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Abstract

We consider the problem of video summarization. Given

an input raw video, the goal is to select a small subset of

key frames from the input video to create a shorter sum-

mary video that best describes the content of the original

video. Most of the current state-of-the-art video summa-

rization approaches use supervised learning and require

labeled training data. Each training instance consists of

a raw input video and its ground truth summary video cu-

rated by human annotators. However, it is very expensive

and difficult to create such labeled training examples. To

address this limitation, we propose a novel formulation to

learn video summarization from unpaired data. We present

an approach that learns to generate optimal video sum-

maries using a set of raw videos (V ) and a set of summary

videos (S), where there exists no correspondence between

V and S. We argue that this type of data is much easier

to collect. Our model aims to learn a mapping function

F : V → S such that the distribution of resultant summary

videos from F (V ) is similar to the distribution of S with the

help of an adversarial objective. In addition, we enforce a

diversity constraint on F (V ) to ensure that the generated

video summaries are visually diverse. Experimental results

on two benchmark datasets indicate that our proposed ap-

proach significantly outperforms other alternative methods.

1. Introduction

In recent years, there has been a phenomenal surge in

videos uploaded online everyday. With this remarkable

growth, it is becoming difficult for users to watch or browse

these online videos efficiently. In order to make this enor-

mous amount of video data easily browsable and accessible,

we need automatic video summarization tools. The goal of

video summarization is to produce a short summary video

that conveys the important and relevant content of a given

longer video. Video summarization can be an indispensable

tool that has potential applications in a wide range of do-

mains such as video database management, consumer video

analysis and surveillance [35].

Video summarization is often formulated as a subset se-

lection problem. In general, there are two types of sub-

set selection in video summarization: (i) key frames selec-

tion, where the goal is to identify a set of isolated frames

[8, 17, 20, 24, 25, 31, 39]; and (ii) key shots selection,

where the aim is to identify a set of temporally continu-

ous interval-based segments or subshots [16, 22, 26, 27].

In this paper, we treat video summarization as a key frame

selection problem. A good summary video should contain

video frames that satisfy certain properties. For example,

the selected frames should capture the key content of the

video [8, 13, 27]. In addition, the selected frames should be

visually diverse [8, 24, 39].

Both supervised and unsupervised learning approaches

have been proposed for video summarization. Most unsu-

pervised methods [13, 14, 17, 22, 24, 27, 29, 33, 47, 31, 40]

use hand-crafted heuristics to select frames in a video.

The limitation of such approaches is that it is difficult to

come up with the heuristics that are sufficient for generat-

ing good summary videos. In contrast, supervised methods

[8, 10, 11, 38, 39, 43] learn from training data with user-

generated summary videos. Each instance of the training

data consists of a pair of videos – a raw input video and its

corresponding ground truth summary video created by hu-

mans. From such training data, these supervised methods

learn to map from a raw input video to a summary video

by mimicking how humans create summary videos. Su-

pervised methods can implicitly capture cues used by hu-

mans that are difficult to model via hand-crafted heuristics,

so they tend to outperform unsupervised methods.

A major limitation of supervised video summarization is

that it relies on labeled training data. Common datasets in

the community are usually collected by asking human an-

notators to watch the input video and select the key frames

or key shots. This annotation process is very expensive and

time-consuming. As a result, we only have very few bench-

mark datasets available for video summarization in the com-

puter vision literature. Moreover, each dataset usually only

contains a small number of annotated data (see Table 1).

