

ment on their performance using both the standard, IoU

based, and new, GIoU based, performance measures on

popular object detection benchmarks such as PASCAL VOC

and MS COCO.

1. Introduction

Bounding box regression is one of the most fundamental

components in many 2D/3D computer vision tasks. Tasks

such as object localization, multiple object detection, ob-

ject tracking and instance level segmentation rely on ac-

curate bounding box regression. The dominant trend for

improving performance of applications utilizing deep neu-

ral networks is to propose either a better architecture back-

bone [15, 13] or a better strategy to extract reliable local

features [6]. However, one opportunity for improvement

that is widely ignored is the replacement of the surrogate

regression losses such as ℓ1 and ℓ2-norms, with a metric

loss calculated based on Intersection over Union (IoU ).
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Figure 1. Two sets of examples (a) and (b) with the bounding

boxes represented by (a) two corners (x1, y1, x2, y2) and (b) cen-

ter and size (xc, yc, w, h). For all three cases in each set (a) ℓ2-

norm distance, ||.||2, and (b) ℓ1-norm distance, ||.||1, between the

representation of two rectangles are exactly same value, but their

IoU and GIoU values are very different.

IoU , also known as Jaccard index, is the most commonly

used metric for comparing the similarity between two arbi-

trary shapes. IoU encodes the shape properties of the ob-

jects under comparison, e.g. the widths, heights and loca-

tions of two bounding boxes, into the region property and

then calculates a normalized measure that focuses on their
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areas (or volumes). This property makes IoU invariant to

the scale of the problem under consideration. Due to this

appealing property, all performance measures used to eval-

uate for segmentation [2, 1, 25, 14], object detection [14, 4],

and tracking [11, 10] rely on this metric.

However, it can be shown that there is not a strong cor-

relation between minimizing the commonly used losses,

e.g. ℓn-norms, defined on parametric representation of two

bounding boxes in 2D/3D and improving their IoU values.

For example, consider the simple 2D scenario in Fig. 1 (a),

where the predicted bounding box (black rectangle), and the

ground truth box (green rectangle), are represented by their

top-left and bottom-right corners, i.e. (x1, y1, x2, y2). For

simplicity, let’s assume that the distance, e.g. ℓ2-norm, be-

tween one of the corners of two boxes is fixed. Therefore

any predicted bounding box where the second corner lies

on a circle with a fixed radius centered on the second corner

of the green rectangle (shown by a gray dashed line cir-

cle) will have exactly the same ℓ2-norm distance from the

ground truth box; however their IoU values can be signifi-

cantly different (Fig. 1 (a)). The same argument can be ex-

tended to any other representation and loss, e.g. Fig. 1 (b).

It is intuitive that a good local optimum for these types of

objectives may not necessarily be a local optimum for IoU .

Moreover, in contrast to IoU , ℓn-norm objectives defined

based on the aforementioned parametric representations are

not invariant to the scale of the problem. To this end, several

pairs of bounding boxes with the same level of overlap, but

different scales due to e.g. perspective, will have different

objective values. In addition, some representations may suf-

fer from lack of regularization between the different types

of parameters used for the representation. For example, in

the center and size representation, (xc, yc) is defined on the

location space while (w, h) belongs to the size space. Com-

plexity increases as more parameters are incorporated, e.g.

rotation, or when adding more dimensions to the problem.

To alleviate some of the aforementioned problems, state-of-

the-art object detectors introduce the concept of an anchor

box [22] as a hypothetically good initial guess. They also

define a non-linear representation [19, 5] to naively com-

pensate for the scale changes. Even with these handcrafted

changes, there is still a gap between optimizing the regres-

sion losses and IoU values.

In this paper, we explore the calculation of IoU between

two axis aligned rectangles, or generally two axis aligned n-

orthotopes, which has a straightforward analytical solution

and in contrast to the prevailing belief, IoU in this case can

be backpropagated [24], i.e. it can be directly used as the

objective function to optimize. It is therefore preferable to

use IoU as the objective function for 2D object detection

tasks. Given the choice between optimizing a metric itself

vs. a surrogate loss function, the optimal choice is the met-

ric itself. However, IoU as both a metric and a loss has a

major issue: if two objects do not overlap, the IoU value

will be zero and will not reflect how far the two shapes are

from each other. In this case of non-overlapping objects, if

IoU is used as a loss, its gradient will be zero and cannot

be optimized.