To address the flaws of supervised learning, we propose

a new formulation of learning video summarization from
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Figure 1. Learning video summarization from unpaired data. Given a set of raw videos {vi}

M
i=1 (v ∈ V ) and real summary videos

{sj}
N
j=1 (s ∈ S) such that there exists no matching/correspondence between the instances in V and S, our aim is to learn a mapping

function F : V → S (right) linking two different domains V and S. The data are unpaired because the summary set S does not include

ground truth summary videos for raw videos in V , and vice versa.

unpaired data. Our key insight is that it is much easier to

collect unpaired video sets. First of all, raw videos are eas-

ily accessible as they are abundantly available on the Inter-

net. At the same time, good summary videos are also read-

ily available in large quantities. For example, there are lots

of sports highlights, movie trailers, and other professionally

edited summary videos available online. These videos can

be treated as ground truth summary videos. The challenge

is that these professionally curated summary videos usu-

ally do not come with their corresponding raw input videos.

In this paper, we propose to solve video summarization by

learning from such unpaired data (Fig. 1 (left)). We assume

that our training data consist of two sets of videos: one set

of raw videos (V ) and another set of human created sum-

mary videos (S). However, there exists no correspondence

between the videos in these two sets, i.e. the training data

are unpaired. In other words, for a raw video in V , we may

not have its corresponding ground truth summary video in

S, and vice versa.

We propose a novel approach to learn video summariza-

tion from unpaired training data. Our method learns a map-

ping function (called the key frame selector) F : V → S

(Fig. 1 (right)) to map a raw video v ∈ V to a summary

video F (v). It also trains a summary discriminator that

tries to differentiate between a generated summary video

F (v) and a real summary video s ∈ S. Using an adver-

sarial loss [9], we learn to make the distribution of gener-

ated summary videos F (v) to be indistinguishable from the

distribution of real summary videos in S. As a result, the

mapping function F will learn to generate a realistic sum-

mary video for a given input video. We also add more struc-

ture to our learning by introducing a reconstruction loss and

a diversity loss on the output summary video F (v). By

combining these two losses with the adversarial loss, our

method learns to generate meaningful and visually diverse

video summaries from unpaired data.

In summary, our contributions of this paper include: (i) a

new problem formulation of learning video summarization

from unpaired data, which consists of a set of raw videos

and a set of video summaries that do not share any corre-

spondence; (ii) a deep learning model for video summa-

rization that learns from unpaired data via an adversarial

process; (iii) an extensive empirical study on benchmark

datasets to demonstrate the effectiveness of the proposed

approach; and (iv) an extension of our method that intro-

duces the partial supervision to improve the summarization

performance.

2. Related Work

With the explosive increase in the amount of online video

data, there has been a growing interest in the computer vi-

sion community on developing automatic video summariza-

tion techniques. Most of the prior approaches fall in the

realm of unsupervised and supervised learning.

Unsupervised methods [6, 7, 12, 14, 17, 21, 22, 23, 27,

29, 30, 33, 37, 45] typically use hand-crafted heuristics to

satisfy certain properties (e.g. diversity, representativeness)

in order to create the summary videos. Some summarization

methods also provide weak supervision through additional

cues such as web images/videos [4, 13, 14, 33] and video

category information [28, 30] to improve the performance.

Supervised methods [8, 10, 11, 19, 24, 31, 32, 38, 39,

40, 41, 42, 47] learn video summarization from labeled data

consisting of raw videos and their corresponding ground-

truth summary videos. Supervised methods tend to outper-

form unsupervised ones, since they can learn useful cues

from ground truth summaries that are hard to capture with

hand-crafted heuristics. Although supervised methods are

promising, they are limited by the fact that they require ex-
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pensive labeled training data in the form of videos and their

summaries (i.e., paired data). In this paper, we propose a

new formulation for video summarization where the algo-

rithm only needs unpaired videos and summaries (see Fig.

1(left)) for training. The main advantage of such unpaired

data is that it is much easier to collect them.

Recent methods treat video summarization as a struc-

tured prediction task [24, 31, 39, 40, 47, 43, 44, 48]. In

particular, our formulation aligns with Rochan et al. [31]

that models the video summarization as a sequence labeling

problem. Unlike contemporary methods [39, 24, 43, 44, 40]

that use recurrent models, Rochan et al. [31] propose fully

convolutional sequence model which is efficient and allows

better GPU parallelization. However, the major limitation

of their method is that it is fully supervised and relies on

paired training data. In contrast, we aim to learn video sum-

marization using videos and summaries that have no match-

ing information (i.e., unpaired data).

Lastly, our notion of learning from unpaired data is

partly related to recent research in image-to-image trans-

lation [2, 5, 36, 49]. These methods learn to translate an

input image from one domain to an output image in another

domain without any paired images from both domains dur-

ing training. However, there are major technical differences

between these methods and ours. They typically employ

two-way generative adversarial networks (GANs) with cy-

cle consistency losses, whereas our method is an instance

of standard GANs [9] with losses designed to solve video

summarization. Moreover, their formulation is limited to

unpaired learning in images. To the best of our knowledge,

this paper is the first work on unpaired learning in video

analysis, in particular video summarization.

3. Our Approach

3.1. Formulation

We are given an unpaired dataset consisting of a set

of raw videos {vi}
M
i=1 and a set of real summary videos

{sj}
N
j=1, where vi ∈ V and sj ∈ S. We define the data dis-

tribution for v and s as v ∼ pdata(v) and s ∼ pdata(s), re-

spectively. Our model consists of two sub-networks called

the key frame selector network (SK) and the summary dis-

criminator network (SD). The key frame selector network

is a mapping function SK : V → S between the two do-

mains V and S (see Fig. 1). Given an input video v ∈ V ,

the key frame selector network (SK) aims to select a small

subset of k key frames of this video to form a summary

video SK(v). The goal of the summary discriminator net-

work (SD) is to differentiate between a real summary video

s ∈ S and the summary video SK(v) produced by the

key frame selector network SK . Our objective function in-

cludes an adversarial loss, a reconstruction loss and a di-

versity loss. We learn the two networks SK and SD in an

adversarial fashion. In the end, SK learns to output an op-

timal summary video for a given input video. In practice,

we precompute the image feature of each frame in a video.

With a little abuse of terminology, we use the term “video”

to also denote the sequence of frame-level feature vectors

when there is no ambiguity based on the context.

3.2. Network Architecture

The key frame selector network (SK) in our model takes

a video with T frames as the input and produces the cor-

responding summary video with k key frames. We use

the fully convolutional sequence network (FCSN) [31], an

encoder-decoder fully convolutional network, to select key

frames from the input video. FCSN encodes the temporal

information among the video frames by performing convo-

lution and pooling operations in the temporal dimension.

This enables FCSN to extract representations that capture

the inter-frame structures. The decoder of FCSN consists of

several temporal deconvolution operations which produces

a vector of prediction scores with the same length as the in-

put video. Each score indicates the likelihood of the corre-

sponding frame being a key frame or non-key frame. Based

on these scores, we select k key frames to form the pre-

dicted summary video. In order to define the reconstruction

loss used in the learning (see Sec. 3.3), we apply convo-

lution operations on the decoded feature vectors of these

k key frames to reconstruct the corresponding feature vec-

tors in the input video. We also introduce a skip connec-

tion that retrieves the frame-level feature representation of

the selected k key frames, which we merge with the recon-

structed features of the k key frames. Fig. 2 (a) shows the

architecture of SK .

The summary discriminator network (SD) in our model

takes two kinds of input: (1) the summary videos produced

by SK for the raw videos in V ; and (2) the real summary

videos in S. The goal of SD is to distinguish between the

summaries produced by SK and the real summaries. We

use the encoder of FCSN [31] to encode the temporal infor-

mation within the input summary video. Next, we perform

a temporal average pooling operation (Ωt) on the encoded

feature vectors to obtain a video-level feature representa-

tion. Finally, we append a fully connected layer (FC), fol-

lowed by a sigmoid operation (σ) to obtain a score (Rs) in-

dicating whether the input summary video is a real summary

or a summary produced by SK . Let s be an input summary

video to SD, we can express the operations in SD by Eq. 1.