In this paper, we will address this weakness of IoU by

extending the concept to non-overlapping cases. We ensure

this generalization (a) follows the same definition as IoU ,

i.e. encoding the shape properties of the compared objects

into the region property; (b) maintains the scale invariant

property of IoU , and (c) ensures a strong correlation with

IoU in the case of overlapping objects. We introduce this

generalized version of IoU , named GIoU , as a new met-

ric for comparing any two arbitrary shapes. We also pro-

vide an analytical solution for calculating GIoU between

two axis aligned rectangles, allowing it to be used as a loss

in this case. Incorporating GIoU loss into state-of-the art

object detection algorithms, we consistently improve their

performance on popular object detection benchmarks such

as PASCAL VOC [4] and MS COCO [14] using both the

standard, i.e. IoU based [4, 14], and the new, GIoU based,

performance measures.

The main contribution of the paper is summarized as fol-

lows:

• We introduce this generalized version of IoU , as a new

metric for comparing any two arbitrary shapes.

• We provide an analytical solution for using GIoU as

loss between two axis-aligned rectangles or generally

n-orthotopes1.

• We incorporate GIoU loss into the most popular

object detection algorithms such as Faster R-CNN,

Mask R-CNN and YOLO v3, and show their per-

formance improvement on standard object detection

benchmarks.

2. Related Work

Object detection accuracy measures: Intersection over

Union (IoU ) is the defacto evaluation metric used in object

detection. It is used to determine true positives and false

positives in a set of predictions. When using IoU as an eval-

uation metric an accuracy threshold must be chosen. For

instance in the PASCAL VOC challenge [4], the widely re-

ported detection accuracy measure, i.e. mean Average Pre-

cision (mAP), is calculated based on a fixed IoU threshold,

i.e. 0.5. However, an arbitrary choice of the IoU threshold

does not fully reflect the localization performance of dif-

ferent methods. Any localization accuracy higher than the

threshold is treated equally. In order to make this perfor-

mance measure less sensitive to the choice of IoU thresh-

old, the MS COCO Benchmark challenge [14] averages

mAP across multiple IoU thresholds.

1Extension provided in supp. material

659



Bounding box representations and losses: In 2D ob-

ject detection, learning bounding box parameters is crucial.

Various bounding box representations and losses have been

proposed in the literature. Redmon et al. in YOLO v1[19]

propose a direct regression on the bounding box parameters

with a small tweak to predict square root of the bounding

box size to remedy scale sensitivity. Girshick et al. [5] in R-

CNN parameterize the bounding box representation by pre-

dicting location and size offsets from a prior bounding box

calculated using a selective search algorithm [23]. To al-

leviate scale sensitivity of the representation, the bounding

box size offsets are defined in log-space. Then, an ℓ2-norm

objective, also known as MSE loss, is used as the objective

to optimize. Later, in Fast R-CNN [7], Girshick proposes

ℓ1-smooth loss to make the learning more robust against

outliers. Ren et al. [22] propose the use of a set of dense

prior bounding boxes, known as anchor boxes, followed by

a regression to small variations on bounding box locations

and sizes. However, this makes training the bounding box

scores more difficult due to significant class imbalance be-

tween positive and negative samples. To mitigate this prob-

lem, the authors later introduce focal loss [13], which is

orthogonal to the main focus of our paper.

Most popular object detectors [20, 21, 3, 12, 13, 16] uti-

lize some combination of the bounding box representations

and losses mentioned above. These considerable efforts

have yielded significant improvement in object detection.

We show there may be some opportunity for further im-

provement in localization with the use of GIoU , as their

bounding box regression losses are not directly representa-

tive of the core evaluation metric, i.e. IoU .

Optimizing IoU using an approximate or a surro-

gate function: In the semantic segmentation task, there

have been some efforts to optimize IoU using either an

approximate function [18] or a surrogate loss [17]. Simi-

larly, for the object detection task, recent works [8, 24] have

attempted to directly or indirectly incorporate IoU to bet-

ter perform bounding box regression. However, they suffer

from either an approximation or a plateau which exist in

optimizing IoU in non-overlapping cases. In this paper we

address the weakness of IoU by introducing a generalized

version of IoU , which is directly incorporated as a loss for

the object detection problem.