The network architecture of SD is shown in Fig. 2 (b).

Rs = SD(s) = σ (FC (Ωt (FCSNenc(s)))) (1)

3.3. Learning

Our learning objective includes an adversarial loss [9], a

reconstruction loss, and a diversity loss.
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Figure 2. Overview of our proposed model. (a) Network architecture of the key frame selector network SK . It takes a video v and produces

its summary video s
′ (i.e., SK(v)) by selecting k key frames from v. The backbone of SK is FCSN [31]. We also introduce a skip

connection from the input to retrieve the frame-level features of k key frames selected by SK . (b) Network architecture of the summary

discriminator network SD . It differentiates between an output summary video s
′ and a real summary video s. SD consists of the encoder

of FCSN (FCSNenc), followed by a temporal average pooling (Ωt) and sigmoid (σ) operations. In (c) and (d), we show the training

scheme of SK and SD , respectively. SK tries to produce video summaries that are indistinguishable from real video summaries created by

humans, whereas SD tries to differentiate real summary videos from the summaries produced by SK . As mentioned in Sec. 3.1, there is

no correspondence information available to match raw videos and summary videos in the training data.

Adversarial Loss: This loss aims to match the distribution

of summary videos produced by the key frame selector net-

work SK with the data distribution of real summary videos.

We use the adversarial loss commonly used in generative

adversarial networks [9]:

Ladv(SD, SK) = Es∼pdata(s)[logSD(s)] (2)

+Ev∼pdata(v)[log(1− SD(SK(v)))]

where SK aims to produce summary videos SK(v) that are

close to real summary videos in domain S, and SD tries to

differentiate between output summary videos {SK(v) : v ∈
V } and real summary videos {s : s ∈ S}. A minimax game

occurs between SK and SD, where SK pushes to minimize

the objective and SD aims to maximize it. This is equivalent

to the following:

min
SK

max
SD

Ladv(SD, SK) (3)

Reconstruction Loss: We introduce a reconstruction loss

to minimize the difference between the reconstructed fea-

ture representations of the k key frames in the predicted

summary video SK(v) and the input frame-level represen-

tation of those k key frames in the input video v. Let ΛK

be a set of k indices indicating which k frames in the in-

put video are selected in the summary. In other words, if

f ∈ Λk, the f -th frame in the input video is a key frame.

We can define this reconstruction loss as:

Lreconst(SK(v), v) =
1

k

k
∑

t=1

‖SK(v)t − vft‖22 (4)

where SK(v)t and vft are the features of the t-th frame in

the output summary video SK(v) and the ft-th frame (i.e.

ft ∈ Λk) of the input video v, respectively. The intuition

behind this loss is to make the reconstructed feature vectors

of the key frames in the summary video SK(v) similar to

the feature vectors of those frames in the input video v.

Diversity Loss: It is desirable in video summarization that

the frames in the summary video have high visual diver-

sity [24, 39, 47]. To enforce this constraint, we apply a re-

pelling regularizer [46] that encourages the diversity in the

output summary video SK(v) for the given input video v.
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This diversity loss is defined as:

Ldiv(SK(v)) =
1

k(k − 1)

k
∑

t=1

k
∑

t′=1,t′ 6=t

(SK(v)t)T · SK(v)t
′

‖SK(v)t‖2‖SK(v)t′‖2

(5)

where SK(v)t is the frame-level reconstructed feature rep-

resentation of frame t in the summary video SK(v). We aim

to minimize Ldiv(SK(v)), so that the selected k key frames

are visually diverse.