3. Generalized Intersection over Union

Intersection over Union (IoU ) for comparing similarity

between two arbitrary shapes (volumes) A,B ⊆ S ∈ R
n is

attained by:

IoU =
|A ∩B|

|A ∪B|
(1)

Two appealing features, which make this similarity mea-

sure popular for evaluating many 2D/3D computer vision

tasks are as follows:

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: A,B ⊆ S ∈ R
n

output: GIoU

1 For A and B, find the smallest enclosing convex object C,

where C ⊆ S ∈ R
n

2 IoU =
|A ∩B|

|A ∪B|

3 GIoU = IoU −
|C\(A ∪B)|

|C|

• IoU as a distance, e.g. LIoU = 1−IoU , is a metric (by

mathematical definition) [9]. It means LIoU fulfills all

properties of a metric such as non-negativity, identity

of indiscernibles, symmetry and triangle inequality.

• IoU is invariant to the scale of the problem. This

means that the similarity between two arbitrary shapes

A and B is independent from the scale of their space S

(the proof is provided in supp. material).

However, IoU has a major weakness:

• If |A∩B| = 0, IoU(A,B) = 0. In this case, IoU does

not reflect if two shapes are in vicinity of each other or

very far from each other.

To address this issue, we propose a general extension to

IoU , namely Generalized Intersection over Union GIoU .

For two arbitrary convex shapes (volumes) A,B ⊆ S ∈
R

n, we first find the smallest convex shapes C ⊆ S ∈ R
n

enclosing both A and B2. For comparing two specific types

of geometric shapes, C can be from the same type. For

example, two arbitrary ellipsoids, C could be the smallest

ellipsoids enclosing them. Then we calculate a ratio be-

tween the volume (area) occupied by C excluding A and B

and divide by the total volume (area) occupied by C. This

represents a normalized measure that focuses on the empty

volume (area) between A and B. Finally GIoU is attained

by subtracting this ratio from the IoU value. The calcula-

tion of GIoU is summarized in Alg. 1.

GIoU as a new metric has the following properties: 3

1. Similar to IoU , GIoU as a distance, e.g. LGIoU =
1 − GIoU , holding all properties of a metric such

as non-negativity, identity of indiscernibles, symmetry

and triangle inequality.

2. Similar to IoU , GIoU is invariant to the scale of the

problem.

3. GIoU is always a lower bound for IoU , i.e. ∀A,B ⊆
S GIoU(A,B) ≤ IoU(A,B), and this lower bound

becomes tighter when A and B have a stronger shape

2Extension to non-convex cases has been provided in supp. material.
3Their proof has been provided in supp. material.
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similarity and proximity, i.e. limA→B GIoU(A,B) =
IoU(A,B).

4. ∀A,B ⊆ S, 0 ≤ IoU(A,B) ≤ 1, but GIoU

has a symmetric range, i.e. ∀A,B ⊆ S, −1 ≤
GIoU(A,B) ≤ 1.

I) Similar to IoU , the value 1 occurs only when two

objects overlay perfectly, i.e. if |A∪B| = |A∩B|,
then GIoU = IoU = 1

II) GIoU value asymptotically converges to -1

when the ratio between occupying regions of

two shapes, |A ∪ B|, and the volume (area)

of the enclosing shape |C| tends to zero, i.e.

lim
|A∪B|

|C|
→0

GIoU(A,B) = −1 .

In summary, this generalization keeps the major proper-

ties of IoU while rectifying its weakness. Therefore, GIoU

can be a proper substitute for IoU in all performance mea-

sures used in 2D/3D computer vision tasks. In this paper,

we only focus on 2D object detection where we can easily

derive an analytical solution for GIoU to apply it as both

metric and loss. The extension to non-axis aligned 3D cases

is left as future work.

3.1. GIoU as Loss for Bounding Box Regression

So far, we introduced GIoU as a metric for any two ar-

bitrary shapes. However as is the case with IoU , there is no

analytical solution for calculating intersection between two

arbitrary shapes and/or for finding the smallest enclosing

convex object for them.