Final Loss: Our final loss function is:

L(SK , SD) = Ladv(SD, SK) + Lreconst(SK(v), v)

+β Ldiv(SK(v)) (6)

where β is a hyperparameter that controls the relative im-

portance of the visual diversity. The goal of the leaning is

to find the optimal parameters Θ∗
SK

and Θ∗
SD

in SK and

SD, respectively. We can express this as the following:

Θ∗
SK

,Θ∗
SD

= argmin
ΘSK

,ΘSD

L(SK , SD) (7)

For brevity, we use UnpairedVSN to denote our un-

paired video summarization network that is learned by

Eq. 7. In Fig. 2(c) and Fig. 2(d), we show the training

scheme of SK and SD in our model UnpairedVSN.

3.4. Learning with Partial Supervision

In some cases, we may have a small amount of paired

videos during training. We use Vp (Vp ⊂ V ) to denote

this subset of videos for which we have the ground truth

summary videos. Our model can be easily extended to take

advantage of this partial supervision. In this case, we ap-

ply an additional objective Lpsup on the output of FCSN in

the key frame selector network SK . Suppose a training in-

put video v ∈ Vp has T frames, δt,l is the score of the t-th

frame to be the l-th class (key frame or non-key frame) and

lt is the ground truth binary key frame indicator. We define

Lpsup(v) as:

Lpsup(v) = −
1

T

T
∑

t=1

log
( exp(δt,lt)
∑2

l=1 exp(δt,l)

)

(8)

Our learning objective in this case is defined as:

L(SK , SD) = Ladv + Lreconst + β Ldiv

+γ · ✶(v) · Lpsup (9)

where ✶(·) is an indicator function that returns 1 if v ∈ Vp,

and 0 otherwise. This means that Lpsup is considered if the

video v is an instance in Vp for which we have the ground-

truth summary video. The hyperparameters β and γ con-

trol the relative importance of the diversity and supervision

losses, respectively. We denote this variant of our model as

UnpairedVSNpsup.

4. Experiments

4.1. Setup

Data and Setting: We conduct evaluation on two standard

video summarization datasets: SumMe [10] and TVSum

[33]. These datasets have 25 and 50 videos, respectively.

Since these datasets are very small, we use another two

datasets, namely the YouTube [7] (39 videos) and the OVP

dataset [1] (50 videos), to help the learning. Table 1 shows

the main characteristics of the datasets. We can observe

that these datasets are diverse, especially in terms of ground

truth annotations. We follow prior work [8, 39] to convert

multiple ground truths with different format to generate a

single keyframe-based annotation (a binary key frame indi-

cator vector [39]) for each training video.

From Table 1, we can see that we have in total 164 videos

available for experiments. When evaluating on the SumMe

dataset, we randomly select 20% of SumMe videos for test-

ing. We use the remaining 80% of SumMe videos and all

the videos in other datasets (i.e., TVSum, YouTube and

OVP) for training. We create the unpaired data from the

training subset by first randomly selecting 50% of the raw

videos (ignoring their ground truth summaries) and then se-

lecting the ground truth summaries (while ignoring the cor-

responding raw videos) of the remaining 50% videos. In the

end, we obtain a set of raw videos and a set of real summary

videos, where there is no correspondence between the raw

videos and the summary videos. We follow the same strat-

egy to create the training (unpaired) and testing set when

evaluating on the TVSum dataset.

Features: Firstly, we uniformly downsample every video to

2 fps. Then we use pool5 layer of the pretrained GoogleNet

[34] to extract 1024-dimensional feature representation of

each frame in the video. Note that our feature extraction

follows prior work [24, 31, 39, 47]. This allows us to per-

form a fair comparison with these works.

Training Details: We train our final model

(UnpairedVSN) from scratch with a batch size of 1.

We use the Adam optimizer [15] with a learning rate of

0.00001 for the key frame selector network (SK). We use

the SGD [3] optimizer with a learning rate of 0.0002 for the

summary discriminator network (SD). We set β = 1 for

SumMe and β = 0.001 for TVSum in Eq. 6. Additionally,

we set β and γ to 0.001 for SumMe and TVSum in Eq. 9.

Evaluation Metrics: We evaluate our method using the

keyshot-based metrics as in previous work [24, 39]. Our

method predicts summaries in the form of key frames. We

convert these key frames to key shots (i.e., an interval-based

subset of video frames [10, 11, 39]) following the approach

in [39]. The idea is to first temporally segment the videos

using KTS algorithm [30]. If a segment contains a key

frame, we mark all the frames in that segment as 1, and 0
otherwise. This process may result in many key shots. In or-
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Dataset No. of videos Content Ground truth annotation type

SumMe [10] 25 User videos Interval-based shots and frame-level score

TVSum [33] 50 YouTube videos Frame-level importance score

YouTube [7]† 39 Web videos Collection of key frames

OVP [1] 50 Various genre videos Collection of key frames

Table 1. Key characteristics of different datasets used in our experiments. †The YouTube dataset has 50 videos, but we exclude (following

[8, 39]) the 11 cartoon videos and keep the rest.

der to reduce the number of key shots, we rank the segments

according to the ratio between the number of key frames and

the length of segment. We then apply knapsack algorithm

to generate keyshot-based summaries that are at most 15%

of the length of the test video [10, 11, 33, 39]. The SumMe

dataset has keyshot-based ground truth annotation, so we

directly use it for evaluation. The TVSum dataset provides

frame-level importance scores which we also convert to key

shots as done by [24, 39] for evaluation.

Given a test video v, let X and Y be the predicted key

shot summary and the ground truth summary, respectively.

We compute the precision (P ), recall (R) and F-score (F )

to measure the quality of the summary as follows:

P =
overlap in X and Y

duration of X
,R =

overlap in X and Y

duration of Y
(10)

F =
2× P ×R

P +R
(11)

We follow the evaluation protocol of the datasets (SumMe

[10, 11] and TVSum [33]) to compute the F-score between

the multiple user created summaries and the predicted sum-

mary for each video in the datasets. Following prior work

[24], we run our experiments five times for each method and

report the average performance over the five runs.

4.2. Baselines

Since our work is the first attempt to learn video sum-

marization using unpaired data, there is no prior work that

we can directly compare with. Nevertheless, we define our

own baselines as follows:

Unsupervised SUM-FCN: If we remove the summary

discriminator network from our model, we can learn video

summarization in an unsupervised way. In this case, our

learning objective is simply Lreconst +Ldiv . This is equiv-

alent to the unsupervised SUM-FCN in [31]. We call this

baseline model SUM-FCNunsup. Note that SUM-FCNunsup

is a strong baseline (as shown in [31]) since it already out-

performs many existing unsupervised methods ([7, 13, 18,

24, 33, 45]) in the literature.

Model with Adversarial Objective: We define an-

other baseline model where we have the summary dis-

criminator network SD and the key frame selector network

SK , but the objective to be minimized is Lreconst + Ladv

(i.e., we ignore Ldiv). We refer to this baseline model as

UnpairedVSNadv .

4.3. Main Results

SUM-FCNunsup [31] UnpairedVSNadv UnpairedVSN

F-score 44.8 46.5 47.5

Precision 43.9 45.0 46.3

Recall 46.2 49.1 49.4

Table 2. Performance (%) of different methods on the SumMe

dataset [10]. We report summarization results in terms of three

standard metrics including F-score, Precision and Recall.

SUM-FCNunsup [31] UnpairedVSNadv UnpairedVSN

F-score 53.6 55.3 55.6

Precision 59.1 61.0 61.1

Recall 49.1 50.6 50.9

Table 3. Performance (%) of different methods on TVSum [33].

In Table 2, we provide the results (in terms of F-score,

precision and recall) of our final model UnpairedVSN and

the baseline models on the SumMe dataset. Our method

outperforms the baseline methods on all evaluation metrics.