Fortunately, for the 2D object detection task where the

task is to compare two axis aligned bounding boxes, we can

show that GIoU has a straightforward solution. In this case,

the intersection and the smallest enclosing objects both have

rectangular shapes. It can be shown that the coordinates of

their vertices are simply the coordinates of one of the two

bounding boxes being compared, which can be attained by

comparing each vertices’ coordinates using min and max

functions. To check if two bounding boxes overlap, a con-

dition must also be checked. Therefore, we have an exact

solution to calculate IoU and GIoU .

Since back-propagating min, max and piece-wise linear

functions, e.g. Relu, are feasible, it can be shown that every

component in Alg. 2 has a well-behaved derivative. There-

fore, IoU or GIoU can be directly used as a loss, i.e. LIoU

or LGIoU , for optimizing deep neural network based object

detectors. In this case, we are directly optimizing a metric

as loss, which is an optimal choice for the metric. However,

in all non-overlapping cases, IoU has zero gradient, which

affects both training quality and convergence rate. GIoU ,

in contrast, has a gradient in all possible cases, including

non-overlapping situations. In addition, using property 3,

Algorithm 2: IoU and GIoU as bounding box losses

input : Predicted Bp and ground truth Bg bounding box

coordinates:

Bp = (xp
1
, y

p
1
, x

p
2
, y

p
2
), Bg = (xg

1
, y

g
1
, x

g
2
, y

g
2
).

output: LIoU , LGIoU .

1 For the predicted box Bp, ensuring x
p
2
> x

p
1

and y
p
2
> y

p
1

:

x̂
p
1
= min(xp

1
, x

p
2
), x̂

p
2
= max(xp

1
, x

p
2
),

ŷ
p
1
= min(yp

1
, y

p
2
), ŷ

p
2
= max(yp

1
, y

p
2
).

2 Calculating area of Bg: Ag = (xg
2
− x

g
1
)× (yg

2
− y

g
1
).

3 Calculating area of Bp: Ap = (x̂p
2
− x̂

p
1
)× (ŷp

2
− ŷ

p
1
).

4 Calculating intersection I between Bp and Bg:

xI

1 = max(x̂p
1
, x

g
1
), xI

2 = min(x̂p
2
, x

g
2
),

yI

1 = max(ŷp
1
, y

g
1
), yI

2 = min(ŷp
2
, y

g
2
),

I =

{

(xI

2 − xI

1 )× (yI

2 − yI

1 ) if xI

2 > xI

1 , y
I

2 > yI

1

0 otherwise.

5 Finding the coordinate of smallest enclosing box Bc:

xc
1 = min(x̂p

1
, x

g
1
), xc

2 = max(x̂p
2
, x

g
2
),

yc
1 = min(ŷp

1
, y

g
1
), yc

2 = max(ŷp
2
, y

g
2
).

6 Calculating area of Bc: Ac = (xc
2 − xc

1)× (yc
2 − yc

1).

7 IoU =
I

U
, where U = Ap +Ag − I.

8 GIoU = IoU −
Ac − U

Ac
.

9 LIoU = 1− IoU , LGIoU = 1−GIoU .

we show that GIoU has a strong correlation with IoU ,

especially in high IoU values. We also demonstrate this

correlation qualitatively in Fig. 2 by taking over 10K ran-

dom samples from the coordinates of two 2D rectangles. In

Fig. 2, we also observe that in the case of low overlap, e.g.

IoU ≤ 0.2 and GIoU ≤ 0.2, GIoU has the opportunity to

change more dramatically compared to IoU . To this end,

GIoU can potentially have a steeper gradient in any possi-

ble state in these cases compared to IoU . Therefore, opti-

mizing GIoU as loss, LGIoU can be a better choice com-

pared to LIoU , no matter which IoU -based performance

measure is ultimately used. Our experimental results ver-

ify this claim.