It is also worth noting that when our summary generator and

discriminator networks are trained using unpaired data with

the adversarial loss (i.e., UnpairedVSNadv), we observe

a significant boost in performance (1.7%, 1.1% and 2.9%

in terms of F-score, precision and recall, respectively) over

the unsupervised baseline SUM-FCNunsup. Adding an ad-

ditional regularizer Ldiv (i.e., UnpairedVSN) further im-

proves the summarization performance.

Table 3 shows the performance of different methods on

the TVSum dataset. Again, our final method outperforms

the baseline methods. Moreover, the trend in performance

boost is similar to what we observe on the SumMe dataset.

Results in Table 2 and Table 3 demonstrate that learning

from unpaired data is advantageous as it can significantly

improve video summarization models over purely unsuper-

vised approaches.

4.4. Comparison with Supervised Methods

We also compare the performance of our method with

state-of-the-art supervised methods for video summariza-

tion. Recent supervised methods [24, 31, 38, 39, 40, 43, 47]

also use additional datasets (i.e., YouTube and OVP) to in-

crease the number of paired training examples while train-

ing on the SumMe or the TVSum dataset. For example,
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when experimenting on SumMe, they use 20% for testing

and use the remaining 80% videos of SumMe along with

the videos in TVSum, OVP and YouTube for training. How-

ever, the main difference is that we further divide the com-

bined training dataset to create unpaired examples (see Sec.

4.1). In other words, given a pair of videos (a raw video

and its summary video), we either keep the raw video or the

summary video in our training set. In contrast, both videos

are part of the training set in supervised methods. As a re-

sult, supervised methods use twice as many videos during

training. In addition, supervised methods have access to the

correspondence between the raw video and the ground truth

summary video. Therefore, it is important to note that the

supervised methods utilize far more supervision than our

proposed method. We show the comparison in Table 4.

Surprisingly, on the SumMe dataset, our final method

outperforms most of the supervised methods (except [31])

by a big margin (nearly 3%). On the TVSum dataset, we

achieve slightly lower performance. Our intuition is that if

we have more unpaired data for training, we can reduce the

performance gap on TVSum. To sum up, this comparison

study demonstrates that our unpaired learning formulation

has potential to compete with supervised approaches.

Method SumMe TVSum

Zhang et al. [38] 41.3 –

Zhang et al. [39] (vsLSTM) 41.6 57.9

Zhang et al. [39] (dppLSTM) 42.9 59.6

Mahasseni et al. [24] (supervised) 43.6 61.2

Zhao et al. [43]‡ 43.6 61.5

Zhou et al. [47] (supervised) 43.9 59.8

Zhang et al. [40] 44.1 63.9

Rochan et al. [31] 51.1 59.2

UnpairedVSN (Ours) 47.5 55.6

Table 4. Quantitative comparison (in terms of F-score %) be-

tween our methods and state-of-the-art supervised methods on

SumMe [10] and TVSum [33]. ‡Results are taken from [40].

4.5. Effect of Partial Supervision

We also examine the performance of our model when

direct supervision (i.e., correspondence between videos in

V and S) is available for a small number of videos in the

training set. Our aim is to study the effect of adding partial

supervision to the framework.

In this case, for the first 10% of original/raw videos that

are fed to the key frame selector network, we use their

ground truth key frame annotations as an additional learning

signal (see Eq. 9). Intuitively, we should be able to obtain

better performance than learning only with unpaired data,

since we have some extra supervision during training.

Table 5 shows the performance of our model trained

with this additional partial supervision. We observe a trend

of improvement (across all evaluation metrics) on both the

datasets. This shows that our proposed model can be further

improved if we have access to some paired data in addition

to unpaired data during the training.

SumMe TVSum

F-score 48.0 (47.5) 56.1 (55.6)

Precision 46.7 (46.3) 61.7 (61.1)

Recall 49.9 (49.4) 51.4 (50.9)

Table 5. Performance (%) of UnpairedVSNpsup on the

SumMe [10] and TVSum [33] datasets. In the bracket, we include

the performance of our final model UnpairedVSN reported in

Table 2 and Table 3 to help with the comparison.

4.6. Transfer Data Setting

In our standard data setting (see Sec. 4.1), it is possible

that some of the unpaired examples consist of raw videos

or video summaries from the dataset under consideration.

In order to avoid this, we conduct additional experiments

under a more challenging data setting where the unpaired

examples originate totally from different datasets. For in-

stance, if we evaluate on SumMe, we use the videos and

user summaries of TVSum, OVP and YouTube to create

unpaired training data, and then use the entire SumMe for

testing. We follow the similar process while evaluating on

TVSum. This kind of data setting is referred as transfer data

setting [38, 39], though it has been defined in the context of

fully supervised learning. We believe that this data setting

is closer to real scenarios, where we may need to summa-

rize videos from domains that are different from those used

in training.

Table 6 and Table 7 show the performance of different

approaches on SumMe and TVSum, respectively. Although

we notice slight degradation in performance compared with

the standard data setting, the trend in results is consistent

with our findings in Sec. 4.3.

SUM-FCNunsup [31] UnpairedVSNadv UnpairedVSN

F-score 39.5 41.4 41.6

Precision 38.3 40.4 40.5

Recall 41.2 43.6 43.7

Table 6. Performance (%) of different methods on SumMe [10]

under transfer data setting.

SUM-FCNunsup [31] UnpairedVSNadv UnpairedVSN

F-score 52.9 55.0 55.7

Precision 58.2 60.6 61.2

Recall 48.5 50.4 51.1

Table 7. Performance (%) of different methods on TVSum [33]

under transfer data setting.
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Video 25 (Playing ball)Video 4 (Bike polo)

Figure 3. Two example results from the SumMe dataset [10]. The two bars at the bottom show the summaries produced by UnpairedVSN

and humans, respectively. The black bars denote the selected sequences of frames, and the blue bar in background indicate the video length.

(a) Cooking

UnpairedVSN, F-score = 61.3SUM-FCN
unsup

, F-score = 33.8

(b) Scuba

SUM-FCN
unsup

, F-score = 40.6 UnpairedVSN, F-score = 47.6

Figure 4. Example videos from SumMe [10] and predicted summaries by SUM-FCNunsup [31] and UnpairedVSN. Frames in the first

row are sampled from the video, whereas frames in the second row are sampled from the summaries generated by different approaches.

4.7. Qualitative Analysis

Figure 3 presents example summaries generated by our

method UnpairedVSN. We observe that the output sum-

maries from our approach have a higher overlap with the

human generated summaries. This implies that our method

is able to preserve information essential for generating op-

timal and meaningful summaries.

We compare the results of different approaches in Fig.

4. The first video in Fig. 4(a) is related to cooking.

SUM-FCNunsup extracts the shots from the middle of the

video and misses the important video shots towards the end.

In contrast, we observe that UnpairedVSN preserves the

temporal story of the video by extracting video shots from

different sections while focusing on key scenes. This has

resulted in better agreement with the human created sum-

maries. The second video in Fig. 4(b) is about scuba div-

ing. Unlike the first video, there is not a huge performance

gap between SUM-FCNunsup and UnpairedVSN. How-

ever, it still noticeable that SUM-FCNunsup captures less

diverse scenes compared with UnpairedVSN.

5. Conclusion

We have presented a new formulation for video sum-

marization where the goal is to learn video summarization

using unpaired training examples. We have introduced a

deep learning framework that operates on unpaired data and

achieves much better performance than the baselines. Our

proposed method obtains results that are even comparable

to state-of-the-art supervised methods. If a small number

of paired videos are available during training, our proposed

framework can be easily extended to take advantage of this

extra supervision to further boost the performance. Since

unpaired training data are much easier to collect, our work

offers a promising direction for future research in video

summarization. As future work, we plan to experiment with

large-scale unpaired videos collected in the wild.
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