Loss Stability: We also investigate if there exist any ex-

treme cases which make the loss unstable/undefined given

any value for the predicted outputs.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

GIoU

0

0.2

0.4

0.6

0.8

1

Io
U

Overlapping samples

Line IoU = GIoU

Non-overlaping samples

Line IoU = 0 & GIoU < 0

Figure 2. Correlation between GIoU and IOU for overlapping and

non-overlapping samples.
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Considering the ground truth bounding box, Bg is a rect-

angle with area bigger than zero, i.e. Ag > 0. Alg. 2 (1)

and the Conditions in Alg. 2 (4) respectively ensure the pre-

dicted area Ap and intersection I are non-negative values,

i.e. Ap ≥ 0 and I ≥ 0 ∀Bp ∈ R
4. Therefore union U > 0

for any predicted value of Bp = (xp
1
, y

p
1
, x

p
2
, y

p
2
) ∈ R

4.

This ensures that the denominator in IoU cannot be zero

for any predicted value of outputs. Moreover, for any val-

ues of Bp = (xp
1
, y

p
1
, x

p
2
, y

p
2
) ∈ R

4, union is always bigger

than intersection, i.e. U ≥ I. Consequently, LIoU is always

bounded, i.e. 0 ≤ LIoU ≤ 1 ∀Bp ∈ R
4.

To check the stability of LGIoU , the extra term, i.e.
Ac

−U

Ac , should always be a defined and bounded value. It

can be easily perceived that the smallest enclosing box Bc

cannot be smaller than Bg for all predicted values. There-

fore the denominator in Ac
−U

Ac is always a positive non-

zero value, because Ac ≥ Ag ∀Bp ∈ R
4 and Ag ≥ 0.

Moreover, the area of the smallest enclosing box cannot be

smaller than union for any value of predictions, i.e. Ac ≥ U
∀Bp ∈ R

4. Therefore, the extra term in GIoU is positive

and bounded. Consequently, LGIoU is always bounded, i.e.

0 ≤ LGIoU ≤ 2 ∀Bp ∈ R
4.

LGIoU behaviour when IoU = 0: For GIoU loss, we

have LGIoU = 1−GIoU = 1+ Ac
−U

Ac − IoU . In the case

when Bg and Bp do not overlap, i.e. I = 0 and IoU = 0,

GIoU loss simplifies to LGIoU = 1 + Ac
−U

Ac = 2 − U

Ac .

In this case, by minimizing LGIoU , we actually maximize

the term U

Ac . This term is a normalized measure between 0

and 1, i.e. 0 ≤ U

Ac ≤ 1, and is maximized when the area

of the smallest enclosing box Ac is minimized while the

union U = Ag+Ap, or more precisely the area of predicted

bounding box Ap, is maximized. To accomplish this, the

vertices of the predicted bounding box Bp should move in

a direction that encourages Bg and Bp to overlap, making

IoU 6= 0.

4. Experimental Results

We evaluate our new bounding box regression loss

LGIoU by incorporating it into the most popular 2D object

detectors such as Faster R-CNN [22], Mask R-CNN [6]

and YOLO v3 [21]. To this end, we replace their default

regression losses with LGIoU , i.e. we replace ℓ1-smooth in

Faster /Mask-RCNN [22, 6] and MSE in YOLO v3 [21].

We also compare the baseline losses against LIoU
4.

Dataset. We train all detection baselines and report

all the results on two standard object detection benchmarks,

i.e. the PASCAL VOC [4] and the Microsoft Common

Objects in Context (MS COCO) [14] challenges. The

details of their training protocol and their evaluation have

4All source codes including the evaluation scripts, the training codes,

trained models and all loss implementations in PyTorch, TensorFlow and

darknet are available at: https://giou.stanford.edu.

been provided in their own sections.

PASCAL VOC 2007: The Pascal Visual Object Classes

(VOC) [4] benchmark is one of the most widely used

datasets for classification, object detection and semantic

segmentation. It consists of 9963 images with a 50/50 split

for training and test, where objects from 20 pre-defined

categories have been annotated with bounding boxes.

MS COCO: Another popular benchmark for image

captioning, recognition, detection and segmentation is

the more recent Microsoft Common Objects in Context

(MS-COCO) [14]. The COCO dataset consists of over

200,000 images across train, validation and test sets with

over 500,000 annotated object instances from 80 categories.

Evaluation protocol. In this paper, we adopt the

same performance measure as the MS COCO 2018

Challenge [14] to report all our results. This includes

the calculation of mean Average precision (mAP) over

different class labels for a specific value of IoU threshold

in order to determine true positives and false positives.

The main performance measure used in this benchmark is

shown by AP, which is averaging mAP across different

value of IoU thresholds, i.e. IoU = {.5, .55, · · · , .95}.

Additionally, we modify this evaluation script to use GIoU

instead of IoU as a metric to decide about true positives

and false positives. Therefore, we report another value for

AP by averaging mAP across different values of GIoU

thresholds, GIoU = {.5, .55, · · · , .95}. We also report the

mAP value for IoU and GIoU thresholds equal to 0.75,

shown as AP75 in the tables.

All detection baselines have also been evaluated using

the test set of the MS COCO 2018 dataset, where the an-

notations are not accessible for the evaluation. Therefore in

this case, we are only able to report results using the stan-

dard performance measure, i.e. IoU .

4.1. YOLO v3

Training protocol. We used the original Darknet imple-

mentation of YOLO v3 released by the authors 5. For base-

line results (training using MSE loss), we used DarkNet-

608 as backbone network architecture in all experiments

and followed exactly their training protocol using the re-

ported default parameters and the number of iteration on

each benchmark. To train YOLO v3 using IoU and GIoU

losses, we simply replace the bounding box regression MSE

loss with LIoU and LGIoU losses explained in Alg. 2. Con-

sidering the additional MSE loss on classification and since

we replace an unbounded distance loss such as MSE dis-

tance with a bounded distance, e.g. LIoU or LGIoU , we

need to regularize the new bounding box regression against

the classification loss. However, we performed a very min-

imal effort to regularize these new regression losses against

5Available at: https://pjreddie.com/darknet/yolo/
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Table 1. Comparison between the performance of YOLO v3 [21] trained

using its own loss (MSE) as well as LIoU and LGIoU losses. The results

are reported on the test set of PASCAL VOC 2007.

Loss
/

Evaluation AP AP75

IoU GIoU IoU GIoU

MSE [21] .461 .451 .486 .467

LIoU .466 .460 .504 .498

Relative improv % 1.08% 2.02% 3.70% 6.64%

LGIoU .477 .469 .513 .499

Relative improv % 3.45% 4.08% 5.56% 6.85%

the MSE classification loss.

PASCAL VOC 2007. Following the original code’s

training protocol, we trained the network using each loss

on both training and validation set of the dataset up to 50K
iterations. Their performance using the best network model

for each loss has been evaluated using the PASCAL VOC

2007 test and the results have been reported in Tab. 1.

Considering both standard IoU based and new GIoU

based performance measures, the results in Tab. 1 show

that training YOLO v3 using LGIoU as regression loss can

considerably improve its performance compared to its own

regression loss (MSE). Moreover, incorporating LIoU as

regression loss can slightly improve the performance of

YOLO v3 on this benchmark. However, the improvement is

inferior compared to the case where it is trained by LGIoU .

MS COCO. Following the original code’s training pro-

tocol, we trained YOLO v3 using each loss on both the

training set and 88% of the validation set of MS COCO

2014 up to 502k iterations. Then we evaluated the re-

sults using the remaining 12% of the validation set and re-

ported the results in Tab. 2. We also compared them on

the MS COCO 2018 Challenge by submitting the results to

the COCO server. All results using the IoU based perfor-

mance measure are reported in Tab. 3. Similar to the PAS-

CAL VOC experiment, the results show consistent improve-

ment in performance for YOLO v3 when it is trained using

LGIoU as regression loss. We have also investigated how

each component, i.e. bounding box regression and classifi-

cation losses, contribute to the final AP performance mea-
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Figure 3. The classification loss and accuracy (average IoU )

against training iterations when YOLO v3 [21] was trained using

its standard (MSE) loss as well as LIoU and LGIoU losses.

Table 2. Comparison between the performance of YOLO v3 [21] trained

using its own loss (MSE) as well as LIoU and LGIoU losses. The results

are reported on 5K of the 2014 validation set of MS COCO.

Loss
/

Evaluation AP AP75

IoU GIoU IoU GIoU

MSE [21] 0.314 0.302 0.329 0.317

LIoU 0.322 0.313 0.345 0.335

Relative improv % 2.55% 3.64% 4.86% 5.68%

LGIoU 0.335 0.325 0.359 0.348

Relative improv % 6.69% 7.62% 9.12% 9.78%

Table 3. Comparison between the performance of YOLO v3 [21] trained

using its own loss (MSE) as well as using LIoU and LGIoU losses. The

results are reported on the test set of MS COCO 2018.

Loss
/

Evaluation AP AP75

MSE [21] .314 .333

LIoU .321 .348

Relative improv % 2.18% 4.31%

LGIoU .333 .362

Relative improv % 5.71% 8.01%

sure. We believe the localization accuracy for YOLO v3

significantly improves when LGIoU loss is used (Fig. 3 (a)).

However, with the current naive tuning of regularization pa-

rameters, balancing bounding box loss vs. classification

loss, the classification scores may not be optimal, compared

to the baseline (Fig. 3 (b)). Since AP based performance

measure is considerably affected by small classification er-

ror, we believe the results can be further improved with a

better search for regularization parameters.

4.2. Faster R­CNN and Mask R­CNN

Training protocol. We used the latest PyTorch imple-

mentations of Faster R-CNN [22] and Mask R-CNN [6] 6,

released by Facebook research. This code is analogous to

the original Caffe2 implementation 7. For baseline results

(trained using ℓ1-smooth), we used ResNet-50 the backbone

network architecture for both Faster R-CNN and Mask R-

CNN in all experiments and followed their training proto-

col using the reported default parameters and the number of

iteration on each benchmark. To train Faster R-CNN and

Mask R-CNN using IoU and GIoU losses, we replaced

their ℓ1-smooth loss in the final bounding box refinement

stage with LIoU and LGIoU losses explained in Alg. 2. Sim-

ilar to the YOLO v3 experiment, we undertook minimal ef-

fort to regularize the new regression loss against the other

losses such as classification and segmentation losses. We

simply multiplied LIoU and LGIoU losses by a factor of 10
for all experiments.

PASCAL VOC 2007. Since there is no instance mask

annotation available in this dataset, we did not evaluate

Mask R-CNN on this dataset. Therefore, we only trained

Faster R-CNN using the aforementioned bounding box re-

6https://github.com/roytseng-tw/Detectron.pytorch
7https://github.com/facebookresearch/Detectron
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Figure 4. mAP value against different IoU thresholds, i.e. .5 ≤
IoU ≤ .95, for Faster R-CNN trained using ℓ1-smooth (green),

LIoU (blue) and LGIoU (red) losses.

gression losses on the training set of the dataset for 20k iter-

ations. Then, we searched for the best-performing model on

the validation set over different parameters such as the num-

ber of training iterations and bounding box regression loss

regularizer. The final results on the test set of the dataset

have been reported in Tab. 4.

According to both standard IoU based and new GIoU

based performance measure, the results in Tab. 4 show that

training Faster R-CNN using LGIoU as the bounding box

regression loss can consistently improve its performance

compared to its own regression loss (ℓ1-smooth). More-

over, incorporating LIoU as the regression loss can slightly

improve the performance of Faster R-CNN on this bench-

mark. The improvement is inferior compared to the case

where it is trained using LGIoU , see Fig. 4, where we vi-

sualized different values of mAP against different value of

IoU thresholds, i.e. .5 ≤ IoU ≤ .95.

MS COCO. Similarly, we trained both Faster R-CNN

and Mask R-CNN using each of the aforementioned bound-

ing box regression losses on the MS COCO 2018 training

dataset for 95K iterations. The results for the best model on

the validation set of MS COCO 2018 for Faster R-CNN and

Mask R-CNN have been reported in Tables 5 and 7 respec-

tively. We have also compared them on the MS COCO 2018

Challenge by submitting their results to the COCO server.

All results using the IoU based performance measure are

also reported in Tables 6 and 8.

Table 4. Comparison between the performance of Faster R-CNN [22]

trained using its own loss (ℓ1-smooth) as well as LIoU and LGIoU losses.

The results are reported on the test set of PASCAL VOC 2007.

Loss
/

Evaluation AP AP75

IoU GIoU IoU GIoU

ℓ1-smooth [22] .370 .361 .358 .346

LIoU .384 .375 .395 .382

Relative improv. % 3.78% 3.88% 10.34% 10.40%

LGIoU .392 .382 .404 .395

Relative improv. % 5.95% 5.82% 12.85% 14.16%

Table 5. Comparison between the performance of Faster R-CNN [22]

trained using its own loss (ℓ1-smooth) as well as LIoU and LGIoU losses.

The results are reported on the validation set of MS COCO 2018.

Loss
/

Evaluation AP AP75

IoU GIoU IoU GIoU

ℓ1-smooth [22] .360 .351 .390 .379

LIoU .368 .358 .396 .385

Relative improv.% 2.22% 1.99% 1.54% 1.58%

LGIoU .369 .360 .398 .388

Relative improv. % 2.50% 2.56% 2.05% 2.37%

Table 6. Comparison between the performance of Faster R-CNN [22]

trained using its own loss (ℓ1-smooth) as well as LIoU and LGIoU losses.

The results are reported on the test set of MS COCO 2018.

Loss
/

Metric AP AP75

ℓ1-smooth [22] .364 .392

LIoU .373 .403

Relative improv.% 2.47% 2.81%

LGIoU .373 .404

Relative improv.% 2.47% 3.06%

Table 7. Comparison between the performance of Mask R-CNN [6]

trained using its own loss (ℓ1-smooth) as well as LIoU and LGIoU losses.

The results are reported on the validation set of MS COCO 2018.

Loss
/

Evaluation AP AP75

IoU GIoU IoU GIoU

ℓ1-smooth [6] .366 .356 .397 .385

LIoU .374 .364 .404 .393

Relative improv.% 2.19% 2.25% 1.76% 2.08%

LGIoU .376 .366 .405 .395

Relative improv. % 2.73% 2.81% 2.02% 2.60%

Table 8. Comparison between the performance of Mask R-CNN [6]

trained using its own loss (ℓ1-smooth) as well as LIoU and LGIoU losses.

The results are reported on the test set of MS COCO 2018.

Loss
/

Metric AP AP75

ℓ1-smooth [6] .368 .399

LIoU .377 .408

Relative improv.% 2.45% 2.26%

LGIoU .377 .409

Relative improv.% 2.45% 2.51%

Similar to the above experiments, detection accuracy

improves by using LGIoU as regression loss over ℓ1-

smooth [22, 6]. However, the amount of improvement be-

tween different losses is less than previous experiments.

This may be due to several factors. First, the detection an-

chor boxes on Faster R-CNN [22] and Mask R-CNN [6] are

more dense than YOLO v3 [21], resulting in less frequent

scenarios where LGIoU has an advantage over LIoU such

as non-overlapping bounding boxes. Second, the bound-

ing box regularization parameter has been naively tuned

on PASCAL VOC, leading to sub-optimal result on MS

COCO [14].
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Figure 5. Example results from COCO validation using YOLO v3 [21] trained using (left to right) LGIoU , LIoU , and MSE losses. Ground

truth is shown by a solid line and predictions are represented with dashed lines.

Figure 6. Two example results from COCO validation using Mask R-CNN [6] trained using (left to right) LGIoU , LIoU , ℓ1-smooth losses.

Ground truth is shown by a solid line and predictions are represented with dashed lines.

5. Conclusion

In this paper, we introduced a generalization to IoU as

a new metric, namely GIoU , for comparing any two arbi-

trary shapes. We showed that this new metric has all of

the appealing properties which IoU has while addressing

its weakness. Therefore it can be a good alternative in all

performance measures in 2D/3D vision tasks relying on the

IoU metric.

We also provided an analytical solution for calculating

GIoU between two axis-aligned rectangles. We showed

that the derivative of GIoU as a distance can be computed

and it can be used as a bounding box regression loss. By in-

corporating it into the state-of-the art object detection algo-

rithms, we consistently improved their performance on pop-

ular object detection benchmarks such as PASCAL VOC

and MS COCO using both the commonly used performance

measures and also our new accuracy measure, i.e. GIoU

based average precision. Since the optimal loss for a metric

is the metric itself, our GIoU loss can be used as the opti-

mal bounding box regression loss in all applications which

require 2D bounding box regression.

In the future, we plan to investigate the feasibility of de-

riving an analytic solution for GIoU in the case of two ro-

tating rectangular cuboids. This extension and incorporat-

ing it as a loss could have great potential to improve the

performance of 3D object detection frameworks.
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